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Plankton play an important role in the ecology of the ocean and the climate because of their participation
in the global carbon cycle at the base of the food chain. However, damaging plankton blooms can some-
times occur and are initially characterized by sudden transient increases in the phytoplankton population.
They are thought to be driven by several effects, such as seasonal variations in temperature and salinity,
and nutrient mixing. Furthermore, phytoplankton and zooplankton have different buoyancy properties,
leading to a differential response in turbulent environments. In this paper, we investigate this effect in a
model of advected plankton dynamics. We find that, over a range of parameter values, flows of marine
species subjected to inertial/viscous forces naturally lead to patchiness and, in turn, periodically sustained
plankton blooms.
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1. INTRODUCTION

Plankton patchiness has been observed on a wide range of
spatial and temporal scales (Franks 1997; Abraham 1998;
Folt & Burns 1999) and has been attributed to a range
of physical and biological mechanisms. It is important to
understand both the mechanisms that result in patchiness
and the effect of patchiness on food-web interactions,
which can have a major impact on fisheries policy
(Legendre 1990).

All oceanic organisms experience advection by turbu-
lence but what effect this has on the population dynamics
and the distribution of organisms is unclear. Turbulence
typically consists of an amalgam of coherent and other
structures, which can cause inhomogeneous distributions
of passively advected organisms, with novel spatial stat-
istics when reaction dynamics are also considered
(Abraham 1998). However, it has become clear that we
cannot necessarily consider plankton simply to be passive
as they have some motile abilities (Folt & Burns 1999)
as well as differing viscous and inertial properties to the
surrounding fluid (Squires & Yamazaki 1995). In other
words, plankton can move and have different material
properties to sea water. The spatial and temporal scales
can, to some degree, dictate which of these characteristics,
if any, are quantitatively significant. However, it is con-
ceivable that small qualitative effects may have a great
impact on the subsequent planktonic dynamics.

Recent results suggest that differing aggregation zones
exist for particles advected by complex flows if their den-
sities and material properties vary slightly from the sur-
rounding fluid (Squires & Eaton 1991; Reigada et al.
2001). In particular, light particles are generally forced
into areas of large vorticity while heavier particles tend to
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be constrained to regions with high strain rates. The full
dynamics of inertial particles in a general flow are highly
non-trivial (Maxey & Riley 1983) and a variety of
additional effects occur. For plankton, if one variety of
organism is lighter than the other we may have some
degree of separation of predator and prey.

At moderate spatial scales phytoplankton ‘blooms’ can
occur, whereby the population of phytoplankton rapidly
increases in number and remains at this level for some
period of time before returning to normal. This is the hall-
mark of an excitable system. Truscott & Brindley (1994)
investigated a two-component phytoplankton–zooplank-
ton (PZ) model that has the characteristics of an excitable
system whose excitability is robust over a realistic para-
meter range. Normally, however, a large driving pertur-
bation is required to initiate the bloom in general for an
excitable system. Possibly, many mechanisms such as vari-
ations in salinity, temperature and nutrient mixing are
responsible for this initiation. Furthermore, the breaking
of excitation waves by shear flow has been proposed
(Biktashev et al. 1998) as a possible mechanism for plank-
ton patchiness. Similarly, a chaotically advected excitable
system, together with a driving influx of nutrient (in this
case iron), has been investigated as an alternative mech-
anism (Neufeld et al. 2002). In both cases, the system
needs some non-vanishing perturbation to seed the exci-
tation.

We explore the effects of inertia on advected excitable
PZ dynamics. In particular, we shall address the question
of whether the differential flow of phytoplankton and zoo-
plankton is sufficient to seed a bloom. This scenario would
require no extraneous perturbation to drive the excitation.
In other words, after sufficient inertial separation a large
population of the phytoplankton might be allowed to grow
in certain localized regions with minimal predation and
this, coupled with dispersive effects, may constitute the
supra-threshold perturbation necessary for an excitable
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system. Also, we investigate what consequences this may
have on the distribution of the organisms and the pred-
ator–prey contact rates.

Of especial interest in this paper are length-scales of
kilometres and time-scales of days. In particular, we do
not directly investigate or incorporate individual-based
plankton–plankton interactions (except via measurements
of relative flux) and biased motile responses owing to food
availability, predation or reproduction (Folt & Burns
1999), although the slow drift and micropatchiness asso-
ciated with these mechanisms may also have qualitative
effects over very large times.

We shall employ a statistical approach to generate tur-
bulent flows using techniques previously applied to a var-
iety of physical systems (Marti et al. 1997). The
advantages are that one has complete control over the stat-
istical properties of the flow.

2. TURBULENT ADVECTION OF INERTIAL
ORGANISMS

The assumption that zooplankton and phytoplankton
can be treated as passive scalars is, at best, hopeful. They
can both, to varying degrees, have different viscous and
inertial properties to the surrounding fluid. In Maxey &
Riley (1983) the equation of motion was derived for a
spherical particle at position Xn with velocity Vn, where
n is the particle index, in a non-stationary fluid velocity
field, U(Xn):

mp
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dt
= mf

DU(Xn)
Dt

1 6pam(U(Xn) 2 Vn)

2
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dt
2

dU(Xn)
dt D

2 6pa2mE t

2`

d(Vn 2 U(Xn))/dt
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where mp is the particle mass and mf is the mass of the
volume of fluid displaced by the particle; n and m are the
kinematic and dynamic viscosities, respectively, associated
with the surrounding fluid and a is the radius of the par-
ticle. The first term in equation (2.1) is the Bernoulli term,
which is the force from the undisturbed flow, the second
term is the Stokes viscous drag, the third is the added mass
term and the final term is the Basset history force. This
equation incorporates the assumption that the particle,
associated Reynolds number and fluid gradients around
the particle surface are small (Maxey & Riley 1983).
Invoking some other common approximations that can be
found in the literature (Druzhinin & Ostrovsky 1994;
Taylor 1923; Auton et al. 1988; Reigada et al. 2001) one
obtains the following reduced version of equation (2.1):

dVn

dt
= A(U(Xn) 2 Vn) 1 R

DU(Xn)
Dt

. (2.2)

In this equation we have non-dimensionalized the time by
rescaling it using the flow time-scale, t ! tu0/l0 (we keep
the same notation for simplicity). Here, A = al0/u0 is the
dimensionless version of the inertia parameter
a = (12pam)/(2mp 1 mf), which corresponds to the bal-
ance between viscous and inertial forces. The Bernouilli
parameter R = 3mf /(2mp 1 mf) introduces the ratio
between masses.
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Later, we shall move to a Eulerian frame so we need to
establish the existence of a corresponding Eulerian velo-
city field. To obtain a simplified, long-time expression for
the corrected velocity field of the dispersed species we fol-
low the approach first employed in Maxey (1987) for the
singular case of heavy particles, and later generalized by
Reigada et al. (2001). It amounts to the assumption that
A is large so that after the formal integration of equation
(2.2) we can ignore any exponential transients, and retain
only terms up to the first order in A21. If we assume that
the ambient flow is stationary, U(r, t) = U(r), we obtain
the effective velocity field, V(r) as

V(r) = U(r) 1
R 2 1

A
[U(r)·=]U(r) 1 O(A22). (2.3)

The important result already contained in equation
(2.3) is that particles drift from the flow trajectories and
tend to aggregate in various zones depending on their
material characteristics. The aggregation of particles
occurs in regions of negative divergence, =·V , 0, for a
set particle class (in contrast to neutrally buoyant, pass-
ively advected particles). The divergence of equation (2.3)
can be written in terms of the squares of the magnitudes
of the local strain rate and the local vorticity, S 2 and
|V|2, respectively, of the original turbulent flow, U.
Hence,

=·V =
R 2 1

A S2S2 2
|V|2

2 D , (2.4)

which leads to two different possibilities for aggregation.
If the organism is heavy (R , 1), then accumulation
occurs in regions where S2 . |V|2/4, regions of high
strain and low vorticity (outside the eddies). Conversely,
if an organism is lighter than the surrounding medium
(R . 1) accumulation occurs in regions where S 2 ,
|V|2/4, areas with high vorticity and low strain (inside
the eddies).

Let us now introduce our model for turbulent flows.
We refer to a statistically homogeneous, isotropic and
stationary two-dimensional velocity field U as first intro-
duced in Marti et al. (1997). This fluid flow is generated
with regard to three basic well-defined statistical proper-
ties: u2

0 is the intensity of the flow, l0 is the length corre-
lation of the flow and t0 is the time correlation of the flow.
These kinematic characteristics are expressed in terms of
the velocity correlation function, which in turn depends
on the form of the energy spectrum. For the flow used in
this paper we shall adopt Kraichnan’s spectrum
(Kraichnan 1970) as it describes a turbulent flow velocity
field that incorporates a wide band of excited modes, but
whose energy drops off sharply for large wavenumbers.
This is ideal for this application as it allows us to addition-
ally model planktonic dispersion at smaller scales (see
later). Moreover, Kraichnan’s spectrum exhibits a well-
defined peak at a wavenumber of k = k 0. Other spectra
such as that due to Kárman–Obukhov (von Kárman 1948)
with a long ‘25/3’ tail can be similarly applied, but one
must be careful to properly (and not overly) account for
planktonic dispersion processes at small spatial scales.

Maxey & Riley (1983) indicate guidelines for the proper
application of equation (2.1). The main condition is that
(a2u0)/(l0n) ¿ 1. Because, typically, a , 1022 m, u0 = 0.1
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Figure 1. Snapshot of the ‘frozen’ turbulent velocity field
employed in the simulations.

m s21, l0 = 5 ´ 104 m and n = 1026 m2 s21 we can safely
apply the Maxey & Riley equation (see later for a full dis-
cussion of parameter values). In line with a realistic range
of values for a (Squires & Yamazaki 1995) we assume,
henceforth, that a = 0.0257 s21, which means that the
zooplankton radius is ca. 1 cm and implies that A À 1, jus-
tifying the preceding analysis.

Although the general method of flow generation allows
us to work with a non-stationary field, we shall not make
use of the possibility in this paper. For the sake of sim-
plicity, and to avoid the existence of many temporal scales,
we take a frozen flow, with u0 and l0 as the only flow para-
meters. In figure 1 we show the flow realization used in
our simulations.

3. A MODEL FOR ADVECTED EXCITABLE
PLANKTON DYNAMICS

Following Truscott & Brindley (1994) we use the fol-
lowing rate laws for the PZ interactions that, in essence,
model logistic phytoplankton growth, Holling type III
grazing by zooplankton and a linear higher-predatory
response with regard to the zooplankton mortality:

IP(P ,Z) = rP S1 2
P
K D 2

gZP 2

P 2 1 k2,

IZ(P ,Z) =
egZP 2

P 2 1 k2 2 dZ. (3.1)

We further couple the above rate laws to an advection–
diffusion scheme to represent the effects of planktonic
interactions and diffusion/motility in a Eulerian frame-of-
reference. We non-dimensionalize the resulting equations
such that P = Kp, Z = Kz, x = l0 x̃, y = l0 ỹ , t = tl0/u0,
Vi = u0vi, di = Di/(u0 l0), with Vi obtained from equation
(2.2) with appropriate choices of R = Rp and Rz, and Di

representing turbulent diffusivities (assumed equal, see
below). After eliminating the tildes this gives us the follow-
ing non-dimensional scheme:

¶ p
¶ t

= 2=·(vpp 2 dp=p) 1 bp(1 2 p) 2
ḡzp2

p2 1 x2,

¶ z
¶ t

= 2=·(vzz 2 dz=z) 1 «S ḡzp2

p2 1 x2 2 szD , (3.2)

where the dimensionless parameters of the excitable
model are defined as b = rl0/u0, « = e, x = k/K ,
s = dl0/(«u0) and ḡ = gl0/u0.
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Figure 2. Oscillatory bloom in the mean concentrations of
phytoplankton and zooplankton. Solid line, kpl; dashed line,
kzl.

We choose L, the simulation box size, to be 50 km
(where l0 is related to L in the sense that l0 determines the
scale of the eddies, and in this case we choose L < 10l0;
see figure 1) and the characteristic velocity to be
u0 = 0.1 m s21, similar to that used in both Abraham
(1998) and Neufeld et al. (2002). From Truscott & Brind-
ley (1994), we take b = 0.162, x = 0.053, s = 0.130 and
« = 0.05 (hence, the zooplankton population is the
slow/recovery variable). Our choice of l0 and u0 are such
that we can realistically fix ḡ = 1 and, hence, the reaction
effects are comparable to advective effects.

Kraichnan’s spectrum has a maximum occurring at
k = 0.75 and decreases to a very small value at k = 2.
Hence, the length-scale associated with the highest energy
is equal to 2p/0.75 = 8.4, or about one-tenth of the length
of the simulation region. The length-scale associated with
a wavenumber of 2 (residual energy) is given by
2p/2 = p, or about one-twentieth of the simulation region.
If the simulation region is 50 km then the dimensional
length-scale associated with low spectral energy is
L/20 = 2.5 ´ 105 cm. This is the length-scale for which we
wish to implement a turbulent diffusivity in the reaction–
advection–diffusion system. Hence, the diffusivity
D = 0.01 ¤ l1 .1 5 = 1.6 ´ 104 cm2 s21 = 1.6 m2 s21 (according
to the empirical relationship extracted by Okubo (1971)
from experimental data). Therefore, the synthetic turbu-
lence accounts for the large-scale flow centred about a
wavenumber k0. The energy spectrum drops off suf-
ficiently quickly for larger wavenumbers such that the tur-
bulent mixing can be modelled by simple diffusion at
small length-scales (several grid points).

We neglect any swimming diffusion for the following
reason. If we assume an upper bound on the typical swim-
ming speed, Vs = O(1021) m s21, and some typical reorien-
tation time-scale, tr = O(1) s, then the diffusion can be
approximated by Ds < V 2

s tr, which is O 1022) m2 s21 (also,
see data for algal cells; Hill & Hader (1997)), and is sig-
nificantly smaller than the turbulent diffusivity calcu-
lated above.

The system is spatially discretized using a square lattice
of 128 ´ 128 cells, with a grid spacing of 0.5, and the time-
step used in the numerical scheme is Dt = 0.0002. The
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t = 415 days t = 470 days t = 515 days t = 580 days

Figure 3. Snapshots of the (a) phytoplankton and (b) zooplankton distribution during the oscillatory bloom. For snapshots of
phytoplankton, white refers to p = 0, and for p greater than or equal to 0.6 black is used. For zooplankton, white refers to
z = 0 and black implies that z is greater than or equal to 0.1.

integration of equation (3.2) was achieved by using a two-
step Lax–Wendroff scheme (Press et al. 1992) that gave
good numerical convergence for the parameter values
employed.

We begin from a homogeneous initial distribution of
both species in their unexcited, equilibrium concentration
values p¤ = 0.038 27 and z¤ = 0.046 03. The inertial sep-
aration under turbulent advection is enough to perturb the
equilibrium distribution and, analogous to the threshold
nature of perturbations in excitable systems, we find that
there exist critical values of the Bernoulli parameters
which separate regimes where no bloom occurs from
regions where localized excitation and subsequent bloom
propagation results.

The most interesting cases occur for the regime where
we have neutrally buoyant phytoplankton (Rp = 1) and
slightly heavy zooplankton (Rz = 0.9). Here, indeed, we
see the emergence of an oscillatory bloom in the average
phytoplankton population with a period of ca. 210 days.
Figure 2 presents the nature of the oscillatory bloom in
the mean population values of phytoplankton and zoo-
plankton, whereas in figure 3 one may observe the spatial
evolution of the distribution of the phytoplankton popu-
lation during one bloom cycle. The initial excitation is
because of the inertial drift of zooplankton that moves out
from the eddies initiating a phytoplankton bloom inside
the vortices. The details of the behaviour of the planktonic
populations and distributions are described in the follow-
ing section. What is fascinating is that this regime is the
most physically realistic scenario, as phytoplankton are
usually close to neutrally buoyant, and zooplankton are
slightly more dense than the surrounding ocean (McCave
1984; Squires & Yamazaki 1995; Folt & Burns 1999).

4. AGGREGATION, SEGREGATION AND CONTACT
RATES

In this section, we explore the implications of bloom
formation on the statistical properties of the organisms’
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spatial distributions, in relation to the recruitment of zoo-
plankton. We employ some statistical measures, which are
described below.

To measure the magnitude of aggregation of phyto-
plankton we define Pp to be

Pp =
kpl2

kp2l
, (4.1)

where k·l denotes a spatial average, and similarly for Pz

for the zooplankton. If the distribution is homogeneous
then Pp = 1, whereas if all the phytoplankton are all at one
point then Pp = 1/N 2 (where N 2 is the number of mesh
points in the computational grid).

Another statistic we wish to use is a measure of the
predator–prey contact rate. It is derived from the differ-
ence in the relative fluxes of the phytoplankton and zoo-
plankton, which provides a measure of the rate at which
the two organisms ‘meet’. In two dimensions, we find that
the relative flux of phytoplankton past a zooplankter, at a
given spatial location is given by

Gp(t) = 2RI J z

z
2

J p

p Ip, (4.2)

where R is the zooplankton’s perceptive radius. This is a
local measure which might be used to assess the phyto-
planktonic consumption by zooplankton at a particular
point within a complex flow, and to compare zooplankton
grazing strategies in turbulent environments (see the
experiments of Marrasé et al. (1990)). Furthermore, the
analogous expression for the normalized averaged contact
rate, G(t), is

G = 2R
E

S
Ip J z 2 z J pIdA

E
S

zdAE
S

pdA

, (4.3)

where S is the spatial domain under consideration. We



Turbulent � ows and plankton blooms R. Reigada and others 879

410 450 490 530 570 610
t days)

0

0.025

0.05

0.075

0.1

kpl
kzl

P z /10
P p /10

G  ×108

a) b)

c)

d)

Figure 4. Complete view of one period of the oscillatory
bloom (Case IV). The distribution of both species at times
(a)–(d) in this plot are shown from left to right in figure 3.

use the value R = 6 cm, in line with the suggestion of 2–
4 body lengths from Folt & Burns (1999).

In figure 4 we observe how these statistical measures
vary over the period of one bloom oscillation. From (a)
to (b) in figure 4, the phytoplankton population slowly
increases but mostly spreads (diffusion) inside the vortices
unoccupied by zooplankton. During this period, Pp stays
close to 1 because there is not localization of phytoplank-
ton but diffusion of these organisms inside the vortices.
Besides, zooplankton decreases in the entire system owing
to the lack of prey. This effect is especially enhanced
inside the eddies because of their outward drift. The phy-
toplankton bloom begins at point (b). From (b) to (c) the
lack of zooplankton allows the concentration of phyto-
plankton to increase quite dramatically, although it is
always confined to the vortices. Hence, Pp decreases to a
low value, a signature of localization. At the same time,
the zooplankton starts to grow because of the presence of
large quantities of phytoplankton. This is also reflected in
the sudden growth of the contact rate G just before phyto-
plankton reaches its maximum at (c). From (c) to (d), the
large phytoplankton population contributes to the regen-
eration of the zooplankton, especially in the straining
regions of the flow around the eddies where the phyto-
plankton had accumulated previously. For this reason, Pz

begins to decrease, a sign of zooplankton localization. The
zooplankton grows even as the phytoplankton decreases
(owing to the fast/slow nature of the PZ dynamics). At this
stage, it can be observed how the zooplankton population
penetrates (by growth and diffusion) into the eddies owing
to the large localized concentration of phytoplankton,
counteracting the effects of inertial drift. After point (d),
to complete the oscillation, the zooplankton population
begins to decay owing to the lack of prey, and the phyto-
plankton population returns to the initial state at (a). Dur-
ing this stage, localization of both species decreases,
indicating more disperse distributions, and the contact
rate decreases owing to a reduction in the area of cohabi-
tation.
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5. CONCLUSIONS

We have demonstrated how differential flow effects of
phytoplankton and zooplankton, coupled with excitable
reaction dynamics, may contribute towards oceanic phyto-
plankton blooms and patchiness. We have focused our
efforts by employing an elementary excitable model for the
planktonic interactions, although this does not preclude
the possibility of similar behaviour emerging for more
complex or realistic ecosystems. Upon advection by turbu-
lence, heavy and light particles accumulate in separate
areas of the flow, as phytoplankton and zooplankton have
different viscous and inertial properties to the surrounding
oceanic medium. Simple reaction dynamics then ensure
that non-trivial patchiness results. Of particular interest
was the oscillatory excitation, which occurred in the most
realistic inertial regime (neutrally buoyant phytoplankton
and slightly heavy zooplankton). The period of this oscil-
lation was of the order of one year and occurred for a
range of parameter values. The result is particularly
intriguing owing to the resulting annual period of the
blooms, although we would emphasize that seasonal forc-
ing is likely to play a great role. Such seasonal forcing
would consist of variations in temperature, light, nutrients
(owing to mixing) or fluctuations in other components of
the food chain. The important message in this work is that
with a minimal model and using experimentally determ-
ined values for the parameters, we obtain a natural period
of just less than one year, which may be further synchron-
ized by the external forcing. This self-initiating, periodic
patch-forming mechanism differs from other related work
on advection-enhanced blooms (Biktashev et al. 1998;
Neufeld et al. 2002) as it requires no initial perturbation
and is self-sustaining.

In § 4 we investigated how bloom formation may affect
the statistical properties of the spatial distribution of the
organisms and the contact rates (of particular relevance to
fish stocks). In principle, one should be able to compare
the statistics resulting from these or other similar simula-
tions with experimentally determined data (Okubo 1971;
Marrasé et al. 1990; Powell & Okubo 1994). To measure
contact rates we developed a continuum formulation
based on the relative flux of the two species. This revealed
interesting behaviour and emphasized the role of relative
(inertially driven) flux in accentuating contact rates and,
thus, grazing rates. In particular, it is clear that the spati-
ally averaged grazing rate varies significantly in response
to physical and population dynamical cues.

For populations of plankton subject to excitable dynam-
ics and turbulent advection with inertial effects, the mean
contact rate does depend on the extent of the patchiness in
contrast to other approaches, such as the probabilistically
derived results of Pitchford & Brindley (2001). Further-
more, the separation of the two organisms can be either
good for the recruitment of zooplankton or bad. Although
not shown in this paper, for an extreme case (very light
phytoplankton and very heavy zooplankton), we observed
that the contact rate decreased with time, as we would
expect because predator and prey reside in different areas.
In this case the phytoplankton accumulate in the eddies
and the zooplankton move to low vorticity regions, reach-
ing a steady, heterogeneous distribution of plankton.
However, for the oscillatory case presented here, and cor-
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responding to the more realistic situation, the bloom can
periodically propagate, which allows for zooplankton to
move into phytoplankton populated areas thus increasing
the contact rate.

Finally, it is a priority of future research to ascertain the
robustness of the above results subject to variations in the
model or more realistic modelling approaches. The key
requirements for the above-described mechanism are
underlying excitability and the inertial separation of spec-
ies in a complex flow. Furthermore, the inertial separation
may play other interesting roles in non-excitable systems.
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