School dinners and markers of cardiovascular health and type 2 diabetes in 13–16 year olds: cross sectional study

P H Whincup, C G Owen, N Sattar, D G Cook

Recent concern about the diets of British children and adolescents has focused on the nutritional content of school dinners. However, whether markers of nutrition, cardiovascular health, and type 2 diabetes differ between school pupils who eat school dinners and those whose school day meal is provided from home has been little studied. We have examined this question in a survey of state secondary school pupils.

Participants, methods, and results

The ten towns heart health study (third phase) took place in 72 secondary schools across England and Wales in 1998–2000. Parents gave written consent (response rate 66%). We assessed height, weight, waist and hip circumference, skinfold thicknesses, bioimpedance measurement (percentage body fat), and pubertal status. We measured blood pressure, and participants provided blood samples for measurements of plasma glucose, serum insulin, and blood lipids after an overnight fast. We measured serum leptin by radioimmunoassay, plasma vitamin C by high performance liquid chromatography, and serum folate by microbiological assay. Participants indicated whether they usually ate a school dinner, had a meal from home, or made other eating arrangements. Parental occupation was provided by the parent (75%) or the participant (25%) to determine household social class. We used standard linear modelling procedures to determine adjusted means, log transforming variables when necessary. We fitted town as a fixed effect and school as a random effect to allow for clustering at school level.

The table compares the characteristics of 1112 pupils (53% boys) who usually ate a school dinner or a meal from home; results are standardised for town, school, age, and sex. Among pupils who ate school dinners, anthropometric markers of adiposity were slightly but not significantly lower; mean levels of leptin, systolic blood pressure, ratio of total cholesterol to high density lipoprotein cholesterol, glucose, insulin, and folate were significantly lower in this group. Although pupils whose parents were in unskilled occupations or unemployed were more likely to eat school dinners than those from other social groups (66% v 38%, P<0.0001), the differences (apart from those in systolic blood pressure) remained statistically significant after adjustment for social class. Additional adjustment for pubertal status and physical activity level had no appreciable effect. Restricting the analysis of the school dinner group to pupils who were eligible for free school meals did not materially affect the results.

Comment

The differences in risk factor profile and nutritional status between pupils eating school dinners and those eating home meals were modest. Their long term importance remains uncertain, although if the

<table>
<thead>
<tr>
<th>Comparison of nutritional markers and risk factors among pupils eating school dinners and meals from home</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular risk factor</td>
</tr>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>Height (cm)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
</tr>
<tr>
<td>Sum of skinfolds (mm)</td>
</tr>
<tr>
<td>Body fat (%)</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
</tr>
<tr>
<td>Systolic blood pressure (mm Hg)</td>
</tr>
<tr>
<td>Diastolic blood pressure (mm Hg)</td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
</tr>
<tr>
<td>LDL cholesterol (mmol/l)</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/l)</td>
</tr>
<tr>
<td>Total:HDL cholesterol ratio</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
</tr>
<tr>
<td>Insulin (mU/l)</td>
</tr>
<tr>
<td>Leptin (ng/ml)</td>
</tr>
<tr>
<td>Vitamin C (μmol/l)</td>
</tr>
<tr>
<td>Folate (μmol/l)</td>
</tr>
</tbody>
</table>

HDL=high density lipoprotein; LDL=low density lipoprotein.

*Means and mean differences (model 1) adjusted for age, sex, town, ethnicity, and school (fitted as a random effect).
†Mean differences (model 2) adjusted for factors in model 1 and for parental occupation.
‡Geometric means and percentage differences.

© 2005 BMJ Publishing Group Ltd
The broader impact of walking to school among adolescents: seven day accelerometry based study

Leslie M Alexander, Jo Inchley, Joanna Todd, Dorothy Currie, Ashley R Cooper, Candace Currie

How children travel to and from school may significantly influence their overall physical activity levels. 1 We measured moderate to vigorous physical activity (MVPA) among adolescents and explored their means of travel to and from school.

Participants, methods, and results

We recruited four classes, each of about 30 pupils aged 13-14 years, from four schools in the Edinburgh area. We visited the classes three times: to introduce the study and distribute consent forms and information for pupils and parents or guardians; to allocate accelerometers (instruments used to measure vertical movement); and to collect accelerometers and issue questionnaires. Inclusion in the study required consent from pupils and primary guardians.

In spring 2004 we obtained objective measures of the children's activity with precalibrated accelerometers (MTI, Fort Walton, Florida; model 7164), which record activity accumulated each minute. 2 We asked the pupils to wear the accelerometers on their hip from waking until bedtime, except while showering, bathing, swimming, and participating in other water based activities. We used age specific cut-off points (on the accelerometer count) to calculate minutes of MVPA per pupil for weekdays (≥10 hours' data daily from 0500 to 2400); during school, including morning and lunch breaks; time outside school (defined as daily MVPA minus MVPA accrued at school, including travel time). Cut-off points were ≥1399 and ≥1547 per minute for ages 13 and 14 respectively. 3

We collected data from the questionnaire responses about the children's main part of their journey to school (options were walking, car, bicycle, bus, train, or other). Responses to both questions reflected very good agreement after a 14 day retest (K = 0.874 and 0.836 respectively).

Competing interests: None declared.

Ethical approval: Ethical approval was obtained from all relevant local research ethics committees.

(Accepted 8 September 2005)

doi 10.1136/bmj.38618.540729.AE