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Abstract

Motivated by the difficulty in designing efficacious biocontrol strategies for dominant, agriculturally damaging slug species
using naturally occurring parasitic nematodes, we investigate theory for the significant impact of stage structured delays on a
non-autonomous host–parasitoid system. Initially, we mathematically strengthen existing stability results for a general class of
autonomous system with delays at different trophic levels using analytical and numerical continuation methods. These results
are employed to guide theoretical analyses of the effect of delays in a particular, seasonally forced, host–parasitoid system
that can model aspects of slug–nematode biocontrol dynamics. Significantly, the model reveals a log-dose response consistent
with experiments, and suggests that the optimal timing and frequency of applications is highly dependent on the form of the
control required. We find that short-term high-level as well as less dramatic but sustained control are both possible by varying
t equencies
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he timing of application. Moreover, we establish that resonance can occur between application and slug life-cycle fr
nducing potentially undesirable large amplitude fluctuations in slug numbers. Finally, we assess the practicality of p
rop protection response in the field.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Slugs are devastating agricultural and horti-
ultural pests, causing damage to crops at all
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stages of their growth.Deroceras reticulatum is a
species of global economic importance (acco
for approximately 70% of slugs in UK,Glen
and Bohan, 2003; Lovatt and Black, 1920; Qu
1960; Dell, 1964; Altena and Smith, 1975; Sou
1992). However, the often irregular dynamics
these slugs are not well understood, and
trasts with more regular and generally less abun
species.
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Slugs predators are mostly opportunistic and few in
number (Wilson et al., 1994a; birds, hedgehogs, etc.).
The exceptions to this are carabid beetles, especially
Pterostichus melanarius (Bohan et al., 2000; Digweed,
1993; Symondson et al., 2002), although they too do not
restrict their predation to slugs(Pollett and Desender,
1986a,b; Sunderland, 1975). Beetles may not always
be present, and their direct effects on slug populations
are still under investigation(Symondson et al., 2002).

Prevalent control strategies for slugs rely on methio-
carb or metaldehyde pellets, often used pre-emptively.
Most chemical treatments, however, are indiscriminate
and can kill other species, especially natural slug preda-
tors; it has been shown that following such treatments
the recovery time of carabid beetles is much longer than
the target species(Purvis and Bannon, 1992). Although
it is desirable (and essential in organic farming) to
employ alternative methods of control, market garden
techniques such as barriers or traps are not suitable for
large scale agriculture.

The parasitic nematode Phasmarhabditis
hermaphrodita killed all tested varieties of UK
slug(Wilson et al., 1993a)and pest snails(Coupland,
1995). Infection occurs via the slug’s mantle, and
death results due to toxins released by nematode gut
bacteria(Wilson et al., 1995a). Infected slugs stop
feeding within 0.6 weeks and move underground
before dying, which occurs within 1–3 weeks(Glen et
al., 2000). Since nematodes are specialised parasites,
their presence does not affect other species, including
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overstability. In particular, we shall address whether
the combination of seasonality, slug delay (9 months
between eggs and egg-laying) and nematode delay
can account for some of the variability in slug and
nematode numbers.

Schley and Bees (2003)developed and explored
several models for slug biomass and population size.
Here, we shall employ the model robustness results to
formulate a non-autonomous delay differential equa-
tion model of the slug–nematode interaction, taking
into account the recent studies ofShirley et al. (2001)
andSymondson et al. (2002), and incorporating both
seasonal fluctuations and stage structure. Alternative
model forms should also be noted, such as the discrete
model based on slug egg production with overlap-
ping generations,Schley and Bees (2002), which splits
the year up into several in-season and extra-season
batches. However, we found that this system does not
easily lend itself to the full spectrum of timescales
identified in experimental studies of biocontrol. The
delay differential system best captures the short lifes-
pan characteristics and rapidly varying densities of the
nematodes as well as the slug dynamics with longer
timescales.

Recent theoretical attention has focused on the effect
of delays at various trophic levels and their stabilizing
and/or destabilizing influences, in autonomous host–
parasitoid/pathogen systems (see for exampleBriggs
et al., 1999). We shall see that these systems have
much in common with the autonomous slug–nematode
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lug predators (Wilson et al., 1993b, 1994b; although
eeMorand and Gonzalez, 1997). In particular, they
o not have a significant impact on endangered
pecies(Wilson et al., 1993a), although they ar
apable of killing some water snails. Similar varie
f nematode infect other species of slug the w
ver(Charwat and Davies, 1999; Morand and Bar
995). Although shown to be more effective agai
lugs than chemical treatments(Wilson et al., 1994a,
ematodes are currently too expensive to be us
onventional commercial farming. It is thus neces
or the nematode treatment to be applied efficacio

strategically placed at the correct concentration
n a timely fashion. Many timescales are involv
n slug–nematode dynamics and it is not obvi
hich are important. Using a modelling approach,
aper aims to elucidate the role of these timesc
y revealing important mechanisms for stability a
ystem.Hastings (1984)considered stability impl
ations of time delays at different trophic levels
n autonomous model exhibiting equilibria associ
ith either extinction or coexistence, concluding t
arasitoid delays are more critical than host delay
similar approach,Murdoch et al. (1987)indicated

hat an invulnerable age class (e.g. time delay in
ecruitment of adults or juveniles) had a stabiliz
ole in host–parasitoid dynamics, which they furt
inked to the lack of local extinctions in some b
ontrol arenas.Briggs and Godfray (1995)considered
more general system, but also autonomous a

he absence of a carrying capacity (see their Appe
), and derived a characteristic equation from wh

o determine local stability of the coexistence eq
ibrium, whence they numerically obtained stabi
esults. Simulations revealed the existence of sub
ulti-generational cycles (see alsoBriggs et al., 1999).
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They conclude that equilibria are generally stabilized
(and Lotka–Volterra cycles destabilized) by models in
which the hosts have age-structure, especially when
juveniles are susceptible, and destabilized by para-
sitoid/pathogen age-structure.

Initially we adopt these approaches for a model
which includes a carrying capacity and, furthermore,
obtain explicit analytical results for the stability of
equilibria for particular cases of host and parasitoid
delays. We develop these results with the applica-
tion of continuation methods, thus providing a frame-
work from which we can study the more realis-
tic non-autonomous system. In order to theoreti-
cally investigate the mechanisms involved in realis-
tic biological control strategies it is essential to con-
sider seasonal variations in life-cycle factors, and
the discrete timing of nematode applications. These
non-autonomous features can express a wealth of
additional behaviour beyond the underlying trends
revealed by the study of autonomous systems (e.g.
Wiegand and Wissel, 1994).

In the next section, we construct the full non-
autonomous slug–nematode system, and, in the follow-
ing section, summarize the analysis of the associated
autonomous system with delays, which reveals basic
solution trends and may also be directly applicable to
controlled environments (such as greenhouses). In later
sections we numerically address the dynamics of the
full delayed non-autonomous system using a combi-
nation of independently derived field and laboratory
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dS(t)

dt
= ρ(t − τ(t))S(t − τ(t)) − µ(t)S(t) − S2(t)

K(t)
,

(1)

whereρ(t) (>0) represents the slug reproduction rate,
and is the rate of production of mature slug biomass
(mg) from eggs through juveniles to adults, per mg
of biomass. Individual slug growth is distinct from
reproduction and is incorporated in the parameter
µ(t) = (death− growth), the slug biomass net decay
rate. The delayτ(t) (>0) is the time span from when
the eggs are laid until the hatched slugs reach (egg lay-
ing) maturity andK(t) (>0) represents the limitation
placed upon the population size by the environment,
and is related to the carrying capacityC = K(ρ − µ).
(Although C appears naturally for autonomous sys-
tems, it does not have the same interpretation for non-
autonomous delay systems, as in generalS(t − τ(t)) �=
S(t).) The most natural unit of time,t, for slug dynam-
ics is weeks (wk; for convenience 1 year≡ 52 wk),
although all simulations employ time steps of 1 h. The
juvenile populations are implicitly modelled and their
dynamics have been absorbed into the (delayed) repro-
duction rateρ(t − τ(t)) (seeSchley and Bees, 2003, for
details), with the assumption that the relatively mobile
mature slugs(South, 1982; Shirley et al., 2001)do not
compete directly with juveniles for resources.

Beyond this approach,Schley and Bees (2003)
investigated a range of models for adult and/or juve-
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rol. Treatment programmes are investigated to e
aximise the reduction in host numbers with a lim

upply of parasitoids or control the host life cycle an
ontain outbreaks. In particular, we consider treatm
iming, application frequency and host (slug) dam
esponse strategies.

. Modelling slug–nematode dynamics

.1. Mature slug biomass

Schley and Bees (2003)proposed the followin
elay differential equation model for mature s
iomass (henceforth, assumed measured inmg), S(t),

n the absence of predation or parasitism (which
lassified as type Ii):
ile populations of slugs (as well as for slug numb
nd concluded that the adult biomass model prov
range of representative solution behaviour. Fur
ore, they noted that in the absence of predation
ther representations can be obtained from this m
y suitably scaling the forcing functions and para

ers (by consistently scaling/absorbing time depen
erms). In all models the temporal delay terms w
ound to have a qualitative effect on the dynam
oth for equilibrium and transient solutions.Schley
nd Bees (2003)further argued that for a simple OD
odel it is more important to keep track of slug biom

han slug numbers due to the large range of slug s
nd slug-size related crop consumption and pos
ematode discharge(Gwynn, 2000).

In this paper, in order to develop simple m
ls of slug biocontrol we shall adopt the adult s
iomass model for the reasons discussed above
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shall develop it for slug–nematode interactions. The
results discussed in this paper can be adapted for other
slug models in this genera, if the need arises.

2.2. Nematode parasitism

As the nematode population relies solely on the
slug population, we require a second equation for
the number of free nematodes,N(t) – those living in
the soil and not in slugs. Slug infection results in
the removal of healthy adult slugs from the popula-
tion S(t), since infected individuals no longer repro-
duce or feed/compete. Infected slugs are not explicitly
modelled as they generally move underground to die
(Glen et al., 2000). Rather, we implicitly model the
time lag between infection and the certain addition
to the free nematode population. Following reproduc-
tion in and consumption of the cadaver by nematodes,
infection ultimately results in an increase in the free
nematode population(Wilson et al., 1993a). Glen et
al. (2000) showed that the probability of infection
was nematode concentration dependent, so that we
amend the right hand side of Eq.(1) by adding the
term

− c(t)N(t)S(t), (2)

wherec(t) > 0 is the contact rate between slugs and
nematodes.

It is reasonable to assume that all but a negligible
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dS(t)

dt
= ρ(t − τ(t))S(t − τ(t)) − µ(t)S(t) − S2(t)

K(t)

− c(t)N(t)S(t),

dN(t)

dt
= p(t)c(t − σ(t))N(t − σ(t))S(t − σ(t))

− ν(t)N(t). (3)

We can cast this model in a more general host–
parasitoid form, for whichS(t) represents the mature
hosts andN(t) the number of parasitoids,ρ(t) (>0) is
the host reproduction rate,µ(t) is the host net decay
rate,K(t) (>0) is an environmental limitation on mature
hosts, which here do not compete for food resources
with a juvenile class,τ(t) (>0) is the host maturation
delay, c(t) > 0 is the contact rate between host and
parasitoids,p(t) (>0) is the parasitoid reproduction rate
(per unit host),σ(t) (>0) is the time from infection until
the parasitoids emerge andν(t) (>0) is the parasitoids’
natural death rate. Note that ifS(t) represents num-
ber thenµ(t) = death> 0, whereas ifS(t) represents
biomass thenµ(t) can be negative at certain times. The
full system is a non-autonomous extension ofMurdoch
et al. (1987)and Model 1 ofBriggs and Godfray (1995)
with the inclusion of an environmental carrying capac-
ity. This model may be set in the context of invulner-
able juveniles, which are modelled implicitly. For the
slug–nematode system, juvenile slugs move much less
distance(South, 1982; Shirley et al., 2001)than the
significantly larger, possibly sexually motivated, adult
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amount of nematode reproduction occurs within
slug(Gwynn, 2000). The emergence rate of free nem
todes is thus proportional to the amount of slug biom
infected a timet − σ(t) ago, given by

+p(t)c(t − σ(t))N(t − σ(t))S(t − σ(t)),

wherep(t) (>0) is the nematode reproduction rate (
mg slug biomass), andσ(t) (>0) is the time from infec
tion until free nematodes emerge. Furthermore,
require a natural nematode mortality, which we ass
to be linear of the form

−ν(t)N(t),

whereν(t) (>0) is the nematodes’ natural death rat
Unifying all of the above, we obtain the no

autonomous slug–nematode system
lugs (>100 mg). It seems reasonable to assume th
uveniles are then less likely to come into contact w
he nematodes and so are relatively invulnerable.
description is consistent with the adult slug biom
odel and useful in that the supporting data for n
utonomous events are most readily available for
cenario (seeSchley and Bees, 2003).

. Autonomous host–parasitoid delay dynamics

In this section we neglect the time depende
f model parameters, with application to contro
nvironments such as regulated greenhouses or

unnels, which have constant levels of temperature
umidity, and relatively few predators. It is instru

ive to analyse the possible parameter regions thr
hich the non-autonomous model may pass, in o



D. Schley, M.A. Bees / Ecological Modelling 193 (2006) 543–559 547

to help predict the behaviour of the full system. This
section aims to set the scene and to reinforce and extend
analyses of similar systems, although it may be skipped
in favour of later sections on the non-autonomous slug–
nematode dynamics and agricultural biocontrol strate-
gies.

3.1. Non-dimensionalization and steady states

To reduce the number of free parameters, we non-
dimensionalize by setting

t̃ = ρt, τ̃ = ρτ, σ̃ = ρσ, µ̃ = µ

ρ
, ν̃ = ν

ρ
,

p̃ = cKp, S̃(t̃) = S(t̃/ρ)

ρK
= S(t)

ρK
,

Ñ(t̃) = cN(t̃/ρ)

ρ
= cN(t)

ρ
.

On dropping tildes, the model becomes

dS(t)

dt
= S(t − τ) − µS(t) − S2(t) − N(t)S(t),

dN(t)

dt
= pN(t − σ)S(t − σ) − νN(t). (4)

The nullclines of Eq.(4) are{S = 0, N = 1 − µ −
S} and {N = 0, S = ν/p}, which at most give three
steady statesE∗ = (S∗, N∗) given inTable 1(extinc-
tion, exclusion and co-existence). Note that the co-
e nce
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T
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3.2. Host maturation delay without parasitoid
reproduction delay (τ > 0; σ = 0)

One might wish to assume that the delayσ be
neglected as it is typically smaller than the host matura-
tion delayτ. However, we show inAppendix Athat the
local stability criteria for all three of the above steady
states do not alter in this case. We note that it is not
possible for a delay of the above form to induce sta-
bility in the system, since delay induced bifurcations
occur through complex conjugate roots crossing the
imaginary axis and the undelayed unstable system has
positive real roots.

However, even when the positive equilibrium is
found to be linearly stable, the stability results are local
results and stable periodic solutions can still exist.

3.3. Parasitoid reproduction delay without host
maturation delay (τ = 0; σ > 0)

Although it may be unrealistic to neglect the host
maturation delay, it is instructive to analyse stability if
we do so. Once again, the stability criteria forE0 and
E1 do not alter in the presence of this delay. However,
we show inAppendix AthatE2 can be destabilized by
a sufficiently large delay.

3.4. Linear analysis for multiple delays (τ > 0;
σ > 0)

d
r ics
a the
s d
s e
( l,
c le to
a lays
a ntly
d tend
n is
r then
u the
r ich
t ith-
o hus
w host
m the
xistent host population is lower than in the abse
f parasitoids, sinceµ < µ∗ = 1 − ν/p impliesν/p <

− µ. For the case of no delays (τ = σ = 0), stability
esults are tabulated inTable 1. In the next sections w
hall consider the local stability of the equilibriaE0,
1 andE2, under various delay conditions. To eli
nalytical results, four cases will be addressed:τ > 0,
= 0; τ = 0, σ > 0; τ = σ > 0; τ �= σ.

able 1
he steady states of Eq.(4), conditions for their existence and s
ility results in the absence of delays

Steady stateE∗ = (S∗, N∗) Exists if and only if τ = σ = 0:
stable if and
only if

E0 = (0, 0) 1 < µ

E1 = (1 − µ, 0) µ < 1 µ∗ < µ < 1

E2 =
(

ν

p
, 1 − µ − ν

p

)
µ < µ∗ = 1 − ν

p
µ < µ∗
When the host maturation delayτ and the parasitoi
eproduction delayσ are both present, new dynam
re introduced. It is straightforward to show that
tability criteria forE0 andE1 remain unaltered, an
o we consider only the coexistence steady statE2
requiring µ < µ∗). Multiple delays are, in genera
omplicated to analyse, and although it is possib
nalyse the stability of the equilibria when the de
re integer multiples of each other, they are inhere
ependent on the majority of the parameters and
ot to result in explicit stability criteria. It is for th
eason that we first consider a simple case, and
se numerical continuation techniques to extend
esults. This provides an analytical skeleton from wh
o build solutions to the characteristic equation, w
ut resorting solely to numerical computations. T
e may illustrate how the presence of a delay in
aturation can stabilize the coexistent state when
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parasitoid reproduction delay is present. This effect is
proportional to the magnitude of the maturation delay.

When the delays are equal such thatτ = σ the
resulting characteristic equation can be analysed as in
Appendix A. There is a critical valueµτ (< µ∗) of
µ above which bifurcations may not occur, and below
which instability sets in for sufficiently largeσ. Numer-
ical results suggest that this is approximatelyµ0 for
smallν, but for larger values ofν this critical value is
strongly dependent on all of the parameters.

For independent delays (τ �= σ) and by employing
the above results, we may determineσ0(µ, ν, p), the
value ofσ at which bifurcation occurs forτ = 0, and the
critical rootλ = iωσ of the characteristic equation(8).
Using the frequencyωσ as a free parameter, the solu-
tionsσ(τ) (τ > 0) of (8) can then be computed for any
given (µ, ν, p) (e.g. using the continuation software
Auto; http://indy.cs.concordia.ca/auto/). Fig. 1shows
the case (0.5, 0.1, 6), but other values are similar (when
such bifurcations occur). It is found that the stable range
of values [0, σc) of the parasitoid delay, whereσc is the

F with
r
D
f ing
τ

w at
t
t
f s for
n
g e
σ

bifurcation value with respect toσ, increases monoton-
ically with the host delayτ, and that this relationship
becomes linear for largeτ. In the above example, the
line σc = 1.06τ − 8.69 is a good approximation for
τ > 30.

Sinceσ0 ≤ σc, we have shown that the addition of
the second delay can stabilize the equilibrium. Ana-
lytically, we have shown that the delays in the model
can have destabilizing as well as stabilizing effects.
Notably we have demonstrated that the parasitoid
reproduction delay would need to be of the same or
larger order as the host maturation delay to destabilize
the equilibria, in line with previous numerical results
reported in the literature for similar models without
a carrying capacity (e.g.Briggs and Godfray, 1995).
In practice, however,τ � σ and we would not expect
such behaviour. We must emphasize that delays can
also result in periodic solutions, so that stable steady
solutions may only be locally (not globally) stable,
and that for convergence, solutions may be required
to originate sufficiently close to the desired steady
solution.

3.5. Slug biocontrol strategies (autonomous
model)

For ease of interpretation we return to the dimen-
sional parameters in this section. We shall assume
that a delay induced instability does not occur (τ

i e
i see
T

on-
s en

T
A g
a

sults
s

ise,
w dic).
ig. 1. The stability boundary for the coexistent steady state
espect to the two delays,τ andσ, whenp = 6,ν = 0.1 andµ = 0.5.
estabilization only (and always) occurs with increasingσ for anyτ;

or fixedσ we may always (re)stabilize the equilibrium by increas
sufficiently. The curve is calculated by continuing solutions (τ, σ)
hich satisfy(8) for λ = iωσ , whereωσ is a free parameter. Note th

he curve intersects the vertical axis atσ = σ0, sinceτ = 0. From the
ext we have thatσ0(0.5, 0.1, 6) = 0.364 for whichω = ωσ = 0.216
rom Eq.(10). These values may be used as the initial condition
umerical continuation. In addition, the points (0, σ0) and (στ, στ )
iven in the text are marked with circles (hereστ = 0.435). The curv

c(τ) passes through these points as required.
s sufficiently large compared toσ), so that ther
s always exactly one locally stable equilibrium (
able 2).

With reference to the above analysis we shall c
ider biocontrol strategies for the two equilibria wh

able 2
utonomous model with delays (τ � σ): expected behaviour of slu
nd nematode populations in terms of theoriginal parameters

Parameter range Outcome Convergencea to (S∗, N∗)

K(ρ − µ) < 0 Extinction (0, 0)

0 < K(ρ − µ) <
ν

cp
Exclusionb (K(ρ − µ), 0)

ν

cp
< K(ρ − µ) Coexistence

(
ν

cp
,

1

cK

(
K(ρ − µ) − ν

cp

))
c

a Only linear stability has been proven, although numerical re
uggest that the convergence results are globally valid.

b Only slugs persist.
c Valid when delay induced instability does not occur. Otherw

e expect coexistence with oscillations (periodic or quasi-perio

http://indy.cs.concordia.ca/auto/
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slugs are present (assuming thatµ > ρ so that slug
extinction does not occur). If slugs exist in the absence
of nematodes, the parameters satisfy

ν

cρ
> K(ρ − µ) = S∗. (5)

The most advantageous strategy is to reverse the
inequality(5) so that we have coexistence, while ren-
deringν/cp (the new stable steady state slug popula-
tion) as small as possible.

In practice it may be difficult to changep, which rep-
resents the number of free nematodes released from the
body of an infected slug. Reducing the nematode mor-
tality, ν, should be possible in controlled environments
(such as poly-tunnels) by maintaining a suitable tem-
perature and climate, although this is also likely to ben-
efit slugs. Warm damp conditions which improve the
survival of the nematodes in the soil (reduceν) will also
reduceµ, and so careful consideration will have to be
given as to whether a reversal of inequality(5) may be
attained. The final possibility for producing a reduced
coexistent slug population is to increasec, the contact
rate between slugs and nematodes. In practice, this will
be dominated by how “active” nematodes are, which
is strongly affected by extreme temperatures. Improve-
ments on the infection rate of slugs might be achieved
by increasing the homogeneity of the populations, such
as through tillaging (while maintaining a moist exposed
surface). However, breaking up the soil might also
increaseµ and reduceρ, so that a switch may be harder
t
i
s ag-
i d
d lt in
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e

4

on
b tode
m he
f life-
f imes
e ional

dependence from many years of well-controlled labo-
ratory and field experiments.

4.1. Parameters

For numerical simulations of the slug biomass popu-
lation we have used the temporally varying parameters
of Schley and Bees (2003), which were derived using
the independently measured laboratory and field data
of South (1982, 1989a)and Hunter and Symmonds
(1971)as functions of temperature. Whilst it is clear
that many environmental factors will influence slug
dynamics, including moisture, the literature has con-
centrated on the effects of temperature in the laboratory
and supports the view that temperature is the dominant
factor in the life cycle of slugs(South 1989a, 1989b;
Wareing and Bailey, 1985). We have taken this temper-
ature data as “representative” and, furthermore, seek
to disentangle effects by looking at average years as in
Schley and Bees (2003). However, the results described
here are not overly dependent on the parameters.

Choi et al. (2004)adopt a different approach by fit-
ting a simple model of juvenile and adult slug dynamics
with 8 free parameters to an initial data set of 20 data
points from field data, which they then employ in a pre-
dictive fashion. One of the aims of their paper was to
theoretically investigate the relative importance of tem-
perature and rainfall on the slug dynamics, although
due to a lack of data various functional forms were
assumed. They conclude that temperature and rain-
f nd,
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fi uld
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s shall
l ore-
c r,
1 ata
r duce
r ,
o etles
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aris-
i xist
a ce of
o obtain, but if ν/cnewp < K(ρnew − µnew) then it
mmediately follows thatν/cnewp < K(ρold − µold),
o that the slug population will be reduced. Till
ng would be beneficial ifµ andρ were increased an
ecreased, respectively, since this would still resu
reduction of the steady slug populationK(ρ − µ),

ven if a persistent nematode population could no
stablished.

. Non-autonomous slug–nematode dynamics

In this section, we explore explicit soluti
ehaviour of the non-autonomous slug–nema
odel. The motivation in doing so is two-fold. T

unctional dependence of most slug and nematode
actors on the season is multifaceted and somet
xtreme, and we have access to data on this funct
all affect different aspects of the slug lifecycle a
urthermore, that the parameters provided by the
ing process differ from laboratory experiments. In
bsence of independent field data, we prefer to

he reproducible laboratory data as above (and s
eld data), whilst recognising that refinements co
e made with more experimental data. With the re
entative seasonal data that we shall employ we
ook to isolate mechanisms rather than provide f
asts by fitting our model. (SeeComins and Fletche
988, on the virtues of using reliable laboratory d
ather than “setting the parameters post hoc to pro
ealistic results”, andFeldman et al., 1981, for example
n the success of laboratory-derived models of be

or field predictions.)
To calculate the nematode related parameters

ng in this model, we first note that there should e
background nematode population in the absen
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treatment(Wilson et al., 1994a), and so we expect
the system to support a natural state of coexistence.
The time until death of infected slugs depends on their
degree of initial infection, and varies from 1 to 3 wk
(Wilson et al., 1993a). As before, we assume that the
level of initial infection is proportional to the current
nematode density. We may then use the field data of
Wilson et al. (1994a), for infection levels versus treat-
ment doses, to calculate both the expected background
level of nematodes and the contact rate between indi-
viduals. The number of newly infected individuals in 1
week is approximatelycNS, whereN is the total num-
ber of nematodes (treatment plus background level) and
S is the current slug population. Fitting the data we
find thatc = 6.4 × 10−6 and the background level is
N∗

2 ≈ 9 × 103 nematodes, which equates to an infec-
tion load of 10% of slugs, in good agreement with field
observations(Wilson et al., 1994a).

The per capita lifespan ofP. hermaphrodita is
approximately 2 wk(Wilson et al., 1993b; Gwynn,
2000). SinceP. hermaphrodita is a specialised parasite
and its life-cycle is closely linked to that ofD. reticu-
latum (Glen and Wilson, 1997), it is not unreasonable
to assume thatν(t) is proportional to the slug death rate
with a mean determined by the laboratory data. It has
been shown that nematodes may also survive in freez-
ing temperatures, although they remain inactive. How-
ever, we will initially let the contact rate remain con-
stant, so thatc(t) ≡ 6.39× 10−6 nematodes−1 wk−1,
and shall consider the inactivity at extreme tempera-
t
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ground level of nematodes andδ is the dosage applied
(to give a delay of between 1 and 3 wk). However,
this leads to small quantitative rather than qualitative
changes in dynamics and we disregard such a term in
the current study.

4.2. Nematode treatments and log-dose response

Standard nematode treatments apply approximately
3 × 105 nematodes m−2 (Glen and Wilson, 1997).
Experiments have shown, however, that approximately
80% of nematodes applied to the soil are lost(Gwynn,
2000) and, therefore, we assume a “true” treatment
dose of 6× 104 nematodes m−2 per application. The
treatment is easily incorporated into the simulations
with the addition of a periodic step functionF (ωt) to
the nematode growth rate, which quickly forces the
population to the application level (seeAppendix B).

Although nematode numbers decrease rapidly fol-
lowing their application, the model reveals that a
secondary peak may be observed in their population
shortly after the treatment time, as illustrated inFig. 2.
This is a result of the nematode reproduction delay,σ,
between slugs being infected and the new dauer larvae
emerging, and is a prediction that could be investigated
in the field. The magnitude of this second peak depends

F ed for
c rked
w large
d on at
t er in
t ck-on
e nce of
s
r

ures later on.
We estimate the number of active nem

odes that emerge from infective cadaver asp =
5 nematodes mg−1, based upon a lower thresho
ield of 50 nematodes mg−1 of culture medium
ecorded byWilson et al. (1993b), approximately
0% of which were dauer larvae. A prerequi

or coexistence is thatS∗
1 > S∗

2, and we thus us
he upper bound parameters forρ and µ cal-
ulated in Schley and Bees (2003). Noting tha
cN∗

2 = S∗
1 − S∗

2 = K(ρ − µ) − ν/pc we may use
ll of the above to solve for the expected value
, giving K ≈ 3.5 × 104. The full non-autonomou
odel is detailed inAppendix B.
We note that there is limited evidence to suggest

ighly infected slugs die sooner(Wilson et al., 1993a.
hus one might consider a state dependent delay
sσ(N) = 3 − 2(N − β)/(δ − β), whereβ is the back
ig. 2. The slug biomass level and nematode population (scal
omparison) when treatment is applied annually in week 16 (ma
ith a	) and there is variable nematode activity (see text). The
elayτ means that treatment not only affects the slug populati

he time of application, but results in reduced recruitment lat
he year (because of reduced egg laying now). This has kno
ffects on the nematode population, which requires the prese
lugs (in addition to a good contact, and thus infection, ratec) for
eproduction.
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Fig. 3. The mean and minimum slug biomass present each year in
relation to the dose strength of an annual nematode treatment. For
clarity here, we have considered the autonomous model, with each
parameter assigned its annual mean value. In each case, the minimum
slug biomass was attained shortly after (and directly attributable to)
the application of nematodes.

on the level of nematode activityc and indicates how
nematode reproduction assists in treatment efficacy.

The calculation of background nematode levels (and
the measured level of slug infection,Wilson et al.,
1994a) suggests that a high level of slug “control”
exists in the absence of treatments. Moreover, sim-
ulations of the autonomous system with delays (i.e.
non-equilibrium dynamics) indicate that slug popula-
tions are maintained at roughly half the levels which
they attain in a parasite-free environment.

The model predicts a log-dose slug response to
increasing nematode dosage, which has previously
been observed in experiments(Wilson et al., 1994a,
1995b). The reduction in slug biomass when nematodes
are applied once per year (ω = 2π/52) in a controlled
environment is shown inFig. 3. Note that there is a
large difference in the initial response and the mean
effect of treatment over a year.

4.3. Application efficacy

Even a single nematode treatment dose can have a
long term effect on slug biomass populations. Repeated
annual applications, however, bring about a greater
overall reduction. Simulations show that the slug popu-
lation has a recovery time of several years, an example
of which is given inFig. 4. The short-term control (tens
of weeks) and form of oscillation are the most measur-

Fig. 4. Nematode treatments appear highly effective at producing
and maintaining a low level slug population. A single treatment
(dotted line) produces a significant reduction whose effects linger
for 4–5 years. A significantly lower population level can be achieved
(2–3 years) through annually repeated applications (solid line). In
each case year zero represents the first year nematodes are applied,
and treatments have been applied in week 28 (the first treatment is
denoted by a	).

able features, as displayed inFig. 2. It has been shown
experimentally that treatments provide significant crop
protection for at least 7 wk, but not after 27 wk(Wilson
et al., 1994b, 1996).

If a nematode dose is applied just once per year,
there is a quick transition to a controlled population that
can have an annual mean which is 15% less than the
untreated population (although this percentage depends
on when the nematodes are applied, see below). In
Fig. 4 we display the results when the nematodes are
applied every year in week 28 (which generally admits
the least variation, see below), forcing the slug pop-
ulation from a periodic solution with a large mean
to one with a lower mean and smaller amplitude. It
should be remembered that the periodic nature of these
solutions is due to the deterministic periodic forcing
and in practice we would expect yearly fluctuations
to drive variations about these solutions. Importantly,
Fig. 4indicates that the long term advantage of repeated
treatments is not immediately obvious at the time of
application, and is due to the delays in the system.

4.4. Application timing

The reduction in annual mean slug population
changes only slightly with the timing of a single annual



552 D. Schley, M.A. Bees / Ecological Modelling 193 (2006) 543–559

Fig. 5. The mean slug population (�), and the minimum and max-
imum values it attains (+) in any 1 year, depending on the time at
which the nematode treatment is applied. For comparison, the mean
(dotted) and extreme (dashed) values of the untreated slug population
(with only the background level of nematodes) has been marked.

nematode application (Fig. 5), but the amplitude varies
markedly. A non-intuitive result occurs when applica-
tions outside of weeks 18–46 actually result in larger
fluctuations (higher maxima!) than would normally be
attained, and suggests that applications should be timed
to coincide with vulnerable crop times. Some crops,
however, may require sustained protection and it may
be more desirable to maintain a non-fluctuating slug
population.

4.5. Application frequency: resonance in
controlled environments

Here we consider the separate issue of how fre-
quently treatments should be applied in unforced
(autonomous) model, whilst maintaining the net annual
dose. We find that the mean slug population is not sig-
nificantly affected, suggesting that if there is a cost
involved in the application of the nematodes, then it
is most efficient to apply the entire dose in one treat-
ment. But one must also consider the amplitude of the
population variations with regard to vulnerable crops.
In particular, resonance with the natural slug dynamics
causes large fluctuations as can be observed inFig. 6,
which shows the mean and range of the resultant slug
population for the autonomous model in relation to the
frequency of treatment.

If crops are vulnerable for only a short period of
time, it may be desirable to apply the nematode treat-

Fig. 6. For a constant annual quantity of nematodes, the mean (�)
slug biomass, given as a percentage of the average untreated popu-
lation, in a controlled environment remains relatively unaffected by
the frequency of nematode application. The fluctuations in the pop-
ulation do, however, change significantly; the maxima and minima
(+) may be well above and below the normal range. There is a clear
resonance with the delayτ + σ ≈ 46.2 and its sub-harmonics.

ment at the main resonant frequency (period of 46 wk)
in order to obtain a few weeks of exceptionally low
slug damage. In this case, the slugs crash to approx-
imately 36% of the uncontrolled level, but peak at
156% later in the year. Results indicate that treatments
must be applied with a period of no more than 35
wk if the population is to be maintained below its
uncontrolled level for the whole year. The slug pop-
ulation fluctuates less as treatments become more fre-
quent, due to the stabilizing effect on the nematode
population.

4.6. Variable nematode activity

Although it is possible to calculate the mean value of
the contact ratec(t) (see above), little data is available
on its likely variation. In the field, we would expect
c(t) to vary (like most other parameters in the non-
autonomous model), reflecting how active nematodes
are in seeking out and infecting slugs. To derive a time
dependent contact rate, we follow the method used by
Schley and Bees (2003)for slug life-cycle parameters.
Firstly, we considerc as a function of temperatureT
(◦C), and then calculate the value ofc(t) by using the
average (monthly) temperature in the UK. As for slugs
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Fig. 7. AsFig. 5, but with variable nematode activity – and hence
infection rate –c(t) given by Eq.(13), as opposed to a constant contact
rate (c = 6.39× 10−6).

(South, 1989b; Wareing and Bailey, 1985), tempera-
ture is considered the most significant factor in the
life cycle of nematodes(Wilson et al., 1993a; Gwynn,
2000). Finally, we fit a curve to these points (with the
assumption that is has a period of 1 year or integer frac-
tion thereof;Appendix B). The result, as expected, is
almost zero activity during the winter months, peaks
in spring and autumn and reduced activity during the
summer.

A variable contact rate is less effective overall than
a constant rate (with equal means), as slug populations
tend to recover in times of nematode inactivity (Fig. 7).
Surprisingly, winter applications provide reasonable
protection, despite the low nematode activity, due to
the low nematode death rate at this time. However,
this prediction is unlikely to be valid during periods of
sustained hard frost. The immediate reduction in slug
numbers following an application at the start of the year
is negligible but, under a regime of repeated annual
applications, results in sustained control. An applica-
tion later in the year can result in a dramatic drop in
slug population (due to high nematode activity), but
induces large oscillations.

Further research on the exact response of nema-
tode activity to temperature would be extremely use-
ful in order to more accurately calculate treatment
times. These results strongly suggest that considera-
tion should be given to the crop protection required
both at the time of application and for the rest of the
year.

5. Conclusions

The control of slugs is an issue of great impor-
tance in agriculture and horticulture. Recently parasitic
nematodes have been used as an efficacious biocontrol
measure, although some optimisation is necessary to
help it become economically competitive with conven-
tional chemical treatments.

In this paper, we have developed a realistic, uni-
form model for the dynamics of interacting slug and
nematode populations in the presence of delays in
slug and nematode maturation, and seasonal forcing.
In particular, we have considered a system of two
non-autonomous, delayed ODEs and have investigated
both autonomous and non-autonomous aspects of the
model. Such systems have previously been used to
model parasitoid-invulnerable age classes. Here, juve-
niles have been assumed invulnerable due to their
much reduced infection rates, attributed to their rel-
ative small size and lack of locomotion (including
the absence of reproductive impulse), and the neg-
ligible movement of the parasitoid (nematode). One
avenue of future research might assess the valid-
ity of effective juvenile invulnerability by explicitly,
rather than implicitly, modelling juveniles in a spatial
setting.

For the slug component of the model presented
herein,Schley and Bees (2003)have shown how the
autonomous model may be extended to model either
mature populations, juveniles or a combination of
b and
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in host maturation proves to be sufficient to dampen
the effects of the (potentially destabilizing) delay in
parasitoid reproduction, resulting in local stability of
steady states. Stability results have only been proven
locally, although numerical results suggest that they are
mostly global: the delays alone do not favour periodic
or quasi-periodic solutions, for realistic values of the
parameters (where typically host delay is greater than
parasitoid delay) and in the absence of seasonal forcing
terms.

Results confirm what one would expect intuitively,
that improvements to the efficacy of parasitoids (nema-
todes) at any given time are best achieved by reducing
their death rate and increasing their activity/contact
rate with hosts (slugs). Unfortunately, most measures
to aid the survival of nematodes (such as maintaining
soil moisture) also benefit slugs. Favourably however,
methods of improving contact, such as tillage, may be
harmful to slugs.

The non-autonomous slug–nematode model (repli-
cating the field environment) with seasonal forcing
terms representing conditions for an “average” year,
generally produces periodic solutions. We choose not
to fit our model to data and instead derive represen-
tative seasonal forcing terms from independent, well-
established laboratory data, and some field data, as
in Schley and Bees (2003). There is some evidence
to suggest that parameters derived from fitting mod-
els to field data may differ from the laboratory (Choi
et al., 2004; as hinted at previously:South 1982,
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response this offers a relatively high level of natu-
ral control. Therefore, we suggest that the occasional
application of nematodes is worthwhile in all farming
systems – even those not intending to utilize them as
the main control – to ensure that a natural background
level of nematodes is present (also important for ster-
ilized compost or where slugs have previously been
absent).

Results indicate that the timing of nematode treat-
ments is crucial, and can give different amounts of crop
protection due to the seasonality of slug and nematode
dynamics. At certain times of the year an application
will provide short-term high-level protection, while at
other times it results in a less dramatic but more sus-
tained reduction in the slug biomass. Variability in
nematode activity, which is temperature dependent, is
also highly influential.

Since the reduction in the mean annual slug biomass
is fairly constant, regardless of when treatments are
applied, the timing of applications should be depen-
dent on the form of crop protection required. This is
especially significant in controlled (autonomous) envi-
ronments where resonance with the natural period of
the slug life cycle can induce large amplitude fluctu-
ations, although the mean slug biomass remains rel-
atively unaffected by the frequency of applications
(constant net dose). Note, however, that this type of res-
onance may have less of a role if the system is strongly
driven by environmental forcing. If the annual mean
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Appendix A

τ > 0; σ = 0

Setting (S(t), N(t)) = E∗ + (s(t), n(t)) in (4) and
linearizing with respect tos(t) and n(t), we look for
solutions of the form (s(t), n(t))T ∝ eλt , to obtain the
characteristic equation

λ2 + (µ + ν + N∗ + (2 − p)S∗)λ + νµ + νN∗

+ S∗(2ν − 2pS∗ + p(1 − µ))

= −(−λ + pS∗ − ν) e−λτ. (6)

The stability analysis is carried out in three parts.
Firstly, we require stability in the absence of delay
(τ = 0; see previous section). Secondly, we confirm
t ense
o d
f e
c , by
l -
i
Ω

W

obtained by multiplying Eq.(6) by its complex conju-
gate.

For E0 the characteristic Eq.(7) has roots−ν and
1 − µ2, which are both real and negative under the con-
dition for stability in the absence of delays (µ > 1).
Hence, destabilization ofE0 due to the delay,τ, does
not occur.

In the absence of delays we requireµ∗ < µ < 1
for E1 to exist and be stable, for which Eq.(7) has
roots−(ν − p(1 − µ))2 and−(1 − µ)(3 − µ), which
are both real and negative. Again, destabilization with
respect to the delay,τ, does not occur.

ForE2, (S∗, N∗) = (ν/p, 1 − µ − ν/p), we require
µ < µ∗ for existence and stability in the absence of
delays. We note that sinceWτ(Ω) is a quadratic which
is bounded below, and thatWτ(0) > 0 (which is clear
by substituting forS∗ andN∗ explicitly), Eq. (7) can
have a positive root if and only if it attains a minimum
atΩ = Ωmin > 0 such thatWτ(Ωmin) < 0. Since

Ωmin = − ν

2p2 ((1 + 2p)ν + 2p − 2p2(1 − µ)),

we thus require that

µ < µτ
min, whereµτ

min = 2p2 − 2p(1 + ν) − ν

2p2

(< µ∗),

and, after some algebra, that

µ

W -
d

τ

λ

T s in
A

hat the characteristic equation is retarded (in the s
f Marshall et al., 1992) so that stability is maintaine

or infinitesimally small positive delays. Finally, w
onsider whether the delay can induce instability
ooking for roots of the formλ = iω crossing the imag
nary axis. If such roots are possible for someτ, then

= ω2 > 0 must satisfyWτ(Ω) = 0, where

τ(Ω) = Ω2 + [µ2 + ν2 − 1 + (p2 + 4)S∗2

+ 2(2µ − νp)S∗ + 2(2− p)N∗S∗ + N∗2

+ 2µN∗]Ω + 4p2S∗4 + 4p(µp − 2ν)S∗3

+(4ν2 − p2 − 8µνp + µ2ν2)S∗2

+ 2ν(2µν + p − µ2p)S∗ + ν2N∗2

+ 2µν2N∗ + (µ2 − 1)ν2 − 4νpN∗S∗2

+ 2ν(2ν − µp)N∗S∗, (7)
> µW, whereµW = 4p2 − 2p(1 + 2ν) − ν

4p2 .

e note, however, thatµW > µτ
min, so that both con

itions can never be satisfied simultaneously.

= 0; σ > 0

The characteristic equation is

2 + (ν + µ − 1 + 2S∗ + N∗)λ + 2νS∗ + νN∗

− ν(1 − µ) = −(−pS∗λ − 2S∗ + µ − 1) e−λσ.

(8)

he stability is determined in a similar manner a
ppendix A, whereby the rootsλ = iω must satisfy
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Wσ(Ω) = 0, whereσ is to be determined,Ω = ω2 and

Wσ(Ω) = Ω2 + ((4 − p2)S∗2 + N∗2 + 4(µ − 1)S∗

+ 4N∗S∗ + 2(µ − 1)N∗ + ν2 + (µ − 1)2)

× Ω − 4p2S∗4 + 4p2(1 − µ)S∗3

+ p2
(

4
ν2

p2 − (1 − µ)2
)

S∗2

+ 4ν(µ − 1)S∗ + ν2N∗2 + 2ν2(µ − 1)N∗

+ 4ν2N∗S∗ − ν2(1 − µ)2. (9)

For (S∗, N∗) = (ν/p, 1 − µ − ν/p), we require
µ < µ∗ for E2 to exist and be stable in the absence
of delays. For this equilibrium, Eq.(9) becomes

Ω2 + ν2

p2Ω + ν2

p2 (−3ν2 + 4(p − 1)ν − p2(1 − µ)2)

= 0. (10)

By Descartes rule of signs (or alternatively by noting
thatΩmin = −ν2/2p2 < 0), we have one or zero pos-
itive real rootsΩ, depending on the sign ofWσ(0). For
the existence of a positive real root we require

3ν2 − 4(p − 1)ν + p2(1 − µ)2 > 0,

which is satisfied if and only if

µ
3ν
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σ satisfying Eq.(12). Only the first is of real biolog-
ical interest, and represents the value of the delay at
which the coexistent steady state solution bifurcates to
instability. We denote this value byσ0 = σ0(µ, ν, p).
Hence, we have demonstrated that there exists a region
of parameter space in which there are no stable equi-
libria.

τ = σ

When the delay in both host and parasitoid repro-
duction is given by a single valueσ, the characteris-
tic equation determining the stability ofE2 is given
by

C(λ) =
2∑

k=0

ck(λ) e−λkσ,

where

c0(λ) = λ2 +
(

ν

p
+ 1 + ν

)
+ ν

p
(ν + p),

c1(λ) = −(1 + ν)λ − 2
ν2

p
− ν(µ + 1), c2(λ) = ν.

We introduce the notation

c1
0(λ) = c0(λ)c0(−λ) − c2(λ)c2(−λ),

c1
1(λ) = c1(λ)c0(−λ) − c2(λ)c1(−λ),

a

c
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< 1 −
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or µ > µ∗.

ince the second inequality is inconsistent with
bove criteria, we note that there exists a single pos
ootΩσ , and corresponding value ofλ = iωσ = i

√
Ωσ ,

f and only if

< µ < µ0(< µ∗), (11)

hereµ0 = 1 − 3ν/p. Furthermore, Eq.(8), dictates
hat

an(ωσσ)

= ωσ(ω2
σp2 + ν((p + 2)ν + (µ − 1)(p + 1)p))

ω2
σ((µ − ν − 1)p + ν)p − ν2((µ − 1)p + 2ν)

.

(12)

hus, for eachµ, ν, p satisfying Eq.(11) and corre
pondingωσ , there exist an infinite number of positi
nd

2
0(λ) = c1

0(λ)c1
0(−λ) − c1

1(λ)c1
1(−λ),

nd letW(Ω) = c2
0(iω), whereΩ = ω2. Hence, eac

ositive root, Ω, of W will determine a possibl
oot, λ = iω, of the characteristic equation for aσ
o be determined. It is not immediately clear whe
uch roots will exist, sinceW is a positive quarti
n Ω and W(0) > 0 for µ < µ∗, although in prac
ice examples may easily be found for sufficien
mallµ.

For each suchω = √
Ω, the characteristic equati

mplies that

−iωσ = c1
0(iω)

c1
1(iω)

,
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so that bifurcation occurs whenσ = στ(µ, ν, p), where
στ is the smallest positiveσ which satisfies

tan(σω) = −ω(p2(ν + 1)ω2 + ν[µp(ν + p(ν + 1)) − p2(ν + 1) + ν(ν + 2)p + 2ν2])

ω2p[−νµp + (ν + ν2 + 1)p + ν(1 − ν)] + ν3(p + 2ν + µ p)
.

As an example consider the casep = 6 andν =
1/10, so thatE2 exists (and is stable in the absence of
delays) if and only if 0< µ < 59/60. In the presence
of only a nematode reproduction delay (i.e.τ = 0), we
have stability forµ > µ0 = 19/20, and instability if
σ > σ0(µ) otherwise. For example, whenµ = 19/40,
bifurcation to instability occurs whenστ = 0.345 (with
ω = 0.221).

Appendix B

The full non-autonomous model used in numerical
experiments is given by

dS(t)

dt
= ρ(t − τ(t))S(t − τ(t)) − µ(t)S(t) − S2(t)

K(t)

− c(t)N(t)S(t),

dN(t)

dt
= p(t)c(t − σ(t))N(t − σ(t))S(t − σ(t))

− ν(t)N(t) + F (ωt),

whereω = 2π/52 and

ρ

τ

p(t) ≡ 45 nematodes,

σ(t) ≡ 3 wk.

More details can be found inSchley and Bees (2003). ν
is fitted by assuming nematode death follows the same
annual cycle as slug death, because it is a dedicated
parasite, and then scaled to give the expected mortal-
ity rate of nematodes under ideal conditions(Gwynn,
2000).

When the contact rate is allowed to vary we establish
from the biological data the following relationships.
P. hermaphrodita is thought to be active between 5
and 20◦C (Wilson et al., 1994b; Gwynn, 2000), and
we assume a symmetric distribution in the absence of
other data. Takingc = 0 whenT = 0 and 25◦C and an
estimated 1% of peak activity whenT = 5, 20◦C, we
fit

c(T ) = a sinb
( π

25
T

)
,

whereby we find thatb = 8.67. Applying monthly tem-
peraturesT(t) to this generates discrete values ofc(t) to
(t) = r(t) × es = 0.3149(29.32− 7.99 sin(ωt + 7.51)

−2 −1
+ 2.88 sin(2ωt − 8.50))× 10 wk ,

(t) = 43.17+ 3.93 sin(ωt − 2.05) wk,

which we fit a smooth curve. This is then scaled to give
it the expected mean (c = 6.39× 10−6), which gives

c(t) = (6.39− 2.50 sin(ωt + 1.15)

ual
+ 3.87 sin(2ωt + 3.68))

×10−6 nematodes−1 wk−1. (13)

If variable contact rates are not used, we fixc(t) =
6.39× 10−6 nematodes−1 wk−1.

The nematode application function (for one ann
treatment) is given by:

F (ωt) = 6 × 104
∞∑

n=0

X[T+(2π/ω)n,(T+1)+(2π/ω)n] (t)

nematodes wk−1,
µ(t) = (17.59+ 8.43 sin(ωt + 4.21)

+ 1.63 sin(2ωt + 6.44)− 28.30

− 1.53 sin(ωt + 4.66)

− 1.35 sin(2ωt + 1.03))× 10−3 wk−1,

K(t) ≡ 3.48× 104 mg wk,

ν(t) = (5.00+ 2.40 sin(ωt + 4.21)

+ 0.05 sin(2ωt + 6.45))× 10−1 wk−1,
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where

XI(t) =
{

1, t ∈ I,
0, t /∈ I,

andT is the first week of application. Unless otherwise
indicated, simulation data are based on the last 5 years
of a 30 year run, using time steps of 1 h. In all cases
nematodes were not applied in the first 10 years to allow
a periodic treatment-free solution to fully develop (T ≥
520 wk).
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