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Transformations 
Summary 
Many statistical methods require the data to fit assumptions of Normal distribution 
and uniform variance.  When data do not fit these, one approach is to make them do 
so by a mathematical transformation.  The most frequently used are the square root, 
the logarithm, and the reciprocal.  These all reduce positive skewness and the extent 
to which variation increases with magnitude, the square root having the least effect 
and the reciprocal the greatest for each.  The logarithm is the most often used.  For a 
single, simple sample all will give us interpretable confidence intervals after 
transformations back to the original scale.  For comparisons of means, only the 
logarithm can do this.  Concentrations in blood are often analysed on the logarithmic 
scale, counts on the square root scale.  There are other transformations in use, but they 
are seen rarely in the health research literature.  Some data cannot be transformed 
satisfactorily and some, such as cost data, should not be.  If data cannot be 
transformed, there are other strategies available, which do not require assumptions of 
Normal distribution or uniform variance.  

1.  The need for transformations 
In Week 4 I described statistical methods in which we have to assume that data follow 
a Normal distribution with uniform variance.  Later we shall meet other methods, 
regression and correlation, which require similar assumptions to be made about the 
data.  Most analyses of continuous data in the health research literature are of this 
type.  We should always check these assumptions.  If the data meet the assumptions 
we can analyse the data as described.  If they are not met, we have two possible 
strategies: we can use a method which does not require these assumptions, such as a 
rank-based method, or we can transform the data mathematically to make them fit the 
assumptions more closely.  In this lecturer I describe the second approach.  Instead of 
analysing the data as observed, we carry out a mathematical transformation first.   

For example, Figure 1 shows serum cholesterol in stroke patients.  As we have noted 
before, this does not follow a Normal distribution closely.  This is shown by both the 
shape of the histogram and the Normal plot, in which the points should be close to the 
straight line.  Figure 2 shows the same plots for the logarithms of cholesterol 
measurements.  (See separate document Logarithms.)  The logarithm follows a 
Normal distribution more closely than do the cholesterol measurements themselves.  
We could analyse the logarithm of serum cholesterol using methods which required 
the data to follow a Normal distribution.  We call the logarithm of the cholesterol a 
logarithmic transformation of the data, or log transformation for short.  We call 
the data without any transformation the raw data. 

Even if a transformation does not produce a really good fit to the Normal distribution, 
it may still make the data much more amenable to analysis.  Figure 3 shows a 
histogram and Normal plot for the area of venous ulcer at recruitment to the VenUS I 
trial, with the same for the log transformed area.  The raw data have a very skew 
distribution and the small number of very large ulcers might lead to problems in 
analysis.  Although the log transformed data are still skew, the skewness is much less 
and the data much easier to analyse. 
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Figure 1.  Histogram with Normal distribution curve and Normal plot for serum 
cholesterol in 86 stroke patients (data of Markus et al., 1995)  
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Figure 2.  Histogram with Normal distribution curve and Normal plot for log 
transformed serum cholesterol in 86 stroke patients  
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Figure 3.  Histogram and Normal plot for area of venous ulcer at recruitment and log 
transformed ulcer area, VenUS I trial 
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Making a distribution more like the Normal is not the only reason for using a 
transformation.  Figure 4 shows prostate specific antigen (PSA) for three groups of 
prostate patients: with benign conditions, with prostatitis, and with prostate cancer.   
One very high value makes it very difficult to see the structure in the rest of the data, 
although, as we would expect, we can see that the cancer group have the highest PSA 
values.  A log transformation of the PSA gives a much clearer picture, shown in 
Figure 5.  The variability is now much more similar in the three groups.  Figure 6 
shows a histogram and Normal plot for the raw data and the log transformed data.  
This shows the distribution of the within-group residuals, the difference between 
observed values and the mean of the group.  The log transformation not only makes 
the variability more uniform but also makes the distribution closer to the Normal, thus 
meeting both assumptions: Normal distribution and uniform variance. 

If we want to use the transformation only to make the scatter diagram easier to see, 
we sometimes use a logarithmic scale rather than the actual logarithms of the data (see 
Logarithms).  Figure 7 shows this for the PSA data.  The picture looks like the scatter 
plot for the log transformed PSA in Figure 5, but the vertical scale shows the original 
units. 

The logarithm is not the only transformation used in the analysis of continuous data.  
Figure 8 shows arm lymphatic flow in patients with and without rheumatoid arthritis 
and oedema.  The distribution is positively skew and the variability is clearly greater 
in the groups with greater lymphatic activity.  A square root transformation has the 
effect of making the data less skew and making the variation more uniform.  In these 
data, a log transformation proved to have too great an effect, making the distribution 
negatively skew, and so the square root of the data was used in the analysis (Kiely et 
al., 1995). 

2.  Commonly used transformations for quantitative data 
There are three commonly used transformations for quantitative data: the logarithm, 
the square root, and the reciprocal.  (The reciprocal of a number is one divided by 
that number, hence the reciprocal of 2 is ½.)  There are good mathematical reasons for 
these choices, Bland (2000) discusses them.  They are based on the need to make 
variances uniform.  If we have several groups of subjects and calculate the mean and 
variance for each group, we can plot variability against mean.  We might have one of 
these situations: 

• Variability and mean are unrelated.  We do not usually have a problem and 
can treat the variances as uniform.  We do not need a transformation. 

• Variance is proportional to mean.  A square root transformation should 
remove the relationship between variability and mean. 

• Standard deviation is proportional to mean.  A logarithmic transformation 
should remove the relationship between variability and mean. 

• Standard deviation is proportional to the square of the mean.  A reciprocal 
transformation should remove the relationship between variability and mean. 

We call these transformations variance-stabilising, because their purpose is to make 
variances the same.  For most data encountered in healthcare research, the first or 
third situation applies.   
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Figure 4.  Prostate specific antigen (PSA) by prostate diagnosis (data of Cutting et al., 
1999) 

-2

0

2

4

6

8

Lo
g 

P
S

A

Benign Prostatitis Cancer
Histology

 
Figure 5.  Log transformed PSA by prostate diagnosis  
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Figure 6.  Histograms and Normal plots for the within-group residuals for the raw 
PSA data and the log transformed PSA data   
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Figure 7.  PSA by prostate diagnosis, shown on  a logarithmic scale.  
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Figure 8.  Arm lymphatic flow in rheumatoid arthritis with oedema (data of Kiely et 
al., 1995) 

 

Table 1.  Biceps skinfold thickness (mm) in two groups of patients 
       Crohn’s Disease           Coeliac Disease  
    ---------------------        ---------------  
    1.8   2.8   4.2   6.2         1.8   3.8  
    2.2   3.2   4.4   6.6         2.0   4.2   
    2.4   3.6   4.8   7.0         2.0   5.4   
    2.5   3.8   5.6  10.0         2.0   7.6   
    2.8   4.0   6.0  10.4         3.0 



6 

Variance-stabilising transformations also tend to make distributions Normal.  There is 
a mathematical reason for this, as for so much in statistics.  It can be shown that if we 
take several samples from the same population, the means and variances of these 
samples will be independent if and only if the distribution is Normal.  This means that 
uniform variance tends to go with a Normal Distribution.  A transformation which 
makes variance uniform will often also make data follow a Normal distribution and 
vice versa. 

There are many other transformations which could be used, but you see them very 
rarely.  We shall meet one other, the logistic transformation used for dichotomous 
data, in Week 7.  By far the most frequently used is the logarithm.  This is particularly 
useful for concentrations of substances in blood.  The reason for this is that blood is 
very dynamic, with reactions happening continuously.  Many of the substances we 
measure are part of a metabolic chain, both being synthesised and metabolised to 
something else.  The rates at which these reactions happen depends on the amounts of 
other substances in the blood and the consequence is that the various factors which 
determine the concentration of the substance are multiplied together.  Multiplying and 
dividing tends to produce skew distributions.  If we take the logarithm of several 
numbers multiplied together we get the sum of their logarithms.  So log 
transformation produces something where the various influences are added together 
and addition tends to produce a Normal distribution. The square root is best for fairly 
weak relationships between variability and magnitude, i.e. variance proportional to 
mean or standard deviation proportional to the square root of the mean.  The 
logarithm is next, for standard deviation proportional to the mean, and the reciprocal 
is best for very strong relationships, where the standard deviation is proportional to 
the square of the mean.  In the same way, the square root removes the least amount of 
skewness and reciprocal the most.   

The square root can be used for variables which are greater than or equal to zero, the 
log and the reciprocal can only be used for variables which are strictly greater than 
zero, because neither the logarithm nor the reciprocal of zero are defined.  We shall 
look at what to do with zero observations in Section 6.   

Which transformation should we use for what kind of data?  For physical body 
measurements, like limb length or peak expiratory flow, we often need use only the 
raw data.  For concentrations measured in blood or urine, we usually try the log first, 
then if this is insufficient try the reciprocal.  For counts, the square root is usually the 
first thing to try.  There are methods to determine which transformation will best fit 
the data, but trial and error, with scatter plots, histograms and Normal plots to check 
the shape of the distribution and relationship between variability and magnitude, are 
usually much quicker because the computer can produce them almost instantaneously. 

3.  Are transformations cheating? 
At about this point, someone will ask ‘Aren’t transformations cheating?’.  Data 
transformation would be cheating if we tried several different transformations until 
we found the one which gave the result we wanted, just as it would be if we tried 
several different tests of significance and chose the one which gave the result nearest 
to what we wanted, or compared treatment groups in a clinical trial using different 
outcome variables until we found one which gave a significant difference.  Such 
approaches are cheating because the P values and confidence intervals we get are 
wrong.  However, it is not cheating if we decide on the analysis we want to use before 
we see its result and then stick to it.   


