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Health Sciences M.Sc. Programme 

Applied Biostatistics 

Week 5: Significance tests 
Testing a hypothesis 

A significance test enables us to measure the strength of evidence which the data 
supply for or against some proposition of interest.  For example, Table 1 shows the 
results of a crossover trial of pronethalol for the treatment of angina, the number of 
attacks over four weeks on each treatment. These 12 patients are a sample from the 
population of all patients.  Would the other members of this population experience 
fewer attacks while using pronethalol?  We can see that the number of attacks is 
highly variable from one patient to another, and it is quite possible that this is true 
from one occasion to another as well.  So it could be that some patients would have 
fewer attacks while on pronethalol than while on placebo quite by chance.  In a 
significance test, we ask whether the difference observed was small enough to have 
occurred by chance if there were really no difference in the population.  If it were so, 
then the evidence in favour of there being a difference between the treatment periods 
would be weak.  On the other hand, if the difference were much larger than we would 
expect due to chance if there were no real population difference, then the evidence in 
favour of a real difference would be strong. 

To carry out the test of significance we suppose that, in the population, there is no 
difference between the two treatment periods.  The hypothesis of ‘no difference’ or 
‘no effect’ in the population is called the null hypothesis.  We compare this with the 
alternative hypothesis of a difference between the treatments, in either direction.  
We do this by finding the probability of getting data as extreme as those observed if 
the null hypothesis were true.  If this probability is large the data are consistent with 
the null hypothesis; if it is small the data are unlikely to have arisen if the null 
hypothesis were true and the evidence is in favour of the alternative hypothesis. 

An example: the sign test 
We shall now find a way of testing this null hypothesis, using a method called the 
sign test.  An obvious start is to consider the differences between the number of 
attacks on the two treatments for each patient, as in Table 1.  If the null hypothesis 
were true, then differences in number of attacks would be just as likely to be positive 
as negative, they would be random.  If we kept on testing patients indefinitely, the 
proportion of changes which were negative would be equal to the proportion which 
were positive.  Another way of saying this is that the probability of a change being 
negative would be equal to the probability of it becoming positive.  These would both 
be 0.5.  Then the number of negatives would behave in exactly the same way as the 
number of heads if we toss a coin 12 times.  This is quite easy to investigate 
mathematically.  We can work out the probability that 12 tosses of a coin would show 
any given number of heads.  This is also the proportion of occasions on which that 12 
tosses of a coin would show the given number of heads.  These probabilities are 
shown in Table 2.  We call this the Binomial distribution with n = 12 and p = 0.05. 
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Table 1.  Trial of pronethalol for the prevention of angina pectoris (data 
of Pritchard et al., 1963) 

Patient 
number 

Number of attacks while on: Difference, 
placebo minus 
pronethalol 

Sign of 
difference placebo pronethalol 

1 71 29 42 + 
2 323 348 –25 – 
3 8 1 7 + 
4 14 7 7 + 
5 23 16 7 + 
6 34 25 9 + 
7 79 65 14 + 
8 60 41 19 + 
9 2 0 2 + 

10 3 0 3 + 
11 17 15 2 + 
12 7 2 5 + 

 

Table 2.  Probability distribution for the number of heads out 12 flips of a 
coin, Binomial distribution with n = 12 and p = 0.5 

Heads Probability 

 0 0.00024 
 1 0.00293 
 2 0.01611 
 3 0.05371 
 4 0.12085 
 5 0.19336 
 6 0.22559 
 7  0.19336 
 8  0.12085 
 9  0.05371 

10  0.01611 
11  0.00293 
12  0.00024 

 

We can show these probabilities graphically, as in Figure 1.  This shows each 
probability as a vertical line.  It is done this way because only the integer values have 
any probability. 

If there were any subjects who had the same number of attacks on both regimes we 
would omit them, as they provide no information about the direction of any difference 
between the treatments.  In this test, the number of subjects, n, is the number of 
subjects for whom there is a difference, one way or the other.  Those for whom the 
difference is zero contribute no information.  If they were coins which fell on their 
edge, we would flip them again.  In the clinical trial all we can do is exclude them. 
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Figure 1.  The Binomial distribution for the number of heads in 12 flips of a coin 
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Figure 2. Extremes of the Binomial Distribution for the sign test 
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If the null hypothesis were true, what would be the probability of getting an 
observation from this distribution as extreme as the value we have actually observed?  
The number of negative differences is 1.  The probability of getting 1 negative change 
= 0.00293.  This is not a likely event in itself. However, we are interested in the 
probability of getting a value as far or further from the expected value, 6, as is 1, and 
clearly 0 is further and must be included.  The probability of no negative changes = 
0.00024.  So the probability of one or fewer negative changes is 0.00293 + 0.00024 = 
0.00317.  We said that the alternative hypothesis was that there was a difference in 
either direction.  We must, therefore, consider the probability of getting a value as 
extreme on the other side of the mean, that is 11 or 12 negatives (Figure 2).  The 
probability of 11 or 12 negatives = 0.00293 + 0.00024 = 0.00317.  Hence, the 
probability of getting as extreme a value as that observed, in either direction, is 
0.00317 + 0.00317 = 0.00634.  This means that if the null hypothesis were true we 
would have a sample which is so extreme that the probability of it arising by chance is 
0.006, less than one in a hundred. 
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Table 3.  Types of error in significance tests 

 Null hypothesis 
true 

Alternative 
hypothesis true 

Test not 
significant 

No error Type II error, 
beta error 

Test significant Type I error, 
alpha error 

No error 

 

Thus, we would have observed a very unlikely event if the null hypothesis were true.  
This means that the data are not consistent with null hypothesis, so we can conclude 
that there is strong evidence in favour of a difference between the treatment periods.  
(Since this was a double blind randomized trial, it seems reasonable to suppose that 
this was caused by the activity of the drug.) 

Principles of significance tests 
The sign test is an example of a test of significance.  The number of negative changes 
is called the test statistic, something calculated from the data which can be used to 
test the null hypothesis.  The general procedure for a significance test is as follows: 

1. Set up the null hypothesis and its alternative. 

2. Check any assumptions of the test. 

3. Find the value of the test statistic. 

4. Refer the test statistic to a known distribution which it would follow if the null 
hypothesis were true. 

5. Find the probability of a value of the test statistic arising which is as or more 
extreme than that observed, if the null hypothesis were true. 

6. Conclude that the data are consistent or inconsistent with the null hypothesis. 

For the sign test we have just done, we have 

1. The null hypothesis is ‘No difference between treatments’ OR ‘Probability of 
a difference in number of attacks in one direction is equal to the probability of 
a difference in number of attacks in the other direction’, the alternative 
hypothesis is ‘A difference between treatments’ OR ‘Probability of a 
difference in number of attacks in one direction is not equal to the probability 
of a difference in number of attacks in the other direction’. 

2. The only assumption required is that the patients are independent, which is 
true here as they are all different people. 

3. The test statistic is the number of negatives (= 1). 

4. If the null hypothesis were true, this would be an observation from the 
Binomial distribution with n = 12, p = 0.5. 

5. The probability of a value of the test statistics as far from what we would 
expect as 1 is P = 0.006. 

6. Our conclusion is that the data are inconsistent with the null hypothesis. 

There are many different significance tests, all of which follow this pattern.  If the 
data are not consistent with the null hypothesis, the difference is said to be 
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statistically significant.  If the data do not support the null hypothesis, it is 
sometimes said that we reject the null hypothesis, and if the data are consistent with 
the null hypothesis it is said that we accept it.  Such an ‘all or nothing’ decision 
making approach is seldom appropriate in medical research.  It is preferable to think 
of the significance test probability as an index of the strength of evidence against the 
null hypothesis. 

The probability of such an extreme value of the test statistic occurring if the null 
hypothesis were true is often called the P value.  It is not the probability that the null 
hypothesis is true.  This is a common misconception.  The null hypothesis is either 
true or it is not; it is not random and has no probability. 

Significance levels and types of error 
We must still consider the question of how small is small.  A probability of 0.006, as 
in the example above, is clearly small and we have a quite unlikely event.  But what 
about 0.06, or 0.1?  Suppose we take a probability of 0.01 or less as constituting 
reasonable evidence against the null hypothesis.  If the null hypothesis is true, we 
shall make a wrong decision one in a hundred times.  Deciding against a true null 
hypothesis is called an error of the first kind, type I error, or alpha error. We get 
an error of the second kind, type II error, or beta error if we decide in favour of a 
null hypothesis which is in fact false.  These errors are set out in Table 3. 

Now the smaller we demand the probability be before we decide against the null 
hypothesis, the larger the observed difference must be, and so the more likely we are 
to miss real differences.  By reducing the risk of an error of the first kind we increase 
the risk of an error of the second kind. 

The conventional compromise is to say that differences are significant if the 
probability is less than 0.05.  This is a reasonable guideline, but should not be taken as 
some kind of absolute demarcation.  There is not a great difference between 
probabilities of 0.06 and 0.04, and they surely indicate similar strength of evidence.  It 
is better to regard probabilities around 0.05 as providing some evidence against the 
null hypothesis, which increases in strength as the probability falls.  If we decide that 
the difference is significant, the probability is sometimes referred to as the 
significance level. 

As a rough and ready guide, we can think of P values as indicating the strength of 
evidence like this: 

P value   Evidence for a difference or 
      relationship  

Greater than 0.1:    Little or no evidence 
Between 0.05 and 0.1:  Weak evidence 
Between 0.01 and 0.05: Evidence  
Less than 0.01:  Strong evidence 
Less than 0.001:   Very strong evidence 

Significant, real and important 
If a difference is statistically significant, then may well be real, but not necessarily 
important.  For example, we may look at the effect of a drug, given for some other 
purpose, on blood pressure.  Suppose we find that the drug raises blood pressure by an 
average of 1 mm Hg, and that this is significant.  A rise in blood pressure of 1 mm Hg 
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is not clinically significant, so, although it may be there, it does not matter.  It is 
(statistically) significant, and real, but not important. 

On the other hand, if a difference is not statistically significant, it could still be real.  
We may simply have too small a sample to show that a difference exists.  
Furthermore, the difference may still be important.  ‘Not significant’ does not imply 
that there is no effect.  It means that we have failed to demonstrate the existence of 
one. 

Presenting P values 
Computers print out the exact P values for most test statistics.  These should be given, 
rather than change them to ‘not significant’, ‘NS’ or P>0.05.  Similarly, if we have 
P=0.0072, we are wasting information if we report this as P<0.01.  This method of 
presentation arises from the pre-computer era, when calculations were done by hand 
and P values had to be found from tables.   

Personally, I would quote P=0.0072 to one significant figure, as P=0.007, as figures 
after the first do not add much, but the first figure can be quite informative.   

Sometimes the computer prints 0.0000.  This may be correct, in that the probability is 
less than 0.00005 and so equal to 0.0000 to four decimal places.  The probability can 
never be exactly zero, so we usually quote this as P<0.0001.  Whatever we do, we 
should never quote it as P<0.000, as I have seen.  This is impossible. 

Multiple significance tests 

If we test a null hypothesis which is in fact true, using 0.05 as the critical significance 
level, we have a probability of 0.95 of getting a ‘not significant’ (i.e. correct) 
decision.  If we test two independent true null hypotheses, the probability that neither 
test will be significant is 0.95 × 0.95 = 0.90.  If we test twenty such hypotheses the 
probability that none will be significant is 0.95× 0.95 × 0.95 . . . × 0.95 = 0.36.  This 
gives a probability of 1 – 0.36 = 0.64 of getting at least one significant result; we are 
more likely to get one than not.  We expect to get one spurious significant result. 

Many medical research studies are published with large numbers of significance tests.  
These are not usually independent, being carried out on the same set of subjects, so 
the above calculations do not apply exactly.  However, it is clear that if we go on 
testing long enough we will find something which is ‘significant’.  We must beware 
of attaching too much importance to a lone significant result among a mass of non-
significant ones.  It may be the one in twenty which we should get by chance alone. 

This is particularly important when we find that a clinical trial or epidemiological 
study gives no significant difference overall, but does so in a particular subset of 
subjects, such as women aged over 60.  If there is no difference between the 
treatments overall, significant differences in subsets are to be treated with the utmost 
suspicion.  



7 

In some studies, we avoid the problems of multiple testing by specifying a primary 
outcome variable in advance.  We state before we look at the data, and preferably 
before we collect them, that one particular variable is the primary outcome.  If we get 
a significant effect for this variable, we have good evidence of an effect.  If we do not 
get a significant effect for this variable, we do not have good evidence of an effect, 
whatever happens with other variables.  Other significant effects are only an 
indication that another study may be justified. 

Significance tests and confidence intervals 
Significance tests and confidence intervals often involve similar calculations.  For 
example, we can test the null hypothesis that two groups have the same mean and we 
can find a confidence interval for the difference between the means.  If the 95% 
confidence interval for the difference does not include the null hypothesis value, the 
difference is significant at the 5% level.  If the 95% confidence interval for the 
difference includes the null hypothesis value, the difference is not significant at the 
5% level. 

For example, in a study of respiratory disease in schoolchildren, children were 
followed at ages 5 and 14.  We looked at the proportions of children with bronchitis in 
infancy and with no such history who were reported to have respiratory symptoms in 
later life (Holland et al., 1978).  We had 273 children with a history of bronchitis 
before age 5 years, 26 of whom were reported to have day or night cough at age 14.  
We had 1046 children with no bronchitis before age 5 years, 44 of whom were 
reported to have day or night cough at age 14.  We shall test the null hypothesis that 
the prevalence of the symptom is the same in both populations, against the alternative 
that it is not.  We shall use a test called the large sample Normal or z test for the 
difference between two proportions.  This test uses a standard error, like others we 
shall come across in this course.  It follows the structure described above and for this 
lecture we shall not go into the details of the method.  It works like this.  

1. The null hypothesis is that the prevalence of the symptom is the same in both 
populations.  The alternative that it is not.  

2. The assumptions of the test are that the observations are all independent, 
which they are because these are all different, unrelated children, and that the 
sample is large enough, we shall accept as being met here. 

3. The test statistic is the difference between the two proportions divided by the 
standard error it would have if the proportions were actually the same.  The 
two proportions of children reported to have cough are 26/273 = 0.09524 for 
children with a history of bronchitis and 44/1046 = 0.04207 for those with no 
bronchitis.  The difference between these proportions is = 0.09524 – 0.04207 
= 0.05317.  The standard error for this difference if the two proportions are 
actually the same is estimated to be = 0.01524.  The test statistic is therefore 
0.05317/0.01524 = 3.49. 

4. If the null hypothesis were true, this would be an observation from the 
Standard Normal distribution.  This is because sample is large and both 
proportions will follow approximately Normal distributions.  The distribution 
of differences should have mean zero if the null hypothesis is true.  Dividing 
by the standard error gives us standard deviation of this distribution = 1.0. 
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5. The probability of the test statistic having a value as far from zero as 3.49 is 
quite small, 0.0005. 

6. We therefore conclude that the data are not consistent with the null hypothesis 
and we have strong evidence that children with a history of bronchitis are 
more likely than other to be reported to have cough during the day or at night 
at the age of 14. 

What about the confidence interval?  For this, we use a different standard error, the 
standard error when the proportions may not be equal.  This is SE = 0.0188.  The 95% 
confidence interval for the difference is 0.05317 – 1.96 × 0.0188 to  
0.05317 + 1.96 × 0.0188 = 0.016 to 0.090.  Although the difference is not very well 
estimated, it is well away from zero and gives us clear evidence that children with 
bronchitis reported in infancy are more likely than others to be reported to have 
respiratory symptoms in later life. 

The null hypothesis value of the difference is zero and this is not included in the 95% 
confidence interval.  We do not include zero as a value for the difference which is 
consistent with the data.  

Note that the standard error used here is different when the null hypothesis is true 
from that which is used for the confidence interval, when of course we do not say that 
there is no difference.  The null hypothesis may contain information about the 
standard error and in the comparison of two proportions, the standard error for the 
difference depends on the proportions themselves.  If the null hypothesis is true we 
need only one estimate of the proportion and this alters the standard error for the 
difference.  As a result, 95% confidence intervals and 5% significance tests 
sometimes give different answers near the cut-off point. 

One-sided tests 
In the pronethalol example, the alternative hypothesis was that there was a difference 
in one or other direction.  This is called a two-sided or two-tailed test, because we 
used the probabilities of extreme values in both directions.   A one-sided or one-
tailed test considers the possibility of differences in one direction only.  For the 
pronethalol example, we would have:  

• Alternative hypothesis: in the population, the number of attacks on pronethalol 
is less than the number of attacks on placebo.  

• Null hypothesis: in the population, the number of attacks on pronethalol is 
greater than or equal to the number of attacks on placebo.  

The test would give P = 0.003, and of course, a higher significance level than the two-
sided test. 

The one-sided null hypothesis implies that an increase in attacks on pronethalol would 
have the same interpretation as no difference.  This kind of interpretation is seldom 
true in health research.  Biological interventions rarely produce only one kind of 
effect.  If our treatment produces a disadvantage, we want to know about it and we 
want our statistical methods to detect it.  Tests should be two sided unless there is a 
good reason not to do this. 
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Figure 3.  One-sided test for the pronethalol study 
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Figure 4.  Two-sided test for the pronethalol study 
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J. M. Bland 
15 August 2006 
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