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Abstract. We present an analytical scheme, easily implemented numerically, to generate synthetic
Gaussian 2D turbulent flows by using linear stochastic partial differential equations, where the noise
term acts as a random force of well-prescribed statistics. This methodology leads to a divergence-
free, isotropic, stationary and homogeneous velocity field, whose characteristic parameters are well
reproduced, in particular the kinematic viscosity and energy spectrum. This practical approach
to tailor a turbulent flow is justified by its versatility when analizing different physical processes
occurring in advectely mixed systems. Here, we focuss on an application to study the dynamics of
Planktonic populations in the ocean.

INTRODUCTION.

Ideally, the statistical properties [1, 2] of any turbulent flow should come as the output
of a first principles, Navier-Stokes based, formulation of the problem. However, we
will adopt here a somewhat reversed perspective aimed at developing a methodology
to construct what would be a sort of synthetic turbulence [3]. Rather than to retain the
nonlinear coupling which makes possible the redistribution of energy from the largest
length scales down into the smaller ones, we assume that the energy is incorporated into
the system in an individual wave number basis, to reproduce the desired energy spectrum
distribution of the turbulent flow in steady state.

The generation of the flow field proceeds from the two-dimensional simulation of a
Langevin equation for the stream function η

�
r � t � ,

∂η
�
r � t �

∂ t � ν∇2η
�
r � t �	� Q 
 λ 2∇2 � ∇ � ζ �

r � t �� (1)

where ν stands for the kinematic viscosity and Q 
 λ 2∇2 � denotes an operator which
controls the spatial structure of the flow, with λ standing for its typical correlation length.
Furthermore, ζ

�
r � t � represents a Gaussian white-noise field with zero mean value and

whose covariance is given by�
ζ i � r ��� t ��� ζ j � r ����� t ������� � 2ε0νδ

�
t ��� t ����� δ �

r ��� r ����� δ i j (2)



FIGURE 1. Snapshot of the “frozen" turbulent velocity field employed in the simulations in this study.

where ε0 is the parameter that determines the intensity of the noise and further on that
of the mimicked turbulent flow. This Langevin equation can be formally integrated in
Fourier space to get the temporal evolution of the stream function. The incompressible
two-dimensional discretized velocity field Ui � j follows from the stream function

Ui � j � t � � U
�
ri � j � t � �

�
� ∂η

�
ri � j � t �
∂y

� ∂η
�
ri � j � t �
∂x ��� (3)

This synthetic fluid flow is characterized by three basic well-defined statistical prop-
erties; u2

0 as the intensity of the flow, l0 as the length correlation of the flow and t0 as the
time correlation of the flow [3]. These flow parameters are defined in terms of the ve-
locity correlation function, which in turn, is formally associated to the energy spectrum
(that depends on the form of the operator Q), and explicitly on the input parameters ν ,
ε0, and λ . In this contribution we consider for most of the applications a flow with the
Kraichnan spectrum [4]. In this case E

�
k � in 2D is given by E

�
k � ∝ k2exp ��� k2 � k2

0 � and
correspondingly the diferential operator Q adopts the form Q 
 λ 2∇2 �

� exp
�
λ 2∇2 � 2 � .

Although the general method of flow generation allows us to work with a non-
stationary field, we shall not make use of the possibility in this study. For the sake of
simplicity, and in order to avoid the existence of a great number of temporal scales, we
take a stationary flow, and so fix t0 � ∞ in the flow simulations. As an example, in Fig. 1
we show the flow realization used in this work. This flow has been generated using a
square lattice of 128 � 128 points, and l0 corresponds to a tenth of the linear size of the
grid.

This model of synthetic turbulence has been used to study a large number of
physical processes. Examples to be considered include dispersion of passive[5]
and non-passive[6] particles, either reactive[7, 8] or non-reactive, front propagation
phenomena[9] or phase-separating mixtures[10]. In this work we present an application
to the study of planktonic populations in the ocean.



TURBULENT ADVECTION. INERTIAL EFFECTS.

When describing the motion of advected planktonic organisms or, in general any kind
of non-passive particles, inertial effects due to their viscous and inertial properties have
to be considered. In a Lagrangian prescription (the most visual and direct approach to
study particle advection), the equation of motion for a spherical particle was derived by
Maxey & Riley [11],

mp
dVn

dt � m f
DU

�
Xn �

Dt
� 6πaµ

�
U

�
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� m f

2 � dVn

dt
� dU

�
Xn �

dt � � 6πa2µ � t� ∞

d
�
Vn � U

�
Xn � � � dτ�

πν
�
t � τ � dτ � (4)

being Xn the position of the particle n with velocity Vn, in a velocity field, U
�
Xn � . mp

and m f are the particle and fluid masses respectively, µ and ν are the dynamic and
kinematic viscosities associated with the surrounding fluid and a is the radius of the
particle. In Eq.(4) we have distinguished between two different derivative terms, D � Dt
and d � dt. The first corresponds to the material derivative following a fluid element
whereas the second denotes the derivative following the particle in the fluid such that
dU � dt � ∂U � ∂ t � 
 Vn � ∇ � U. The first term in Eq. (4) is the Bernoulli term which is
the force from the undisturbed flow, the second term is the Stokes viscous drag, the
third is the added mass term and the final term is the Basset history force. This equation
assumes that the particle, associated Reynolds number and fluid gradients around the
particle surface are small [11]. Hereafter we consider that the drag and inertia terms
are dominant and the particle is small, so that the history term can be neglected. We
simplify even more the equation of motion assuming that the work done displacing a
fluid element must be dependent on the forces on the fluid at that point. According to
this idea we exchange the particle derivative for the fluid derivative in the added mass
term to obtain a reduced version of Eq. (4) that reads [6, 11]

dVn

dt � A
�
U

�
Xn � � Vn � � R

DU
�
Xn �

Dt � (5)

In this equation we have non-dimensionalized the time by rescaling it using the flow
timescale l0

� u0. We have defined A � αl0
� u0 as the dimensionless version of the inertia

parameter α �
�
12πaµ � � � 2mp � m f � , that corresponds to the balance between the

viscous and inertial forces. The Bernouilli parameter R � 3m f
� � 2mp � m f � is the ratio

between masses.
Eq. (5) can not be solved analytically, but it is possible to obtain reliable information

from it in the limit where the viscous term dominates (A � 1). This asymptotic analysis
was introduced by Maxey [12] for the singular case of infinitely heavy particles and
extended to the general case for some of us [6]. It amounts to formally integrate the
particle motion according to Eq. (5) under the assumption that A is large, so that
exponential transients can be eliminated, and retain only terms up to the first order in
A

� 1. If we assume that the ambient flow is stationary, we have the following expression



for the effective velocity field, V
�
r � :

V
�
r � � U

�
r � � R � 1

A

 U �

r � � ∇ � U �
r �	��� �

A
� 2 � � (6)

Actually, the above approximation assumes that the particle velocities adapt instan-
taneously to that of the surrounding fluid flow, and are only determined by the particle
positions, neglecting the impact of trajectory memory. This is guaranteed by assuming
that the viscous forces dominate the other ones. This allows the construction of an ef-
fective particle velocity field V

�
r � that closely matches the physical particle dynamics,

and that can be easily implemented in a Eulerian formalism as we shall do later.
The most relevant signature of nonpassive advection is that particles drift from the

flow trajectories due to inertia and tend to aggregate in various zones depending on their
material characteristics [6, 12]. The aggregation of particles occurs in regions of negative
divergence, ∇ � V � 0, in contrast to neutrally buoyant, passively advected particles. The
divergence of the velocity V in Eq. (6) can be written in terms of the squares of the
magnitudes of the local strain rate and the local vorticity, � 2 and �Ω � 2, respectively, of
the original turbulent flow, U, as follows

∇ � V �
R � 1

A � 2 � 2 � �Ω �
2

2 � � (7)

which leads to two different possibilities for aggregation. If the particle is heavier than
the fluid (R � 1) then accumulation occurs in regions where � 2 ���Ω � 2 � 4, regions of
high strain and low vorticity. Conversely, if a particle is lighter than the surrounding
medium (R � 1) accumulation occurs in regions where � 2 ���Ω � 2 � 4, areas with high
vorticity and low strain.

KINETIC MODEL FOR PLANKTON DYNAMICS

The versatility of our synthetic turbulence has allowed us to explore several physical
systems in which the advection plays a crucial role. As anticipated, here we focus on
the study of the influence of turbulent advection in Planktonic populations. Plankton
patchiness has been observed on a wide range of spatial and temporal scales [13, 14, 15]
and has been attributed to a range of physical and biological mechanisms. It is important
to understand both the mechanisms that result in patchiness and the effect of patchiness
on food-web interactions, which can have a major impact on fisheries policy.

Besides, at moderate spatial scales phytoplankton “blooms" can occur, whereby the
population of phytoplankton rapidly increases in number and remains at this level for
some period of time before returning to normal. This is the hallmark of an excitable sys-
tem. Truscott & Brindley [16] investigated a two component phytoplankton-zooplankton
(PZ) model which has the characteristics of an excitable system whose excitability is ro-
bust over a realistic parameter range. Normally, however, a large driving perturbation is
required to initiate the bloom. Many mechanisms such as variations in salinity, temper-
ature and nutrient mixing have been proposed to explain this initiation. In this work, we
explore the effects of inertia in complex flows on excitable PZ dynamics. In particular,



we shall address the question of whether the inertial separation of phytoplankton and
zooplankton is sufficient to seed a bloom.

We propose the following system of reaction-advection-diffusion equations to repre-
sent the effects of planktonic interactions and diffusion in an Eulerian frame:

∂P
∂ t � � ∇ � � VPP � DP∇P �	� rP � 1 � P

K � � γZP2

P2 � κ2 �
∂Z
∂ t � � ∇ � � VZZ � DZ∇Z �	� eγZP2

P2 � κ2 � δZ � (8)

where Vi represents the velocity, with inertial and viscous corrections, of species i sub-
ject to advection by the flow obtained from Eq. (5), at lengthscales above the grid size,
and grid-scale diffusive effects due to turbulent diffusion, with diffusivities DP and DZ .
The last two terms in Eq. (8) correspond to the phytoplankton and zooplankton inter-
actions following the excitable system proposed by Truscott & Brindley [16], which in
essence models logistic phytoplankton growth, Holling type III grazing by zooplankton
and a linear higher-predatory response with regard to the zooplankton mortality.

We non-dimensionalize Eq. (8) such that P � K p � Z � Kz � x � l0x̃ � y � l0ỹ � t �τl0
� u0 � Vi

� u0vi. After dropping the tildes this gives us the following non-dimensional
version of Eq. (8),

∂ p
∂τ � � ∇ � � vpp � dp∇p �	� β p

�
1 � p � � γ̄zp2

p2 � χ2 �
∂ z
∂τ � � ∇ � � vzz � dz∇z �	� ε � γ̄zp2

p2 � χ2 � σz � � (9)

where the dimensionless parameters are defined to be β � rl0
� u0 � ε � e � χ � κ � K � σ �δ l0

� � εu0 �� γ̄ � γl0
� u0 � di � Di

� � u0l0 � .
We choose L, the simulation box size, to be 100 km, the length scale of the eddies

l0 � L � 10), and the characteristic velocity to be u0 � 0 � 075 m s
� 1, similar to that used

in both Abraham [14] and Neufeld et al. [17]. From Truscott & Brindley [16], we take
β � 0 � 43, χ � 0 � 053, σ � 0 � 34 and ε � 0 � 04 (hence, the zooplankton population is the
slow-recovery variable). Our choice of l0 and uo are such that we can realistically fix
γ̄ � 1 and, hence, the reaction effects are comparable to advective effects. Kraichnan’s
spectrum has a maximum occurring at k � 0 � 75 and drops to a very small value at
k � 2. Hence, the lengthscale associated with the highest energy is equal to 2 π /
0.75 = 8.4, or about a tenth of the length of the simulation region. The lengthscale
associated with a wavenumber of 2 (residual energy) is given by 2 π / 2 = π , or
about one 20th of the simulation region. If the simulation region is 100 km then the
dimensional lengthscale associated with low spectral energy is L � 20 � 5 � 105 cm.
This is the lengthscale for which we wish to implement a turbulent diffusivity in the
reaction-advection-diffusion system. Hence, the diffusivity D � 0 � 01 � l1 � 15

� 4 � 104

cm2 s
� 1

� 4 m2 s
� 1 (according to the empirical relationship extracted by Okubo [18]

from experimental data). Therefore, the synthetic turbulence accounts for the large scale
flow centered around a wavenumber k0.



The system is spatially discretized using a square lattice of 128 � 128 cells, with a
grid spacing of 0.5, and the time step used in the numerical scheme is ∆t � 0 � 001. The
integration of Eq. (9) was achieved by using a two-step Lax-Wendroff scheme which
gave good numerical convergence for the parameter values employed. Simultaneously,
we integrate Eq. (5) to obtain the velocities Vi. We use the same A � 6 (

�
1) for both

species, but different Bernouilli parameters, Rp and Rz.
We begin from a homogeneous initial distribution of both species in their unexcited,

equilibrium concentration values p
�
� 0 � 04589 and z

�
� 0 � 04379. The inertial separation

under turbulent advection is enough to perturb the equilibrium distribution and, analo-
gous to the threshold nature of perturbations in excitable systems, we find that there exist
critical values of the Bernoulli parameters which separate regimes where no bloom oc-
curs from regions where localized excitation and subsequent bloom propagation results.

First, we consider the extreme inertial regime, Rp � 1 � 2 and Rz � 0 � 8; namely, very
light phytoplankton and very heavy zooplankton. As the phytoplankton accumulate in
the eddies, the population locally exceeds the threshold value and excitation begins.
Diffusion allows the excitation to move out from the eddies but the flow eventually forces
this wave back into the vortices. At the same time the excitation decays and these three
processes reach a steady, heterogeneous distribution of plankton, with phytoplankton at
the excited state inside the eddies and below it outside. The pulse propagation is also
tempered by the dilutory effects of the non-zero flow divergence enforced by inertial
advective effects coupled with the geometry of the domain.

The most interesting scenario occurs for the regime where we have neutrally buoyant
phytoplankton (Rp � 1) and slightly heavy zooplankton (Rz � 0 � 95). Here, we see the
emergence, again without need of an inertial excitation, of an oscillatory bloom in the
average phytoplankton population with a period of around one year, which is interesting
in view of the annual nature of the observed blooms (although seasonal forcing is likely
to have a major role). Fig. 2 presents the spatial evolution of the distribution of the
phytoplankton population during one bloom cycle, whereas in Fig. 3 one may observe
the nature of the oscillatory bloom in the mean population values of phytoplankton
and zooplankton. The initial excitation is due to the absence of zooplankton in the
eddies and, as before, the bloom propagates via diffusion throughout the domain. The
main difference with the former scenario is that the expanding phytoplankton wave
is not maintained in the vortices so the bloom decays and returns to the quiescent
determination before the process is repeated.

What is fascinating is that the oscillatory regime is the most physically realistic sce-
nario, as phytoplankton species are usually close to neutrally buoyant and zooplankton
are slightly more dense than the surrounding ocean. However, notice that in the results
shown here the value of the inertia parameter α from its dimensionless value (A � 6) is
much smaller than what would be considered a realistic situation[19]. In a further work
presented elsewhere [20] we adjust the value of the inertia parameter, obtaining qualita-
tively similar results that those ones presented here. Regardless of whether we use one
or another value for α , we have corroborated that there are measurable qualitative dif-
ferences between blooms involving zooplankton species of various sizes/densities, as it
is reported in the experimental studies. However, a complete description of the problem
would lead to a very complex model where, probably, the values of the inertial parame-
ters and the material characteristics of the organisms would depend on time: αi

�
t � , Ri

�
t � .
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FIGURE 2. Snapshots of the phytoplankton population during the oscillatory bloom. Gray-scales as
before.
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FIGURE 3. Oscillatory bloom in the mean concentrations of phytoplankton and zooplankton.

CONCLUSIONS

In this work, we have presented a methodology to generate synthetic turbulent flows
from white noise that can be easily implemented numerically. As a result we obtain
a stochastic velocity field which enters in the equations as a multiplicative noise with
a spatio-temporal structure. This makes the problem non Markovian which deserves
new mathematical techniques [21]. As an example of the possible applications of this
approach we have shown here the main features of the dispersion of nonpassive (inertial)
particles under turbulent advection.

Applying these results and this metodology to the study of Plankton dynamics, we
have demonstrated how inertial separation of phytoplankton and zooplankton, cou-



pled with excitable reaction dynamics, may contribute towards oceanic phytoplankton
blooms and patchiness. Of particular interest was the oscillatory excitation, which oc-
cured in the most realistic inertial regime (neutrally buoyant phytoplankton and slightly
heavy zooplankton). The period of this oscillation was approximately one year and oc-
curred for a range of parameter values. The result is particularly intriguing due to the
resulting annual period of the blooms, although we would emphasize that seasonal forc-
ing is likely to play a great role. Such seasonal forcing would consist of variations in
temperature, light, nutrients (due to mixing) or fluctuations in other components of the
food-chain. However, with a minimal model and using experimentally determined val-
ues for the parameters, we obtain a natural period of almost one year, which may be
further synchronized by the forcing. This self-initiating, periodic patch forming mecha-
nism differs from other related work on advection enhanced blooms [17] as it requires
no initial perturbation and is self-sustaining.
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