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Abstract

Slugs are devastating agricultural and horticultural pests. However, their population dynamics are not well understood and
this hinders the construction of efficient control strategies. This is especially true with organic farming for which biological
controls are preferred. Moreover, the dominant species,Deroceras reticulatum, does not follow a regular annual life cycle,
as do the majority of the other slug species. Its dominance may be associated with this fact. In this paper, we investigate
whether mechanisms associated with the slugs’ time-delayed population dynamics are responsible for the large variations in
numbers, with particular emphasis on their sensitivity to environmental conditions. In order to do this, several versions of
a non-autonomous delay differential equation model are developed in which we highlight some of the contentious issues in
slug modelling. Analyses of the models are combined with numerical experiments using parameters based upon controlled
laboratory experiments. In the absence of seasonal forcing, we find that the delay term may be neglected in the simplest
models. However, the presence of a predator dramatically increases the impact of the delay term and may drive a delay
induced instability. Notably, we find that in all cases the delay term is of considerable qualitative importance in models which
incorporate seasonal fluctuations. We highlight the fact that the models are capable of producing a large range of solution
behaviour and, furthermore, discuss the conditions for, and thus the likelihood of their relevance.
© 2002 Published by Elsevier Science B.V.
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1. Introduction

Slugs are major pests in agriculture and horticul-
ture, and are capable of causing widespread damage to
seedlings, plants and crops. Although a large number
of different species of slug are found amongst agricul-
tural crops in Britain, the majority of the damage is
caused byDeroceras reticulatum, estimated at approx-
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imately 70%, both in terms of biomass and numbers
(Personal communication from D. Bohan, based on
D.M. Glen, D. Bohan & co-workers, unpublished data:
Long Ashton Research Station, IACR, UK, 2000).
This species is a serious pest of global economic im-
portance(South, 1992)as it has adapted well to the
varied environments to which it has been introduced
around the world (see for exampleLovatt and Black,
1920; Quick, 1960; Dell, 1964; Altena and van Smith,
1975).

Chemical (methiocarb or metaldehyde pellets) are
widely deployed as a means of control by both agri-
culturalists and horticulturalists. They may, however,
have a number of drawbacks such as excessively
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degrading due to environmental conditions, causing
pollution and being inapplicable to the increasingly
popular practice of organic farming. In addition,
common (carbamate-based) chemical treatments are
indiscriminant, and kill other species including nat-
ural predators of slugs. There is evidence that the
recovery time for “natural controls” such as carabid
beetles is much longer than that of the target species,
especially at critical times of the year(Purvis and
Bannon, 1992; Purvis, 1996).

Recent work has indicated that treatments con-
sisting of a parasitic nematode,Phasmarhabditas
hermaphrodita, are effective against slugs(Wilson
et al., 1993). These treatments are now available com-
mercially to gardeners, but are currently too expensive
to employ as alternatives to chemical treatments in
conventional farming, even though they have been
shown to be more effective if applied appropriately
(Wilson et al., 1994).

It is desirable to maximise the effectiveness of these
natural controls and to reduce or eliminate the need for
chemical intervention. All nematode species are highly
specialised and the presence ofP. hermaphrodita does
not affect any other organisms apart from slugs and
snails(Glen and Wilson, 1997). To develop a treatment
programme which maximises the reduction in slug
numbers, and also reduces the cost of using nematodes
in the agricultural setting, it is important to understand
the temporal and spatial interactions of the nematode
P. hermaphrodita with the slugD. reticulatum, and
its environment (including other potential predators).
A prerequisite for a successful biocontrol strategy is
a full understanding of the dynamics of the slugD.
reticulatum. This paper is concerned with the devel-
opment and analysis of a reliable qualitative model
of slug biomass. As a first step, we develop a num-
ber of (non-autonomous) delay differential equations
(DDEs), and do not concern ourselves at this stage
with spatial considerations. It should be noted that al-
ternative model formulations have also been consid-
ered, such as a discrete-time model of egg production
(Schley and Bees, 2002), and these provide similar
results. Models of terrestrial gastropods differ from
those developed for marine species (e.g.Coquillard
et al., 2000).

Slugs are preyed upon by a large number of differ-
ent species, including mammals, reptiles, birds and
insects, although almost all predators readily switch

to alternative food sources in the absence of slugs.
In agricultural settings, the principle predators are
the carabid beetlesPterostichus melanarius (Bohan
et al., 2000; Digweed, 1993; Symondson et al., 2001).
There is no evidence thatP. melanarius is a specialist
predator; it has been shown to consume a wide vari-
ety of prey(Sunderland, 1975; Pollett and Desender,
1986a,b). It is desirable to consider the effects of
such predators, and whether they may prove to be a
significant control in their own right(Asteraki, 1993;
Ayre and Port, 1996; Chapman et al., 1997).

Recent work suggests that the number of beetles
in the next generation may be affected by the current
number ofD. reticulatum, but that the effect of beetle
numbers on the slug population is statistically less sig-
nificant (Symondson et al., 2001). This weak depen-
dence suggests that we might simplify the dynamics
later in the paper for analytical convenience, although
we still bear in mind the possible qualitative effects.
Of greater significance to the models, however, will
be the size of slugs that beetles predate (see below).

Of all the environmental variations that occur during
the course of a year, temperature is considered to be
the most important with regard to the life cycle of slugs
(Wareing and Bailey, 1985; South, 1989a,b). Data are
available(Hunter and Symmonds, 1971; South, 1982)
linking slug growth and reproduction with tempera-
ture, and we make use of these data to construct the
dynamics for an “average” year. Seasonal variation
of the model parameters will thus be based on the
changes in average monthly temperature.

The objectives of this paper are as follows:

• To develop simple single class models for slug pop-
ulation dynamics, based on the most significant life
cycle factors.

• To give analytical predictions of populations in con-
trolled environments, and the range of possible dy-
namics in variable environments.

• To study the effects of seasonal variation on slug
populations, and give bounds on the expected pop-
ulation.

• To gain an understanding of the important factors
and dynamics in slug populations, in order to de-
velop simplified models to study biological control.

In Section 2we discuss the model construction,
and show how models may be employed for biomass
or population number of either juvenile slugs, mature
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(egg laying) slugs, or the complete population. The
benefits and suitability of each model are assessed in
Section 2.1. The autonomous model is analysed in
Section 3, giving results for controlled environments
and indicating the possible behaviour in different re-
gions of the parameter space. Non-autonomous param-
eters are constructed inSection 4, from laboratory data
on D. reticulatum, and used in numerical simulations
of the models. The results are discussed inSection 5.

2. Model construction

2.1. Quantifying slug populations

Although it may be more revealing to model slug
population biomass, the following models are also
applicable to the number of individuals. Biomass is
used to allow for the large size distribution, since one
may observe individuals ranging from 10 to 2300 mg.
In addition, the mean individual size, and growth
rate, varies throughout the year. Biomass may also be
appropriate as a measure of crop damage, since the
amount of food consumed will be dependent on the
size of individuals (or, more strictly, mouth size). It
should, however, be remembered that in commercial
terms it requires only one slug to cause one item of
produce to be unsalable. The number of individuals
(rather than their total mass) may be more impor-
tant with respect to interactions with other slugs or
predators (as discussed later).

In this paperS(t) will represent the slug popula-
tion (either number of individuals or total biomass in
mg) per m2 at timet, measured in weeks. The defini-
tion of the variableS will in turn influence the scaling
of the model parameters (to either count individuals
or be related to mass): a full discussion is postponed
until Section 4.1. If we wish to produce a model of
slug numbers which still allows for size dependent
characteristics, and quantifies individuals according to
their size, we require a size structured model. Such
a model for slug populations has been constructed
(Schley et al., 2002), but the complexity of the system
limits analytical progress and one must resort to nu-
merical methods. An alternative approach is to break
the population into a number of different class sizes,
but this again adds complexity to the system and may
not be justified at this stage.

In the interests of generality we describe in detail (in
the following section), all the aforementioned combi-
nations of model used in this investigation. In practice
the data available will dictate which of the models will
be used. We neglect spatial effects for the construction
of these simple (“first step”) models.

2.2. Reproduction

In the absence of migration, new members of the
population are only added through reproduction by ex-
isting mature adults. We define adults as those slugs
which are able to lay eggs (generally those above
200 mg forD. reticulatum). The life cycle ofD. reticu-
latum includes a period during which young slugs have
developed fully functional male reproductive organs,
but have not yet become hermaphrodite. It is often
found that these young slugs act as males while larger
slugs take on the role of females. Since large slugs are
hermaphrodite, however, the young slugs are not es-
sential and their absence does not limit reproduction.

We represent the rate of viable egg production per
unit of population which is capable of reproduction
by ρ ≥ 0. Here we define viable eggs as those which
will hatch, usually only a small fraction of those laid
(South, 1982). Since only a certain proportion of the
population may be reproductively active, the egg pro-
duction termρ(t)S(t) is required to be scaled by a
measure of the proportion of the population that can
lay eggs. The reproduction rate (with respect to time)
is therefore modelled bỹρ(t)S(t), where we definẽρ
explicitly below.

An important part of these dynamics however is the
time delay between an egg being laid and the result-
ing slug being recruited to the appropriate population
class. This delay,τ > 0, may be a combination of the
hatching time of the egg and the maturation time of the
young slug (depending on the group being modelled),
both of which are known to vary throughout the year.
It has been shown(Tuljapurkar and Wiener, 2000)
that reproductive delay and delayed development have
the same effect on growth rate if they have equal
costs (if the environmental pattern is time-reversible).
We should not neglect this delay, since it may form
a significant part of an individual’s total life span.
Any contribution to the current population through
egg laying should be a function of the slug popula-
tion (and egg production rate) at a timeτ(t) ago. Thus,
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the increase in the population due to reproduction is
given by

+ρ̃(t − τ(t))S(t − τ(t)). (1)

2.2.1. Class I: adult population model
If S(t) represents the adult population, then the de-

lay τ between egg laying and recruitment is the sum
of the hatching timeth and the time taken for an in-
dividual to maturetm. Both of these will vary consid-
erably throughout the year(Hunter and Symmonds,
1971; South, 1982), largely due to temperature vari-
ation. We defineεs(t) ≤ 1 as the proportion of the
viable eggs laid at timet which survive until adult-
hood. Reproduction then takes the form(1) by scaling
ρ appropriately, i.e.

ρ̃(t − τ) = εs(t − (th + tm))ρ(t − (th + tm)).

2.2.2. Class II: juvenile population model
If S(t) represents the juvenile population, then the

delay between an egg being laid and an individual
being recruited into this class is simply the hatching
time: τ = th. We defineεm(t) ≤ 1 as the proportion

Table 1
The different classes of model may all be accommodated by the full model (2.3) through rescaling of the parameters and variables denoted
by the superscripts tilde (∼) or hat (∧)

Model class Individuals modelled Individuals predated Variables (Ŝ) Parameters

τ ρ̃ â b̂

I
i Adults None – th + tm εsρ – –
ii Juveniles S(t − τ) ap b/ρ̃a

iii Adults S(t) a b

II
i Juveniles None – th εmρ/(1 − εm) – –
ii Juveniles S(t) a b

III
i Combined None – th εmρ – –
ii Juveniles S(t) a b/(1 − εm)

iii Adults S(t) a b/εm

iv Both S(t) a b

Here the delaysth and tm represent the time taken from eggs being laid until individuals hatch, and from hatching until they reach egg
laying size, respectively. The expected reproductive rateρ for an individual slug must be scaled to take account of the class of individuals
that is being modelled. Here,εs is the proportion of juveniles which have survived to adulthood, andεm is the proportion of the combined
population which are mature individuals (εs, εm ≤ 1).

a In this case we model the effect of predation on eventual recruitment, so that for the number of juveniles predated not to exceed those
that are born we requirêa < 2b̂.

of the total (combined) population which is mature,
so that the egg producing (mature) population is given
by εm/(1 − εm)S(t). Scaled reproduction per unit of
population is, therefore, of the form

ρ̃(t − τ) = εm(t − th)

1 − εm(t − th)
ρ(t − th).

2.2.3. Class III: combined population model
The proportion of the population which is mature is

given by εm(t)S(t), and ρ̃ is scaled accordingly. The
delay is given byτ = th, since eggs are produced
by (a proportion of) the current population and are
immediately recruited intoS upon hatching.

These expressions are summarised inTable 1. For
a model of slug numbers, the parameterρ simply
represents the number of eggs produced by a mature
individual. If S(t) represents biomass, however, the
number of eggs has to be scaled by the expected
recruitment biomass per unit of producer biomass
(see later).

In a similar way, the parametersεs andεm may ei-
ther represent a fraction of the total number of indi-
viduals or a proportion of the total biomass.
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2.3. Population decay and limitation

We take natural death to be linear, so that the popu-
lation is reduced byd(t)S(t) per unit time, whered ≥
0. If we use biomass rather than number, the parame-
terd(t) will need to be scaled accordingly, to take into
account the size of removed individuals compared to
average mass. In addition to this, biomass will increase
due to the individual growth of slugs. Lettingg ≥ 0
represent the growth rate, and assuming the biomass
increase is proportional to the actual biomass, we have
a growth term of the formg(t)S(t).

We defineµ = d − g as the decay rate, so that the
total rate of decrease in the population is given by

µ(t)S(t).

Note that although it is possible thatg(t) > d(t) for
part of the year, we would usually expectµ(t) > 0,
to counterbalance egg production, unless there exists
some other limiting factor. In the case of modelling
slugs with respect to number,µ = d (sinceg = 0),
from which it immediately follows thatµ > 0.

In the case of the class II model of juveniles, there is
the additional removal of individuals through matura-
tion. For this model we assume that the mature propor-
tion of the population is small, so that this departure
term is negligible, since otherwise it is appropriate to
use a different class model.

All environments have a “carrying capacity” (a
maximum sustainable population due to finite re-
sources), although it unlikely that slug populations
ever reach this limit due to disease and parasitism at
high densities (seeSouth, 1992). It is thus pertinent
to include a quadratic term in the model so that this
limitation is only significant to the dynamics at high
population levels:

−S2(t)

K(t)
,

whereK(ρ̃ − µ) > 0 is essentially the maximum
sustainable population, irrespective of the limitation
cause. Hence, we have implicitly assumed that all so-
lutions remain bounded.

2.4. Predation

Carabid Beetles (P. melanarius) are the main preda-
tors of slugs in agriculture. Beetles predate slugs

when they are in abundance, but can quickly turn
to alternative sources of food if slugs are scarce.
We thus consider their population and its effect im-
plicitly, and assume a beetle predation term of the
form

aS2

b2 + S2
, (2)

whereS is the population which is preyed upon. Here
a ≥ 0 represents predation saturation (i.e. the maxi-
mum quantity of slugs that can be consumed regard-
less of the actual quantity of prey available) andb ≥ 0
is the population for which half this rate of predation
is attained. This type of term results in little preda-
tion when prey numbers are low, which levels out to
a maximum for high prey numbers. The probability
that a beetle stays to predate in a region is determined
by the probability of an encounter with a slug, which
is clearly dependent on slug numbers. On the other
hand, predation saturation is more closely associated
with slug biomass, since predation activity is deter-
mined by how much total food a beetle has consumed,
rather than the number of feeding encounters experi-
enced. Since the current model does not take into ac-
count spatial encounters, medium population response
and high level saturation, rather than the low level re-
sponse, are the most important components to model
accurately.

The most appropriate slug class to model is strongly
influenced by which class are most predated.Bohan
et al. (2000)found thatP. melanarius attacked slugs
above 25 mg, a lower bound which excludes only very
early juveniles. Recent results(McKemey et al., 2001)
suggest that this beetle will not attack slugs above
50 mg, although other species will(Pakarinen, 1994;
Ayre and Port, 1996). This implies that mature adults
(those above 200 mg) are not generally predated upon,
although a large proportion of the juveniles are. If
other predators (other carabids, birds, etc.) are in-
cluded, however, then it is clear that larger individu-
als will also be removed. Birds in particular will often
consume such prey opportunistically, with a prefer-
ence for larger individuals.

The predation of different classes may be consid-
ered by modification of the predation term. Explicit
rescalings of(2) are given inTable 1, and we out-
line their derivation here. Where appropriate we
consider models with no predation (model subclass
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(i)) or predation of juveniles (ii), adults (iii) or
both (iv).

2.4.1. Class I
For most of the models, predation is instantaneous

(that is, the predation response at timet is a function
of S(t)). This category clearly includes predation of
adults (iii) in the adult population model. If, however,
we consider a model of adults where it is the juve-
niles who are predated (ii), then the effect of predation
on the population growth will be delayed. Predation
will reduce the juvenile population which survive un-
til maturity, and is thus a function of the zero-predated
adult recruitment̃ρ(t− τ)S(t− τ). The level of preda-
tion is proportional to the time juveniles spend being
vulnerable to predation. We takep to represent this
predation interval; for predation ofD. reticulatum by
P. melanarius, p is the time spent growing from 25
to 50 mg(Bohan et al., 2000; McKemey et al., 2001).
Since this reflects a doubling in size,p may be ap-
proximated by manipulating the experimentally deter-
mined growth rate of individual slugs,g. Therefore,
we setp = ln(2)/g.

2.4.2. Class II
If the juvenile population is being considered, then

juvenile predation (ii) is the only type of predation
that it is suitable to incorporate. Otherwise it is more
appropriate to model another population class.

2.4.3. Class III
The combined model easily allows for the predation

of juveniles (ii), adults (iii) or both (iv), through a
rescaling ofa andb based onεm (the proportion of
the population estimated to be mature).

2.5. Governing equation

We present the full generalised model:

dS(t)

dt
= ρ̃(t − τ(t))S(t − τ(t))− µ(t)S(t)

− S2(t)

K(t)
− â(t)Ŝ2(t, t − τ(t))

b̂2(t)+ Ŝ2(t, t − τ(t))
, (3)

where the terms superscripted by a tilde (∼) or hat (∧)
are scaled appropriately, as summarised inTable 1.

3. Autonomous model analysis

The non-autonomous model is not amenable to
non-numerical analysis, especially if we do not make
assumptions about the behaviour of the parametersρ

andµ.
It is, however, still instructive to analyse the possi-

ble behaviours for fixed parameters, and thereby con-
sider the distinct regions through which the model pa-
rameters may pass in time. In addition to this, there
are certain situations in which agriculturalists have
a highly controlled environment, such as a regulated
greenhouse or polythene tunnel. Therein the effects of
“rainfall”, humidity and (to some extent) temperature
are kept relatively constant. Note also that in these en-
vironments we expect the predators to be dominated
by beetles, but typically at a much lower level than in
the field.

3.1. Non-dimensionalisation

When there is no time dependence of theparameters
it is instructive to non-dimensionalise the model, to
both simplify the analysis and the interpretation of
results. Let

t̄ = ρ̃t, τ̄ = ρ̃τ, S̄(t̄) = S(t̄/ρ̃)

ρ̃K
= S(t)

ρ̃K
,

µ̄ = µ

ρ̃
, ā = â

ρ̃K
, b̄ = b̂

ρ̃K
.

Here ρ̄, K̄, ā, b̄ > 0, and since the decay ratēµ is
independent of time we would also expect it to be
positive, although our analysis is not restricted to this
case. The model here is similar to the Spruce Bud-
worm model(Ludwig et al., 1978), but with the in-
clusion of (multiple) delays. This produces a set of
novel models whose dynamics are significantly dif-
ferent. Of particular interest is whether, in addition
to the expected behaviour, we have a delay induced
instability or limit cycle behaviour (not possible in
the Spruce Budworm model). Substituting the above
scalings, the non-dimensionalised autonomous model
becomes

dS̄(t̄)

dt̄
= S̄(t̄ − τ̄)− µ̄S̄(t̄)− S̄2(t̄)

− �(t̄, t̄ − τ̄), (4)
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where the predation term�(t̄, t̄ − τ̄) is of the form

āS̄2(t̄)

b̄2 + S̄2(t̄)
or

āS̄2(t̄ − τ̄)

b̄2 + S̄2(t̄ − τ̄)
(5)

depending on the model class (seeTable 1for details).
The number and stability of possible steady states

is dependent on the model class, and is also parameter
dependent. In each case the steady state(s)S̄∗ can be
found by solving d̄S∗/dt = 0.

3.2. Time delayed dynamics

Although the linear analysis of the steady states in-
volves the delayτ, we may show (e.g.Schley and
Gourley, 2000) that the delay will only affect (local)
stability if there is a negative feedback in the delay.
This only occurs in model class I (ii), where there is
delayed predation; in all other cases it is sufficient to
considerτ = 0. The presence of a delay will, however,
affect the global dynamics, such as the stability basins
of steady states and the stability of non-steady solu-
tions. This is particularly important when predation is
included as both hysteresis and limit cycle behaviour
may occur.

3.3. In the absence of predation (Models I–III (i))

Without delay or predation terms, the model reduces
to the logistic equation. There exist either one or two
steady states, namelȳS∗

0 = 0, andS̄∗
1 = (1 − µ̄) if

1 > µ̄. Linear stability analysis indicates thatS̄∗
0 is

stable for 1< µ̄, and unstable when the inequality
is reversed, in which case the positive steady stateS̄∗

1
exists, and is linearly stable.

3.4. Unlimited resources with predation (Models
I (ii and iii), II (ii), III (ii–iv))

Neglecting the term representing the environmental
carrying capacity constraint but including predation,
the system has one or three non-negative steady states,
given byS̄∗

00 and

S̄∗
1,2
ā∓

√
ā2 − 4b̄2(1 − µ̄)2

2(1 − µ̄)
. (6)

Note thatS̄∗
1,2 are real and positive if and only if̄µ ∈

(µ̄c,1), where

µ̄c1 − ā

2b̄
.

If ā > 2b̄ thenµ̄c < 0 andS̄∗
1,2 exist for allµ̄ ∈ (0,1).

We are usually only interested in positive values ofµ̄

but the following analysis holds for all values. Note
that whenµ̄ = µ̄c, S̄∗

1 = S̄∗
2 = b̄ for all ā.

For clarity in what follows we define

P∗
i = 2āb̄2S̄∗

i

(b̄2 + (S̄∗
i )

2)2
.

Explicitly, P∗
0 = 0 and

P∗
1,2 = 4(1 − µ̄)3b̄2

ā2 ∓
√
ā2 − 4(1 − µ̄)2b̄2

,

for µ̄ ∈ (µ̄c,1).
In the absence of delay,S̄∗

i is stable if and only if
1 − µ̄ < P∗

i . Conditions for stability whenτ > 0
will depend on the location of the delays.Section 3.2
indicates that a stability condition will only change if

there is a negative feedback, i.e.¯̂
S = S̄(t̄ − τ̄), and so

we need to consider Case I (ii) separately.

3.4.1. Positive feedback delay (Models I (iii),
II (ii), III (ii–iv))

Some analysis confirms what might be surmised
graphically, that when positive steady states exist, the
larger is always unstable and the smaller stable (see
Table 2).

Note that there exists an explicit parameter range
in which no steady state is (locally) stable. In addi-
tion, when a positive steady state does exist, its sta-
bility basin can be shown to be non-global, even in
the absence of delay: the inclusion of a delay means
that all stability results should be considered local un-
less proven otherwise. Predation may bound the pop-
ulation, but only if it is sufficiently strong (ā suffi-
ciently large withb̄ sufficiently small). A prerequisite

Table 2
The existence and local stability of the possible steady states given
by (6) as determined by the slug death rateµ̄

Steady states

µ̄ < µ̄c S̄∗
0 (unstable)

µ̄c < µ̄ < 1 S̄∗
0(unstable) < S̄∗

1(stable) < S̄∗
2(unstable)

1< µ̄ S̄∗
0 (stable)
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for bounded solutions is the existence ofS̄∗
2, and this

cannot occur when̄µ < µ̄c, and so populations be-
come unbounded. In such a case, a predation limited
model is clearly inappropriate, and we must take into
account other limiting factors which form part of the
environmental constraints (seeSection 3.5). The exis-
tence of a second positive equilibrium is necessary but
not sufficient for bounded solutions. Moreover, in the
absence of delay, we simply require the initial value of
S̄(t) to be less than the thresholdS̄∗

2: the inclusion of
delay means solutions are dependent on all previous
S(t), t ∈ [−τ̄,0] (see later).

3.4.2. Mixed feedback delay (Model I (ii))
We note that for the model to be consistent (i.e.

the population born to be strictly larger than that con-
sumed as juveniles) we requireā < 2b̄ (µ̄c > 0). In
the absence of delay the results are as inTable 2. It
can be shown that the steady stateS̄∗

i will remain sta-
ble for all τ̄ if and only if P∗

i < 1 + µ̄. Since this
condition is always met byS∗

0 for µ̄ > 1, andS̄∗
2 is

unstable whenever it exists, the equilibrium of interest
is S̄∗

1. Some algebra gives

P∗
1 − (1 + µ̄)

= 1 − µ̄

1 − √
1 − δ

(
(1 + ε)

√
1 − δ− (1 − δ)− ε

)
,

whereδ = 4(1 − µ̄)2b̄2/ā andε = 1 + 2µ̄/(1 − µ̄).
By consideringδ, ε > 0 the conditionP∗

1 > 1+ µ̄ can
be shown to be true for sufficiently small positiveµ̄.

The conditions which allow for the steady stateS∗
1

to bifurcate to instability for sufficiently largēτ are
given by

P∗
1

4(1 − µ̄)3b̄2

ā2 −
√
ā2 − 4(1 − µ̄)2b̄2

> 1 ± µ̄ and

µ̄c < µ̄ < 1, (7)

which will be satisfied whenever 0< 1 − ā/2b̄ <

µ̄ � 1.
Explicitly, the solutions bifurcate when

τ̄ = 1

ω
arccos

(
µ̄

P∗
1

)
, whereω =

√
1 − (µ̄+ P∗

1 )
2.

(8)

Hereω is the frequency of the solution at the bifurca-
tion point. The resulting solutions are oscillatory, as

presented inFig. 1. Note that, according to(8), the
period of the bifurcating solution (2π/ω) may be sig-
nificantly different from the time delay (τ̄) present in
the system which induced it.

Although the delay in the predation term may result
in limit cycle behaviour that would otherwise not be
present, it should be noted that the basin of attraction
for these solutions turns out to be qualitatively similar
to that of the equilibria solution̄S∗

1 when it is stable.
Thus, initial conditions which result in convergence
to the equilibriumS̄∗

1 when it is stable are likely to
result in periodic (or quasi-periodic or even chaotic)
solutions about the equilibrium when it is not.

While an undelayed system may have exact criteria
for convergence to an equilibrium, and which may be
easily expressed, the derivation of sharp conditions
for the corresponding delayed system is unlikely to
be possible in all but the simplest cases. Instead of
the solution behaviour being determined simply by the
starting values(0), all values ofs(t), t ∈ [−τ,0] need
to be considered as initial conditions. Suitable criteria
for the solutions to converge to the equilibrium or
to remain bounded are discussed in theAppendix A.
The complexity of the stability basins is emphasised
by the strong dependence of criteria not only on the
initial valuess(t), t ∈ [−τ,0], but also on the model
parameters.

In the absence of delay a simple threshold on the
initial value s(0), namelyS̄∗

2, determines whether so-
lution remain bounded or not. It may be shown (see
Appendix A) that solutions of the delayed equation
remain bounded if initial conditionss(t) remain be-
low this threshold for allt ∈ [−τ,0]. A rough rule of
thumb is that initial conditions should remain below
the threshold for a “sufficient” proportion of the delay
time. What is sufficient however will again be strongly
dependent on how much the initial conditions vary,
and the model parameters. In the case of only small
variations ins(t), t ∈ [−τ,0], it is the mean value of
s(t) on this interval which determines the solution be-
haviour (seeAppendix A).

3.5. Limited resources with predation (Models I–III
(ii–iv))

Such models are of the form

dS̄(t)

dt
=S̄(t − τ)− µ̄S̄(t)− S̄2(t)− āS̄2(t)

b̄2 + S̄2(t)
. (9)



Fig. 1. An example of delay induced instability which can occur in the adult population when juveniles are predated (here
ρ = 1, p = 1, µ = 0.1 and a = 1.9 × 104, b = 1.0 × 104). (a) In the absence of delay the equilibriumS∗

1 = 7180 is the only stable
steady state, and attracts all solutions with initial conditions less thanS∗

2 = 13,900 (solid line). A small delay will not destabilise the
equilibrium, but results in oscillatory, rather than monotone, convergence (dotted line;τ = 9) for appropriate initial conditions. If the delay
is sufficiently large (> τc = 13.4), the steady state becomes unstable, so that there is no stable equilibrium solution and stable oscillatory
solutions result (dashed line;τ = 14). (b) Larger delays (e.g.τ = 43) lead to what appear to be chaotic solutions, about the (unstable)
steady solutionS∗

1. All initial conditions which are less thanS∗
2 for a “sufficient” proportion of the time (see text) result in oscillations

(τ > τc) or convergence to the equilibrium (τ < τc).
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The steady states of(9) are given byS̄ ≡ S̄∗
00 and the

solutions of

−S̄∗ + (1 − µ̄) = āS̄∗

b̄2 + S̄∗2
. (10)

By Descartes’ Rule of Signs we may note thatS̄∗
0 is

the unique steady state whenµ̄ > 1, but that other-
wise there exists one or three positive roots of(10).
For the rest of this section we shall assumeµ̄ < 1,
since otherwise the dynamics are similar to the above.
Bifurcation from one to three (or three to one) posi-
tive steady states (in addition tōS∗

0) will occur when
the two curves, given by the left and right hand side
of (10), touch tangentially. Defining

S̄∗
± =

(
ā

2
− b̄2 ±

√
(ā/2)2 − 2āb̄2

)1/2

as the two possible double root steady states, this oc-
curs when

µ̄±(ā, b̄) = 1 − S̄∗
± − āS̄∗±

b̄2 + (S̄∗±)2
,

Fig. 2. The four main regions in the(ā, b̄) parameter plane. In region A, we have one positive steady state for all 0< µ̄ < 1 (whereµ̄ is
the decay rate), in addition to the zero steady stateS̄∗

0. In region B, three positive steady states are possible for sufficiently small (positive)
µ̄, with one steady state for sufficiently large or small (negative)µ̄. In region C, we have three positive steady states forµ̄ ∈ (µ̄−, µ̄+),
but only one otherwise. The solid line indicates the values of(ā, b̄) when µ̄+ = 0; for µ̄− = 0 this is given by the dashed line. In all
three cases we may switch from one to three to one steady state, although only in region C may this be achieved for non-negativeµ̄.
Region D is shaded to indicatēa < 8b̄2. In this region three positive steady states are not possible, and we again have only one positive
steady state for all̄µ, in addition toS̄∗

0 = 0.

provided thatā > 8b̄2 (which implies thatµ̄± < 1).
By considering when bifurcations with respect toµ̄
may occur (i.e. atµ̄−(ā, b̄) and µ̄+(ā, b̄)), we sub-
divide the(ā, b̄) parameter space into four main re-
gions, as shown inFig. 2. Only for a small range
of values of ā, b̄, µ̄ > 0 we have the existence of
three steady states, which in addition requiresµ̄ ∈
(µ̄−(ā, b̄), µ̄+(ā, b̄)). Conditions in which hysteresis
due to the decay rate (bifurcation from one to three and
then back to one steady state, with respect to positive
µ̄) may occur, are even more restrictive. SeeFig. 2for
details. Note that the vertical axis (ā = 0) is the case
considered inSection 3.3.

3.5.1. Positive feedback delay (Models I (iii), II (ii),
III (ii–iv))

If for each steady state we defineQ∗ by:

Q∗ = 2S̄∗ + P∗,

then it can be shown that the steady stateS̄∗ is stable if
1− µ̄ < Q∗, and unstable if the inequality is reversed.
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Note thatQ∗
02S̄∗

0 +P∗
0 = 0 so thatS̄∗

0 is always stable
when the decay rate is larger than the birth rate.

For certain values of̄a andb̄we have bistability, and
the initial conditions determine which stable steady
state the solution converges to. Under such a regime,
we have three positive steady states: the largest and
smallest of which are locally stable, and the one in be-
tween is unstable. In the absence of a delay, solutions
converge to either the larger or smaller steady state
depending on whether̄S(0) is above or below the mid-
dle (unstable) steady state. When a delay is present
such criteria are not sufficient, since initial conditions
S̄(t), for all t ∈ [−τ̄,0], need to be considered (this
is analogous to the resource unlimited case above).
The consequences of this are discussed further in
Section 4.7.

3.5.2. Mixed feedback delay (Model I (ii))
The analytical results for this model are rather long

and thus have not been included here, but one can con-
firm what might be expected intuitively, namely that
the addition of delay in the predation extends the above
results to include the possibility of delay induced in-
stability of equilibria, which may result in periodic or
quasi-periodic solutions.

4. Non-autonomous seasonal model

In this section we consider possible forms and val-
ues for the non-autonomous parameters based on avail-
able data for the dynamics ofD. reticulatum (under
laboratory and field conditions). Furthermore, we shall
perform numerical simulations of the model equations
and assess the resultant solution behaviour. In general,
we have not included differences between years, but
have assumed that all parameters are periodic func-
tions of time with periodT = 52 weeks, giving a fre-
quency of

ω = 2π

T
,

or a multiple thereof. This factors out the influence
of inter-year variations, which we consider separately.
Hereafter,S will be measured in either mg/m2 or
number/m2, temperature,T , in ◦C and time,t, in weeks
(wk), the later being the most natural unit to capture
the annual fluctuations.

4.1. Parameter estimation

4.1.1. Reproductive delay
As previously discussed, the delayτ(t) is not only

of a large magnitude, but also varies throughout the
year. Depending on the class of model being consid-
ered, this time lag may consist of the hatching time
of eggs (th), or the time taken for juveniles to mature
(tm), or a combination thereof (seeTable 1). Hunter
and Symmonds (1971)recorded the number of weeks
to hatching for outdoor eggs, showing a variation be-
tween 4 and 14 weeks. The time taken to mature is
based on an estimate (usingSouth, 1982) of 2600 day
degrees required for a hatchling to become a mature
egg laying adult. By considering the average temper-
ature for each month of the year(National Climate
Data Centre, 2000), we have evaluated the time taken
to accumulate these day degrees. The calculated val-
ues are plotted inFig. 3.

The parameterτ(t) represents the delay timesince
laid of a slug which has hatched, or attained maturity,
at time t. The two relevant curvesth and th + tm are
conveniently fitted by

τ(t) = th = 7.08+ 4.59 sin(ωt − 4.99)

+1.75 sin(2ωt − 5.02)week,

τ(t) = th + tm = 43.2 + 3.93 sin(ωt − 2.05)week.

(11)

4.1.2. Temperature dependent rates
All other parameters were estimated through a two

stage process based on the temperature dependent life
cycle data ofSouth (1982)and the average monthly
temperature in Britain(National Climate Data Centre,
2000). Temperature is the most important external fac-
tor determining slug dynamics(Wareing and Bailey,
1985; South, 1989a,b), especially since it influences
other factors such as soil moisture. Here we consider
results under laboratory conditions, since this provides
a more reliable response to temperature.D. reticula-
tum has also been studied in permanent pasture(South,
1989a), which provides some limited data, although
it is subject to an assortment of environmental vari-
ations. The effects of changing temperatures appear
most significant in the context of activity and devel-
opment(Wareing and Bailey, 1985).

Data points were generated by employing the
observed development and breeding behaviour of
D. reticulatum at constant temperature. Results are,
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Fig. 3. A plot of the week of the year (or next year, for weeks >52), in which slugs hatch (�) and become reproductively mature (×)
against the week of the year in which eggs are laid. The value of the delayth for each week of the year is the interval between the current
time (dashed line) and hatching time�, whilst tm is the interval between the hatching time� and maturing time×.

therefore, based on a limited, but biologically con-
sistent, number of points. A margin of 1 standard
error (S.E.) was included for each set of laboratory
data used. Since this does not allow for the ex-
pected correlation between, for example, mass and
lifespan, this is a conservative upper bound on the
true S.E.

Definitions of the temperature dependent parame-
tersρ(T), d(T) andg(T) (representing egg production,
death and growth, respectively) are given inTable 3.
Adapting the parameters for a biomass model (as op-
posed to a model of slug numbers) requires a rescal-
ing, based on the size of individuals at significant life
events, but in each case the units are expressed in
week−1.

Piecewise functionsρ(T), d(T) andg(T) were fitted
to the mean, upper bound and lower bound of the data,
giving three temperature dependent (piecewise linear)
curves in each case. Thus, by considering the aver-
age (monthly) temperature throughout the yearT(t),
data was generated for the the growth, death and egg
production rate as functions of time. Curves of the

form

α1 + α2 sin(ωt + α3)+ α4 sin(2ωt + α5) (≥ 0∀ t),
(12)

were fitted forg(t), d(t) andρ(t), for the three pos-
sible cases (piecewise mean, piecewise minimum and
piecewise maximum). The functional form(13) re-
flects the annual periodicity of the parameters, and
also their experimentally observed behaviour with a
single or double maxima distribution over the year.

The fitted data for mature (model class I) biomass
is thus given by

ρ(t) = (25.27− 5.62 sin(ωt + 7.46)
+ 1.68 sin(2ωt + 4.04))× 10−2 week−1,

d(t) = (20.54+ 8.97 sin(ωt + 4.30)
+ 1.15 sin(2ωt + 4.96))× 10−3 week−1,

g(t) = (19.06+ 1.28 sin(ωt + 4.51)
+ 6.27 sin(2ωt + 4.11))× 10−3 week−1.

(13)
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Table 3
Derivation of the egg production (or recruit biomass) rateρ, the death rated and growth rateg, as determined by the available temperature
dependent laboratory data(South, 1982)a

Classb Individual model Biomass model scaling

ρ

I Number of viable eggsc/mature lifetime Mature recruit mass/average mature mass
II Hatchling mass/average mature mass
III Hatchling mass/average mature mass

d

I 1/total lifespan Maximum mass/average mature mass
II Maximum mass/average juvenile mass
III Maximum mass/average juvenile mass

g

I – Mature mass increase/(mature lifetime)(average mature mass)
II Juvenile mass increase/(immature lifetime)(average juvenile mass)
III Juvenile mass increase/(immature lifetime)(average juvenile mass)

a In each case the parameter for the individual based model is scaled (by a mass ratio) to give the biomass model parameter. Note that
for both models, all the parameters have the required units of week−1.

b For model classes, seeTable 1.
c Only a small proportion of the eggs laid(South, 1982)actually hatch(South, 1992).

Initially ρ is of a different order of magnitude tod and
g (further exacerbated by the fact thatµ = d−g). The
significant parameter, however, is the ratio between
µ and the scaled parameterρ̃ (seeSection 2.2). The
parameters(13) also agree with the limited field data:
seeSouth (1989a)for estimates of the growth rate of
slugs, andCarrick (1938)for egg production ofD.
reticulatum.

4.2. Modelling parameters

The parameterK, derived from the carrying capac-
ity, will be dependent on the particular environment
and, to a lesser extent, on the specific environmental
conditions of any given year. We note, however, that
unfavourable homogeneous habitats are equivalent to
smaller more favourable ones. When considering slugs
in isolation, solutions remain qualitatively identical ir-
respective ofK (i.e. scalingK scales the solution).
This is not true in the presence of predation, as the def-
initions of parametersa andb depend explicitly on the
quantity of predators. Unfortunately, there are no suit-
able data available for giving a quantitative measure
of beetle predation on slugs (see later for estimates).

Since populations of up to at least 400 slugs/m2 have
been recorded, we consider a carrying capacity of at
least that number. In the case of biomass, we assume
that the maximum population per square meter con-

sists of 400 small juveniles (approx. 25 mg), which
would be equivalent to the presence of just four max-
imum sized mature individuals (approx. 2300 mg for
D. reticulatum). In the absence of suitable data, the
carrying capacity (given at any instant byK(ρ̃ − µ))
is taken as constant.

The choice of model class can be based upon the
reliability of the estimates forεs andεm. In what fol-
lows we derive an estimate forεs, and thus consider
the model for mature slugs (class I). In particular,εs
is subject to less temporal variation, and may be de-
rived through the use of a subset of the information
required for other models.

The scalingεs(t) represents an estimate of the pro-
portion of juveniles laid at timet which survive to
adulthood. If we assume that individuals of a certain
age class (and size) only compete with each other for
resources, then the number of juvenilesJ hatched at
t = 0 which survive until timet is determined by

dJ

dt
= −µJ − J2

k
,

wherek is natural carrying capacity of the juveniles.
Solving forJ (for constant parameters) we have

J(t) = dk J(0)e−µt

µk + J(0)(1 − e−µt)
,
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so that the proportion surviving a timeτ to maturity
is given by

e−µτ

2 − eµτ
, (14)

where we take the natural carrying capacity of the
group as the total number of hatchlings initially born,
giving k = J(0)/µ. If we neglect the carrying capacity
in the above (and so assume that juveniles do not face
overcrowding competition) then the proportion which
attain maturity is instead simply given by

e−µτ. (15)

We take(15) as an upper bound on the estimate(14)
of the parameterεs(t).

Hence, the mean value ofεs(t) (using the mean of
thejuvenile death rateµ = d and the maturation delay
τ = tm, seeTable 3) is

εs = 5.37× 10−2, (16)

with an upper bound of 1.01× 10−1. Temporal varia-
tion in εs(t) is incorporated by inclusion of a time de-
pendent delay, as determined by(11). Note that now
ρ̃ = εsρ is of comparable magnitude toµ = d − g.

For class I biomass models (parameters given by
Eqs. (13) and (16)) we have

K = 1.41× 106 mg week. (17)

4.3. Model type

Numerical investigations of the model suggest that
models of both biomass and population number give
qualitatively similar results. However,Bengtsson and
Baur (1993)found that all life history traits in terres-
trial gastropods were related to body size, with the
exception of the age at which slugs first reproduce. It
is, therefore, perhaps more appropriate to model slug
biomass.

The number of individuals is of greater importance
when we consider individual interactions (including
responses to overcrowding and slime-trails), but in this
paper we do not include spatial dynamics and thus
these issues are less relevant. Predator response may
be influenced by the number of prey present, but this
will be most significant at low predator/prey numbers
or across large spatial scales. For the spatially uniform
population model, however, it is more important to

accurately model predation saturation, which will be
a measure of the total mass of slugs, rather than the
number of individuals. The inclusion of slug growth,
which varies considerably through the year (e.g.(13))
also lets us consider the difference in slug feeding
activity (seeSection 4.6). In the simulations below, we
thus considerS(t) as a measure of slug biomass, and
modify the parameters accordingly (seeTable 3).

4.4. Population dynamics

Some examples of stable periodic numerical solu-
tions are shown inFig. 4. Solutions for the upper and
lower bounds (obtained when fitting the temperature
dependent experimental data to 1 S.E.) have been pre-
sented in order to demonstrate the range of solutions
that are possible (such as extinction) by varying the
model parameters. However, we would expect that a
particular species of slug would have only one such
response to temperature, unless additionally affected
by external factors. The natural period of 52 weeks
observed inFig. 4 is a result of the forcing functions,
d, g andρ. In essence, the dynamics are entrained by
the pseudo-steady equilibriumρ(t−τ(t))−µ(t), which
may be negative for part of the year, and the time de-
lays have the effect of introducing oscillatory transient
solutions. Thus, the effect on the long-term solution in
Fig. 4 appears limited. When considering the forcing
functions it should be remembered that the presence
of a variable delay means thatρ(t− τ) is qualitatively
different toρ(t).

Slug distributions over the course of the year gener-
ically show two peaks, indicating spring and autumn
increases. This is a result of both favourable condi-
tions and the variable delay.

4.5. Annual variation

The results inSection 4.4are based on the monthly
UK temperatures, averaged over a 30-year period.
Thus, we have generated what might be considered as
an “average” population. These average monthly tem-
peratures do, however, neglect the large variation in
temperature between years; certain years may be sig-
nificantly warmer or cooler than others. At this stage,
we have not considered simulations with constantly
varying temperatures across several years as we feel
that it would obscure recognition and analysis of the
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Fig. 4. If the conditions are the same each year, the population biomass fluctuates periodically (with a period of 1 year). Simulation
results for the parameters calculated by piecewise fitting the birth, death and growth data (solid), and the upper (dashed) and lower bounds
(resulting in extinction,S ≡ 0), based on 1 S.E. The solutions vary quite considerably and illustrate the potential for extinction or attaining
triple the expected population.

most important mechanisms. Instead, we consider the
maximum and minimum monthly mean temperatures
recorded in the UK between 1961 and 1990(National
Climate Data Centre, 2000)which were averaged over
this period in order to capture the underlying dynam-
ics. Thus, the temperature dependent parametersg(T),
d(T) andρ(T) have also been fitted to these extremes,
to illustrate the effect of a prolonged period (several
years) of excessively hot or cold weather. The simula-
tion results are plotted inFig. 5. Note that here we do
not plot the upper and lower error bounds as inFig. 4.

Of most significance are the large variations in
distribution, which reflect the strong temperature de-
pendence. It would be very revealing to compare
such qualitative differences with appropriately refined
field data (beyond the scope of this paper). In prac-
tice, a large range of dynamics may be generated by
imposing variations in the climate, dynamics which
are inherently linked to the large time delay. Note

that extreme temperatures are not favoured by slugs
(seeSouth, 1982), and we might expect populations
to flourish when the winter/summer temperatures are
higher/lower than we might expect. If the converse
is true, then we would expect the double impact of
reduced egg production in the summer (due to exces-
sive heat) combined with an increased decay rate in
winter (due to the cold) to have a detrimental impact
on the slug population. Furthermore, the effect of
alternating good and bad years (for which the delay
plays a most important role) also drives the solution
to oscillate wildly (results not shown here).

4.6. Perceived slug damage

To understand why slugs appear to cause more dam-
age at certain times of the year we need to consider
not only the quantity of slugs but also their food con-
sumption, which will not be constant throughout the
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Fig. 5. The slug population at mean monthly temperatures averaged over 1961–1990 (solid), compared to results when temperatures are
instead taken at the maximum (dashed) or minimum (dotted) mean monthly temperature attained during that period.

year as it depends on the growth rateg(t) of each in-
dividual.

As onemeasure of the vegetation consumed,V(t),
one might take the total growth of slug biomass at any
given time. Hence, we set

V(t) = g(t)S(t)mg week−1 m−2, (18)

and plotV(t) for a simulation with the standard param-
eter values inFig. 6. This measure is clearly a lower
bound on the true damage since it assumes that the
metabolic efficiency of slugs of varying size is con-
stant and, more importantly, that crop damage does
not affect the future growth of the crop. To correctly
measure crop damage one must also construct a model
of crop growth. However, this lower bound on crop
damage does provide some valuable insight: even if
the actual slug biomass varies relatively little, the ob-
served slug damage can fluctuate dramatically, giving
peaks in the spring and autumn.

However, in terms of commercial damage, it may
be more pertinent to model slug numbers, since most

vegetables and fruit may be made unsalable by a single
defect (damage caused by a single slug).

4.7. Predation

The analytical results inSection 3.4showed that the
slug population could be bounded by predation alone
in the absence of resource limitations, provided the
predation was sufficiently strong (sufficiently largeâ
and smallb̂). Simulations using a time independent
predation term, of the form(2), produce results that
are similar to those with a (time independent) carry-
ing capacity, and result in qualitatively similar slug
dynamics throughout the year.

More interesting behaviour results if we consider
the biology of carabid beetles in the field.P. mela-
narius emerges from June onwards, which results in
relatively little predation in the spring. This variation
in the level of predation (especially in the absence
of other limiting factors) introduces new dynamics
into the population and has a significant effect on the
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Fig. 6. The rate of consumption of vegetation per unit area,V(t) (solid), and the upper bound (dashed) defined by 1 S.E. of the data.
The vegetation consumed is assumed to be proportional to the total growth of the current biomass, resulting in much larger fluctuations
in observed damage than in the actual population biomass.

population distribution, even when its effect on the
mean population is small. However, qualitative solu-
tions must suffice at this stage owing to the lack of
quantitative field data.

The effect of beetle predation is governed by their
choice of prey size (seeSection 2.4). In particular,
the destabilising effect of juvenile predation in adult
models was previously highlighted. Simulations of
these models produce periodic and more complex be-
haviours as discussed inSection 3.4.

Adult slugs may be predated by birds and other
animals, as well as by various species of beetle.
Furthermore, the analytical results fromSection 3.5
indicated that, for certain regions in the(ā, b̄) pa-
rameter space, predation in the presence of resource
limitation could result in the bistability of positive
steady states. Moreover, simulations in the presence
of non-autonomous parameters reveal a switching
behaviour between low (contained) and high (out-
break) periodic solutions.Fig. 7 plots the two possi-
ble locally stable asymptotic solutions of the model

for limited resources with adult predation by bee-
tles, using the non-autonomous parameters given by
Eq. (13). However, a small reduction (<8%) in the
predation saturation rate results in the loss of bistabil-
ity for a short period of the year, and this is sufficient
for the low level (“contained population”) solution
to become unstable. The population grows rapidly to
the higher (“outbreak”) solution – a switch which is
difficult to reverse. Once solutions have grown, they
remain in a relatively large stability basin; this can
best be seen by considering the intersection of the
curves

(r̃ − µ)− S

K
and

âS

b̂2 + S2
.

Intersection points represent equilibria and, in the un-
delayed model at least, the boundaries of the stability
basins around a stable equilibrium are indicated by
the values of adjacent unstable equilibria. The exten-
sions of stability basin results to models with delays
are discussed in theAppendix A.
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Fig. 7. Bistable and transient solutions. Small changes in the predation rate may significantly affect the resultant slug population. When
predation is sufficiently strong, there exist two stable asymptotic solutions, so that the population converges to a solution that is dependent
on the initial conditions. With a slight reduction in predation (a), however, the lower “contained” solution (shaded line) becomes unstable,
so that all initial conditions converge to the higher “outbreak” solution (dotted line). Thus a small (less than 8%) reduction in the predation
capacity results in a dramatic increase in the slug population (solid). As both solutions are stable, the population will remain high in the
outbreak state, even if predation increased to its original value. To return the population to its original low contained state, the solution
would have to be forced low, not just at one point in time but for a sustained period due to the delay.

In Fig. 7 this outbreak is driven by a small reduc-
tion in the predation response,â, over a number of
years, although it could equally well result from an in-
crease in the reproduction rate (ρ̃) or carrying capacity
measure (K), or a decrease in the decay or predator
response rates (µ or b̂). If the population biomass is
large, then small variations in these parameters will
alter the solution only slightly. If we have low slug
numbers, however, as is usually desired, a relatively
short period of time in which conditions are unusu-
ally favourable for slugs (or unfavourable for preda-
tors) may be sufficient to cause an outbreak. Even
if the predation were to increase again, the popula-
tion would remain at the relatively high level due
to the delay. This observation could have important
implications for the design of efficacious biocontrol
measures.

5. Discussion

In this paper, we have developed and analysed a set
of models for the dynamics of the slugD. reticulatum,
which is applicable to both the total slug biomass and
the population number.

Analytical techniques were used for a model of a
controlled environment, which can give an indication
of the asymptotic solution behaviour at any given time
in a variable environment. The numerical experiments
(using laboratory and field data) and analytical results
were employed to elucidate the possible dynamics of
slug populations under various conditions and to ex-
plore the significance of various aspects of the life cy-
cle of slugs.

We have found that a wide range of solution be-
haviour is possible if the experimental data, that are



D. Schley, M.A. Bees / Ecological Modelling 162 (2003) 177–198 195

required to construct the parameter values, are allowed
to vary by 1 S.E. The associated parameter range al-
lows for behaviour from extinction to almost triple the
population for the standard parameters. In particular,
we find that large amplitude oscillations are present as
a result of the interaction of variable and delayed re-
production, death and growth. A larger biological data
set on slug life cycle characteristics would be bene-
ficial for comparative studies of theory with experi-
ments.

Results based on the expected and extreme monthly
temperatures indicate that variations between years
produce different population distributions over the
course of a year, although not with significantly dif-
ferent amplitudes. Numerical simulations suggest that
unpredictable (large amplitude) solutions can result if
we consider different conditions in consecutive years.
The hypothesis that small changes in conditions can
result in large variations from year to year is also sup-
ported by a discrete model based on egg production
(Schley and Bees, 2002).

Results suggest that some of the perceived varia-
tion in slug numbers in the field at different times
of the year mayin part be due to the large differ-
ences in slug growth rate. Thus, even when the slug
biomass remains relatively constant, the amount of
damage to vegetation varies greatly. Since most slugs
remain underground for much of the time and only
emerge to eat, standard trapping methods may only re-
flect the number of actively feeding slugs, rather than
the total number of slugs. Greater emphasis must be
given to more sophisticated techniques such as soil
sampling and flooding (e.g.Glen et al., 1993), since
crop damage may not be an accurate measure of the
population.

As predicted by the analytical results, populations
may be bounded by resource limitation or predation,
provided it is sufficiently strong. Otherwise, some
other limiting factor (beyond the natural birth/death
cycle) may be required, such as parasitism or dis-
ease promoted by overcrowding. Variable predation
results in far more dramatic dynamics than those as-
sociated with a constant limitation, and the same is
true when the carrying capacity is time dependent.
Populations limited by predation can be qualitatively
similar to those limited by resources or disease,
and so it is not possible to infer from the model
which factors limit slug populations in the natural

environment. However, the results do suggest that
the population is ultimately limited by some exter-
nal factor beyond intrinsic reproduction, growth and
decay.

The presence of even relatively low predation has
been shown to induce bistability: the coexistence
of stable low (contained) and high (outbreak) so-
lutions. Small changes in the parameters can result
in a switch between solutions, usually associated
with a rapid change in the average yearly popula-
tion. To return the population to its contained state,
it must be suppressed for a sustained period of time
(due to the time delay present in the reproductive
cycle). This is an important factor when control
strategies are to be considered. It may, for exam-
ple, be detrimental to use treatments which have a
longer recovery time for natural controls than for tar-
get species. Predators must also recover sufficiently
quickly to maintain the population at the contained
level.

We have shown that juvenile predation is capable
of inducing oscillatory and possibly chaotic solutions
in the adult model, resulting in large amplitude solu-
tions. This can add a further time scale to the system
that is incommensurate with other delay and annual
forcing time scales and thus adds complexity to the
resulting dynamics. There is good evidence that juve-
nile predation by carabid beetles is predominant in the
field, which increases the importance of this particular
model and the validity of the results.

It is now clear that close attention should be paid to
all the ecological factors when attempting to explain
the observed dynamics of slug populations. The spe-
cific environment, and particularly the variation in its
favourability for slugs, appear crucial in determining
both the population magnitude and its fluctuations
throughout the year. The natural dynamics of slugs in
their undisturbed state appear relatively simple, and
indicate unbounded growth in the presence of unlim-
ited resources. However, limiting factors are clearly
an important part of the dynamics of slugs in the
field, although we have shown that restrictions of very
different origins may produce qualitatively similar
results.

It is a hard task to obtain good and reliable data on
the life cycle of slugs, and often the most available data
will govern the choice of model type. In general, the
choice of juvenile, adult or combined model should
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be determined by the population that has the greatest
numbers (or is easiest to measure). A clear prerequisite
for the development of accurate predictions of popu-
lations, for which predation is considered a significant
factor, is the estimation of the predation parameters.

In all models the effect of the temporal delay has
been shown to be of importance. In addition to in-
fluencing the asymptotic solution of a system, it has
particular significance with regard to the transient
behaviour. When determining the evolution of the
system, such as whether we attain an “outbreak” or
a “contained” population, knowledge of the previous
years population distribution is a prerequisite. This
may result in transient oscillations of much greater
amplitude than otherwise expected. In particular, the
delay can induce stable periodic solutions. Such effects
interact with other mechanisms in the non-autonomous
system. In such a model, the delay introduces a
memory into the system, and so relays the impact of
previous environmental conditions onto the present
population.

The large fluctuations observed in slug populations
may also have a spatial element (see for example the
interaction with beetles,Bohan et al., 2000). Mod-
elling this aspect ofD. reticulatum populations is a
work in progress. Such spatial systems may be nec-
essary in order to take into account the dynamics of
“patchy” (Barnes and Weil, 1944)populations. Al-
though there is evidence for limited aggregation in
certain environments, such as grassland(South, 1965;
Mordan, 1973), other environments such as wood-
land appear to have random/over-dispersed distribu-
tions (Jennings and Barkham, 1975). Moreover, the
evidence in arable crops is inconclusive(South, 1965).
The vertical distribution of slugs in the soil (e.g.South,
1964; Warley, 1970) is unlikely to require explicit at-
tention, since feeding and other interactions, such as
predation or mating, generally occur on the surface.

Managing populations of slugs in agriculture is most
important. However, the best strategy for doing so is,
at best, unclear. A question of fundamental impor-
tance is when and how to apply controls. In particular,
should one treat the slugs when their numbers are high
or attempt to eradicate the pest when they are envi-
ronmentally stressed. The construction of efficient and
efficacious control strategies for the management of
slugs is the subject of further work(Schley and Bees,
2001).
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Appendix A

In this section, we consider the constraints on the
initial conditions of the delay differential equation
which are necessary in order to predict the subsequent
solution behaviour. In the case when there is no delay,
we need only consider the single initial value att = 0.
With delay, however, all past values which are referred
to are required. Here, we present a series of useful
theorems, the proofs of which are available from the
authors on request.

Consider the model equation

ds(t)

dt
= s(t − τ)− F(s(t)), (A.1)

where

F(s(t)) = µs(t)+ as2(t)

b2 + s2(t)
, (A.2)

with initial conditions

s(t) = ψ(t), t ∈ [−τ,0]. (A.3)

The case when there exists a positive equilibrium is
of interest, and thus consider

µ ∈
(

1 − a

2b
,1

)
(A.4)

(seeTable 2for equilibria and stability when this con-
dition is not satisfied).

In the absence of delay (τ), the solution is governed
by the the initial values(0). Solutions fromSection 3.4
may be summarised as follows:

Theorem 1. When τ = 0,solutions of Eqs. (A.1)–(A.4),
with initial conditions ψ(t) ≡ ψ, t ∈ [−τ,0]:
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converge to s∗1 if 0 < ψ < s∗2; or become unbounded
if ψ > s∗2, where

s∗1,2 = a∓
√
a2 − 4b2(1 − µ)2

2(1 − µ)
.

Thus, there is a clear threshold, namelys∗2(a, b, µ) >
0, which separates solutions by their initial conditions.
The presence of a delay may destabilise the equilib-
rium and produce periodic (or even chaotic) solutions,
but solutions may still be separated—by their initial
conditions—into those which remain bounded and
those which do not.

The following theorem confirms what one might
expect intuitively:

Theorem 2. Solutions of Eqs. (A.1)–(A.4): remain
bounded above by s∗2 if ψ(t) < s∗2 ∀t ∈ [−τ,0]; and
become unbounded if ψ(t) > s∗2 ∀t ∈ [−τ,0].

The case of interest is, therefore, when initial con-
ditions are both above and below the threshold value.
In practice, we may usually assume that the solution
will behave as described above if the initial condi-
tionsψ(t) remain above (or below) the threshold for a
“sufficiently” large proportion of the timet ∈ [−τ,0].
This statement is sufficiently vague so as to allow for
the strong dependence on the actual distributionψ(t)

and, in particular, the size of its variation.
Sharp criteria on the initial conditions have not been

found except for very simple delay equations. Stricter
criteria than those above may be derived by assuming
that any non-constant solutions (of the autonomous
equation) will be quasi-periodic with a periodT < τ.
This is a reasonable assumption in most cases since
the system is forced by a delayed term with time lagτ.
Therefore, we look for criteria such thats(τ) < s(0),
so that boundedness may be derived by induction on
τn (n ∈ Z+).

For small amplitude variations in the initial condi-
tions we may, under certain conditions, derive results
based on the mean. Ifψ(t) is approximately constant,
the case to be considered is whenψ ≈ s∗2, since other-
wise it may be assumed that eitherψ(t) > s∗2 orψ(t) <
s∗2 for all t ∈ [−τ,0], and we may applyTheorem 2.

Theorem 3. If dF(s)/ds|s=s∗2 � 1, solutions of
Eqs. (A.1)–(A.4), with initial conditions ψ(t) ≈ s∗2,
t ∈ [−τ,0] satisfy:

s(τ) < s(0) if ψ̄ < s∗2;
s(τ) > s(0) if ψ̄ > s∗2;
where ψ̄ is the mean value of ψ(t) on the interval
[−τ,0]:

ψ̄ = 1

τ

∫ 0

−τ
ψ(t)dt.

Our final results do not place any preliminary re-
straints on our parameters, but will, therefore, be more
restrictive on the initial conditions.

Theorem 4. Solutions of Eqs. (A.1)–(A.4) satisfy
s(τ) > s(0) whenever

ψ̄ < F(ψmaxτ + ψ(0)),

where

ψmax = maxt∈[−τ,0]ψ(t).

The following provides an upper bound for all initial
conditions which will give bounded solutions.

Theorem 5. Solutions of Eqs. (A.1)–(A.4)will remain
bounded above by s∗2 for all t > 0 whenever

s∗2 − e−µtψ(0) >
∫ t

0
ψ(r − τ)eµ(r−t) dr. (A.5)
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