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Regression analyses
� Simple linear regression

� Multiple linear regression

� Curvilinear regression

� Dichotomous predictor variables

� Regression in clinical trials

� Dichotomous outcome variables and logistic
regression

� Interactions

� Factors with more than two levels

� Sample size

Simple Linear Regression
Example: Body Mass Index (BMI) and abdominal 
circumference in 86 women

What is the relationship?

Regression: predict BMI from observed abdominal 
circumference.

(Data of 
Malcom 
Savage)
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Simple Linear Regression
Example: Body Mass Index (BMI) and abdominal 
circumference in 86 women.

What is the relationship?

Regression: predict BMI from observed abdominal 
circumference.

What is the mean BMI for women with any given observed 
abdominal circumference?

Simple Linear Regression
Example: Body Mass Index (BMI) and abdominal 
circumference in 86 women.

What is the relationship?

Regression: predict BMI from observed abdominal 
circumference.

What is the mean BMI for women with any given observed 
abdominal circumference?

BMI is the outcome, dependent, y, or left hand side 
variable.

Abdominal circumference is the predictor, explanatory, 
independent, x, or right hand side variable.

Simple Linear Regression
Example: Body Mass Index (BMI) and abdominal 
circumference in 86 women.

What is the relationship?

Regression: predict BMI from observed abdominal 
circumference.

What is the mean BMI for women with any given observed 
abdominal circumference (AC)?

Linear relationship: 

BMI = intercept + slope × AC

Equation of a straight line.
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Simple Linear Regression
Which straight line should we choose?
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Simple Linear Regression
Which straight line should we choose?

Choose the line which makes the distance from the points to 
the line in the y direction a minimum.
Differences between the observed strength and the predicted 
strength.
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Simple Linear Regression
Which straight line should we choose?

Minimise the sum of the squares of these differences.

Principle of least squares, least squares line or equation.
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Simple Linear Regression
BMI = –4.15 + 0.35 × AC

We can find confidence intervals and P values for the 
coefficients subject to assumptions.
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Simple Linear Regression
We can find confidence intervals and P values for the 
coefficients subject to assumptions.

Deviations from line should have a Normal distribution with 
uniform variance.
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Simple Linear Regression
Can find confidence intervals and P values for the 
coefficients subject to assumptions.

Slope = 0.35 Kg/m2/cm, 95% CI = 0.31 to 0.40 Kg/m2/cm, 
P<0.001 against zero.

Intercept = –4.15 Kg/m2, 95% CI = –7.11 to –1.18 Kg/m2.
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Simple Linear Regression
We can also find confidence intervals for regression 
estimates and predicted value for a new subject.

95% confidence intervals for 
regression estimates for BMI 
and abdominal 
circumference

Prediction intervals or 95% 
confidence intervals for 
prediction of BMI from 
abdominal circumference 
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Simple Linear Regression
Assumptions: deviations from line should have a Normal 
distribution with uniform variance.

Calculate the deviations or residuals, observed minus 
predicted.

Check Normal distribution: Check uniform variance:
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Dichotomous predictor variable
24 hour energy expenditure (MJ) in two groups of women 

Lean                Obese
6.13  7.53   8.09      8.79   9.69
7.05  7.58   8.11      9.19   9.97
7.48  7.90   8.40      9.21  11.51
7.48  8.08  10.15      9.68  11.85

10.88            12.79

Can carry out linear regression.

Define variable: obese = 0 if woman lean,

obese = 1 if woman obese.

Regression equation:

energy = 5.83 + 2.23 × obese

slope: 95% CI = 1.05 to 3.42 MJ, P=0.0008.
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Regression and the two sample t method
Regression:

energy = 5.83 + 2.23 × obese

slope: 95% CI = 1.05 to 3.42 MJ, P=0.0008.

The two methods are identical.

Difference (obese – lean) = 
10.298 – 8.066 = 2.232.

Two sample t method:

95% CI = 1.05 to 3.42 MJ,

P=0.0008.

t = 3.95
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Group of women

Two sample t test

t = 3.95
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Regression and the two sample t method
Assumptions of two sample t method

1. Energy expenditure follows a Normal distribution in
each population.

2. Variances are the same in each population.

Assumptions of regression

1. Differences between observed and predicted energy
expenditure follow a Normal distribution.

2. Variances of differences are the same in whatever the
value of the predictor.

These are the same.

Multiple Linear Regression
More than one predictor:

BMI = –1.35 + 0.31 × AC  BMI = –4.59 + 1.09 × MUAC 

BMI = –5.94 + 0.18 × AC + 0.59 × MUAC
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Multiple Linear Regression
More than one predictor:

BMI = –1.35 + 0.31 × AC  BMI = –4.59 + 1.09 × MUAC 

BMI = –5.94 + 0.18 × AC + 0.59 × MUAC

We find the coefficients which make the sum of the squared 
differences between the observed BMI and that predicted by 
the regression a minimum.  

This is called ordinary least squares regression or OLS
regression.

Multiple Linear Regression
More than one predictor:

BMI = –1.35 + 0.31 × AC  BMI = –4.59 + 1.09 × MUAC 

BMI = –5.94 + 0.18 × AC + 0.59 × MUAC

Both coefficients are pulled towards zero because abdominal 
circumference and arm circumference are related:

MUAC = 7.52 + 2.79 × AC,
r = 0.77, P < 0.001

AC and MUAC each 
explains some of the 
relationship between 
BMI and the other.
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Multiple Linear Regression
More than one predictor:

We can find confidence intervals for the coefficients and test 
the null hypotheses that coefficients are zero in the population.

BMI   =   –5.94        +       0.18 × AC      +      0.59 × MUAC 
95% CI  –8.10 to –3.77       0.14 to 0.22                0.45 to 0.74

P<0.001           P<0.001

Each predictor reduces the significance of the other because 
they are related to one another as well as to BMI.

They can both become not significant, even though the 
regression as a whole is highly significant.
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Multiple Linear Regression
Assumptions:

Just as for simple linear regression, for our confidence intervals 
and P values to be valid, the data must conform to the 
assumptions that 

� deviations from line should have a Normal distribution, 

� with uniform variance,  

� observations must be independent.  

Finally, our model of the data is that the relationship with each 
of our predictors is adequately represented by a straight line 
rather than a curve.  

Multiple Linear Regression
Assumptions:

Check by histogram and Normal plot of residuals:

0

20

40

60

F
re

qu
en

cy

-20 0 20 40
Residuals

-20

-10

0

10

20

30

R
es

id
ua

ls

-20 0 20
Inverse Normal

Multiple Linear Regression
Assumptions:

and by plot of residuals against regression estimate:
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Multiple Linear Regression
Dichotomous predictor: sex.

Variable male = 0 for a female, = 1 for a male.

BMI    =    20.51       +        0.40 × male
95% CI           19.64 to 21.38     –0.75 to 1.55

P = 0.5

Sex is not a significant 
predictor alone.
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Multiple Linear Regression
Dichotomous predictor: sex.

Variable male = 0 for a female, = 1 for a male.

BMI    =    20.51       +        0.40 × male
95% CI           19.64 to 21.38     –0.75 to 1.55

P = 0.5

BMI =  –6.44   +   0.18 × AC   +   0.64 × MUAC   – 1.39 × male
–8.49 to –4.39  0.14 to 0.22  0.50 to 0.78      –1.94 to –0.84

P<0.001         P<0.001            P<0.001

Male has become a significant predictor because abdominal 
circumference and arm circumference have removed a lot of 
variability.

Mean BMI is lower for men than women of the same 
abdominal and arm circumference by 1.39 units.

Multiple Linear Regression
Dichotomous predictor: sex.

Variable male = 0 for a female, = 1 for a male.

BMI =  –6.44   +   0.18 × AC   +   0.64 × MUAC   – 1.39 × male
–8.49 to –4.39  0.14 to 0.22  0.50 to 0.78      –1.94 to –0.84

P<0.001         P<0.001            P<0.001

When we have continuous and categorical predictor variables, 
regression is also called analysis of covariance or ancova.  

The continuous variables (here height and age) are called 
covariates.

The categorical variables (here cirrhosis) are called factors.
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Regression lines which are not straight
We can fit a curve rather than a straight line.

We can do this by adding a variable equal to the square of 
abdominal circumference:

BMI      =      16.03      – 0.16 × AC      +      0.0030 × AC2

95% CI  4.59 to 27.47     –0.45 to 0.14       0.0011 to 0.0049
P=0.3               P=0.003

The significant coefficient for 
AC2 shows that there is 
evidence of curvature or non-
linearity.
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Regression lines which are not straight
We can fit a curve rather than a straight line.

We can do this by adding a variable equal to the square of 
abdominal circumference:

BMI      =      16.03      – 0.16 × AC      +      0.0030 × AC2

95% CI  4.59 to 27.47     –0.45 to 0.14       0.0011 to 0.0049
P=0.3               P=0.003

The abdomen variable is no longer significant, because the 
abdomen and the abdomen squared are very highly correlated.

This makes the coefficients difficult to interpret.

Regression lines which are not straight
We can fit a curve rather than a straight line.

We can do this by adding a variable equal to the square of 
abdominal circumference:

BMI      =      16.03      – 0.16 × AC      +      0.0030 × AC2

We can improve things by subtracting a number close to the 
mean abdominal circumference.  This makes the slope for 
abdomen easier to interpret.  

BMI      =     0.59     + 0.27 × AC    +    0.0030 × (AC – 72)2

95% CI  –1.85 to 3.03     0.24 to 0.31    0.0011 to 0.0049
P<0.001              P=0.003

In this case, the mean abdominal circumference is 72.35 cm, 
so I have subtracted 72 from before squaring.

The coefficient for the squared term is unchanged. 
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Regression in clinical trials
Used to adjust for prognostic variables and baseline 
measurements.

An example: specialist nurse education for acute asthma

Measurements: peak expiratory flow and symptom diaries 
made before treatment and after 6 months.

Outcome variables: mean and SD of PEFR, mean symptom 
score.

Levy ML, Robb M, Allen J, Doherty C, Bland JM, Winter RJD.  (2000)  A randomized 
controlled evaluation of specialist nurse education following accident and emergency 
department attendance for acute asthma.  Respiratory Medicine 94, 900-908.

Regression in clinical trials
An example: specialist nurse education for acute asthma

Means:                           342                338    litre/min

95% CI (intervention – control) –48 to 63 litre/min, P=0.8.
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Regression in clinical trials
An example: specialist nurse education for acute asthma

If we control for the baseline PEF, we might get a better 
estimate of the treatment effect because we will remove a lot 
of variation between people.
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Regression in clinical trials
An example: specialist nurse education for acute asthma

PEF@6m = 58.4 + 0.986 × PEF@base + 20.1 × intervene
P<0.001                    P=0.046

95% CI          0.907 to 1.064                0.4 to 39.7
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Regression in clinical trials
In asthma, large fluctuations in PEF are a bad thing.  Use SD.

Clearly we have a skew distribution.  Try log 
transformation.

0

20

40

60

80

100

S
D

 P
E

F
 a

t 6
 m

on
th

s

Intervention Control
Group

Regression in clinical trials
Clearly we have a skew distribution.  Try log transformation.

The log scale suggests that this will work.

Log transformed SD of PEF diary, base e.
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Regression in clinical trials
Log transformed SD of PEF diary, base e.

logSD@6m = 0.583 + 0. 564 × logSD@base – 0.435 × intervene
P<0.001             P<0.001 

95% CI                 0.356 to 0.771             –0.651 to –0.218
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Intervention Control

Regression in clinical trials
SD of PEF diary with fitted lines transformed to natural scale.

Estimated treatment effect = –0.435, 95% CI = –0.651 to –0.218.

Back transform, estimated ratio = 0.65, 95% CI = 0.52 to 0.80.
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Regression in clinical trials
Advantages

Reduces variability between subjects and so increase power, 
narrows confidence intervals.

Removes effects of chance imbalances in predicting variables.

Is adjustment cheating?

It can be if we keep adjusting by more and more variables until 
we have a significant difference.

We should state before we collect the data what we wish to 
adjust for and stick to it.

Should include any stratification or minimisation variables, 
centre in multi-centre trials, any baseline measurements of the 
outcome variable, known important predictors of prognosis. 
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Dichotomous outcome variables and logistic
regression
Factorial clinical trial: Antidepressant drug counselling 
and information leaflets to improve adherence to drug 
treatment.

Patients reporting continuing treatment at 12 weeks

42/108 (39%)66/105 (63%)Total
52/108 (48%)20/55 (36%)32/53 (60%)No
56/105 (53%)22/53 (42%)34/52 (65%)Yes

Total
NoYes

Leaflet
Drug counselling

Peveler R, George C, Kinmonth A-L, Campbell M, Thompson C.  Effect of 
antidepressant drug counselling and information leaflets on adherence to drug 
treatment in primary care: randomised controlled trial.  BMJ 1999; 319: 612-615.

Logistic regression
Patients reporting continuing treatment at 12 weeks

42/108 (39%)66/105 (63%)Total
52/108 (48%)20/55 (36%)32/53 (60%)No
56/105 (53%)22/53 (42%)34/52 (65%)Yes

Total
NoYes

Leaflet
Drug counselling

Counselling: P=0.001 Leaflet: P=0.4

Done by logistic regression.

Logistic regression
Patients reporting continuing treatment at 12 weeks

42/108 (39%)66/105 (63%)Total
52/108 (48%)20/55 (36%)32/53 (60%)No
56/105 (53%)22/53 (42%)34/52 (65%)Yes

Total
NoYes

Leaflet
Drug counselling

Our outcome variable is dichotomous, continue treatment 
yes or no.

We want to predict the proportion who continue treatment.

We would like a regression equation.
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Logistic regression
We want to predict the proportion who continue treatment.

We would like a regression equation:

proportion = intercept + slope × counselling + slope × leaflet

Problem: proportions cannot be less than zero or greater than 
one.  How can we stop our equation predicting impossible 
proportions?

Find a scale for the outcome which is not constrained.

Odds has no upper limit, but must be greater than or equal to 
zero.

Log odds can take any value.

Use log odds, called the logit or logistic transformation.

Logistic regression
Predict the log odds of continuing treatment.

log odds = intercept + slope × counselling + slope × leaflet

The slope for counselling will be the increase in the log odds 
when counselling is used from when counselling is not used.

It will be the log of the odds ratio for counselling, with both the 
estimate and its standard error adjusted for the presence or 
absence of the leaflet.

If we antilog, we get the adjusted odds ratio.

Logistic regression
Predict the log odds of continuing treatment.

log odds = intercept + slope × counselling + slope × leaflet

log odds = –0.559 + 0.980 × counselling + 0.216 × leaflet
95% CI                        0.426 to 1.53         –0.339 to 0.770

P=0.001             P=0.4

Antilog:

odds = 0.57 × 2.66counselling × 1.24leaflet

95% CI               1.53 to 4.64      0.71 to 2.16

N.B. counselling = 0 or 1, 2.660 = 1, 2.661 = 2.66.

The odds ratio for counselling is 2.66, 95% CI 1.53 to 4.64,
P=0.001.

The odds ratio for the leaflet is 1.24, 95% CI 0.71 to 2.16,
P=0.4.
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Interactions
Does the presence of the leaflet change the effect of 
counseling?

Define an interaction variable = 1 if we have both counseling 
and leaflet, zero otherwise.

The counseling and leaflet variables are both 0 or 1.

Multiply the counseling and leaflet variables together.

Interaction = counseling × leaflet.

log odds = intercept + slope × counselling + slope × leaflet
+ slope × interaction

log odds = –0.560 + 0.981 × counselling + 0.217 × leaflet
– 0.002 × interaction

95% CI           0.203 to 1.78   –0.558 to 0.991  –1.111 to 1.107
P=0.01              P=0.6        P=1.0

Interactions
interaction = counseling × leaflet.

log odds = –0.560 + 0.981 × counselling + 0.217 × leaflet
– 0.002 × interaction

95% CI           0.203 to 1.78   –0.558 to 0.991  –1.111 to 1.107
P=0.01              P=0.6        P=1.0

Compare the model without the interaction:

log odds = –0.559 + 0.980 × counselling + 0.216 × leaflet
95% CI                        0.426 to 1.53         –0.339 to 0.770

P=0.001             P=0.4

The estimates of the treatment effects are unchanged by 
adding this non-significant interaction but the confidence 
intervals are wider and P values bigger. 

We do not need the interaction in this trial and should omit it.

Interactions
BMI data: interaction between AC and MUAC.

interaction = AC × MUAC

BMI = –6.44 + 0.18 × AC + 0.64 × MUAC – 1.39×male
P<0.001              P<0.001      P<0.001

Adding the interaction term:

BMI = 8.45 – 0.02 × AC + 0.03 × MUAC – 1.22 × male
+ 0.0081 × AC × MUAC

P<0.8           P<0.9     P<0.001     P=0.01

If the interaction is significant, both main variables must have a 
significant effect, so ignore the other P values.
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Interactions
BMI data: interaction between AC and MUAC.
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Interactions
BMI data: interaction between AC and MUAC.

interaction = AC × MUAC

Adding the interaction term:

BMI = 8.45 – 0.02 × AC + 0.03 × MUAC – 1.22 × male
+ 0.0081 × AC × MUAC

P<0.8           P<0.9     P<0.001     P=0.01

The coefficient for AC now depends on MUAC:

slope = – 0.02 + 0.0081 × MUAC

The slope for MUAC depends on AC:

slope = 0.03 + 0.0081 × AC

We cannot interpret the main effects on their own.

Factors with more than two levels
We can use factors with more than two levels, i.e. categorical 
variables with more than two categories as predictors.

Example:

Serial measurements of tumour size by CT scan and portal 
vein blood flow (transit time in sec) for six patients (data of 
Oliver Byass)
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Factors with more than two levels
Tumour size by CT scan and portal vein blood flow 

Subject 1         Subject 2         Subject 3     
Time  CT    PV    Time  CT    PV    Time  CT    PV 

0   10     *      1   12.1   9      1   14.7  13 
1    8     *      2   10.4  25      2   14.8  13 
2    7.8  13      3    9.4   *      3   14.5   * 
3    6.5  11      4    7.2   *      4   14.5  16 
4    5.5  18      5    8    18      5   14.1   * 
5    4.8  18      6    8.2   *      6   13.6  13.5 
6    5    18       

Subject 4          Subject 5         Subject 6     
Time  CT    PV    Time  CT    PV    Time  CT    PV 

1    5    19      1    3.6   9      1    7.8   7 
2    3.9  15      2    2.6  10      2    6.6  10 
3    4.8  17      3    2.6   8      3    5.5   * 
4    2.4  18      4    3.2   9      4    4.5   * 

5    3.5   9      5    3.8  10 

CT =  tumour size (cm) by CT scan, PV = portal vein transit 
time (sec), * = missing data

Factors with more than two levels
We can use factors with more than two levels, i.e. categorical 
variables with more than two categories as predictors.

Example:

Serial measurements of tumour size by CT scan and portal 
vein blood flow (transit time in sec) for six patients (data of 
Oliver Byass)

We are interested in whether 
reduced tumour size is 
associated with reduced 
blood flow, not whether 
people with larger tumour 
have greater blood flow.  
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Factors with more than two levels
We can use factors with more than two levels, i.e. categorical 
variables with more than two categories as predictors.

Example:

Serial measurements of tumour size by CT scan and portal 
vein blood flow (transit time in sec) for six patients (data of 
Oliver Byass)

We would like to look at the 
relationship between tumour 
size and blood flow within the 
same subject. 
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Factors with more than two levels
We would like to look at the relationship between tumour size 
and blood flow within the same subject. 

We can do this by multiple regression or analysis of 
covariance.  

We fit a model which has parallel lines relating transit time and 
tumour size for each subject separately.  

To do this, we need to fit subject as a predictor.  

We cannot just put the variable subject number into a 
regression equation as if it were an interval variable, because 
there is no sense in which subject 2 is greater than subject 1. 

We do not want to assume that our categories are related in 
this way.  

Factors with more than two levels
Instead, we define dummy variables or indicator variables
which enable us to estimate a different mean for each 
category. 

sub1 = 1 if Subject 1, 0 otherwise,
sub2 = 1 if Subject 2, 0 otherwise,
sub3 = 1 if Subject 3, 0 otherwise,
sub4 = 1 if Subject 4, 0 otherwise,
sub5 = 1 if Subject 5, 0 otherwise.

If all of these variables are zero, then we have Subject 6.  We 
need five dummy variables to represent a categorical variable 
with six categories.  

Subject 6 is called the reference category. 

Factors with more than two levels
We then do regression on our continuous predictor variable 
and all the dummy variables:

PV = 22.5 –1.17×CT + 6.7×sub1 + 8.2×sub2 – 0.6×sub3 
– 9.9×sub4 – 6.4×sub5

P=0.05      P=0.06       P=0.1         P=0.8
P=0.001       P=0.01

We have a significant 
effect for CT.
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Factors with more than two levels
We then do regression on our continuous predictor variable 
and all the dummy variables:

PV = 22.5 –1.17×CT + 6.7×sub1 + 8.2×sub2 – 0.6×sub3 
– 9.9×sub4 – 6.4×sub5

P=0.05      P=0.06       P=0.1         P=0.8
P=0.001       P=0.01

We have a significant effect for CT.

We should ignore the individual tests for the subject 
coefficients, because they do not mean much.  

What we want to know is whether there is any evidence that 
subject as a whole has an effect.  

We get a combined F test for the factor: F = 6.83 with 5 and 17 
d.f., P = 0.001.

Sample size
We should always have more observations than variables.

Rules of thumb:

Multiple regression: at least 10 observations per variable.

Logistic regression: at least 10 observations with a ‘yes’
outcome and 10 observations with a ‘no’ outcome per variable.

Otherwise, things get very unstable.

Types of regression
Multiple regression and logistic regression are the types of 
regression most often seen in clinical trials and in the medical
literature in general.

There are many other types for different kinds of outcome 
variable:

� Cox regression (survival analysis)

� Ordered logistic regression (ordered categories)

� Multinomial regression  (unordered categories) 

� Poisson regression (counts)

� Negative binomial regression (counts with extra variability)


