
 1 

University of York Department of Health Sciences 

Measurement in Health and Disease 

Measurement error 
Accuracy and precision 
In this lecture we shall consider the problem of the precision and repeatability of 
measurements which are numerical variables such as blood pressure and forced expiratory 
volume (FEV).  We shall look at how good a measurement is from the clinical point of view, 
for giving us information about the individual subject or patient.  We also look at the 
repeatability of measurement methods from the point of view of the researcher, that is how 
good a method is at telling us something about the population. 

We shall have a lot to say about ‘error’, a word which comes from a Latin root meaning ‘to 
wander’.  In statistics we use the term error to mean the variation of observations or 
estimates about some central value.  If we make several measurements of FEV on subject, 
they will not all be the same, because the subject cannot blow in exactly the same way each 
time.  This variation is called error.  It is not the same as a mistake, and does not imply any 
fault on the part of the observer.  A measurement mistake might be if we transpose digits in 
recording the FEV, writing 9.4 litres instead of 4.9. 

We will first distinguish precision and accuracy.  A measurement is precise if repeated 
observations of the same quantity are close together.  It is accurate if observations are close 
to the true value of the quantity.  Thus a measurement can be precise without being accurate, 
but cannot be accurate without being precise.  In this lecture I shall be concerned with 
precision.   

Sources of variation 
First we consider different sources of variation.  Figure 1 shows three histograms of Peak 
Expiratory Flow Rate (PEFR) in male medical students.  The upper histogram shows a 
sample of single measurements of PEFR obtained from 54 different students, whereas the 
lower histograms each show 20 repeated measurements of PEFR on a single student Table 1.  
The variability between students shown in the upper histogram is much greater than that 
shown within the same student shown in the lower histograms.  There are two different kinds 
of variation here: variation within individuals because repeated measurements are not all the 
same, and variation between individuals because some people can blow harder than others. 

We measure PEFR for several reasons: for example, to compare a patient’s PEFR to a 
reference interval for diagnostic purposes, to monitor changes in lung function over time, or 
to compare two groups of subjects as in a clinical trial or epidemiological study.  In each 
case, we want to be sure that the variation between measurements, the within-subject 
variation, does not swamp the difference for which we looking.  Because PEFR is known to 
have high variation between measurements, it is customary to make several observations to 
achieve this, and use their mean or maximum.  The latter is used because of the special nature 
of this measurement, the maximum rate of flow which the subject can achieve. 
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Figure 1.  Distribution of PEFR for 54 male medical students, with 20 repeated 
measurements for two students  
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    Table 1.  Repeated PEFR (litre/min) measurements for two male  
                                              medical students  
            Student A                      Student B 
     685  695  660  660  690        530  535  530  535  525 
     690  665  665  685  680        530  520  530  525  520 
     675  660  660  670  690        525  535  520  535  535 
     685  645  660  690  680        530  525  530  540  530 
 

If we suppose that a subject has a true PEFR, which would be the mean of all possible 
measurements, then the difference between an individual measurement and the true value is 
its error.  Many factors could influence this error.  We would expect that a series of PEFR 
measurements made on a subject by different observers at different times spread over six 
months would vary more than a series over one morning by one observer.  We might be 
interested in different types of variability for different purposes.  Monitoring short term 
changes in blood pressure in a single patient requires one type of error, interpreting random 
blood pressure in a screening clinic another.  In the first case, we are detecting shifts in mean 
blood pressure over a short period of time, in the second we are determining from one or two 
measurements whether the subject’s mean blood pressure is above some cut-off point such as 
90mm Hg diastolic. Thus we need to define what we mean by measurement error rather 
carefully.  The British Standards Institution (1979) considered this question for laboratory 
measurements, and made the distinction between repeatability, incorporating variability 
between measurements made by the same operator in the same laboratory, and 
reproducibility, incorporating variability between measurements made by different operators 
working in different laboratories.  The same considerations arise when we have complex 
measurements such as assays, where we might have the error estimated separately for 
different stages in the measurement, giving an intra-assay or within-assay error and an inter-
assay or between-assay error.  For the first we would take repeated readings from the same 
assay and estimate their error, and for the second we would take repeated assays on the same 
subject.   

Sometimes we are able to separate the effects of the different sources of variation and 
sometimes not.  In this lecture we describe techniques for estimating the variability between 
methods which work whether the measurements are all made by one observer on the same 
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occasion, or made by different observers on different occasions, or made repeatedly by the 
subjects themselves.  We discuss studies where the same group of observers are used to 
measure several subjects in the next lecture. 

Repeatability and measurement error 
We first consider the problem of estimating the variation between repeated measurements for 
the same subject.  Essentially, we want to know how far from the true value a single 
measurement is likely to be.  This estimation will be simplest if we assume that the error is 
the same for everybody, irrespective of the value of the quantity being measured.  This will 
not always be the case, and the error may depend on the magnitude of the quantity, for 
example being proportional to it.   

The within-subject standard deviation, sw 
We start with the case where the measurement error is assumed to be the same for everyone.  
This is a simple model, and it may be that some subjects will show more individual variation 
than others.  If the measurement error varies from subject to subject, independently of 
magnitude so that it cannot be predicted, then we have to estimate its average value.  We 
estimate the within-subject variability as if it were the same for all subjects. 

Consider the data of Table 1.  Calculating the standard deviations in the usual way, we get 
standard deviations s1 = 14.3178 and s2 = 5.6835 for the two students.  We can get a 
combined estimate averaged over the two students.  We actually average the variances, the 
squares of the standard deviations, allowing for possibly different samples sizes.  It is the 
same method as used in a two sample t test.  We get  
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where m1 and m2 are the numbers of measurements for subjects 1 and 2 respectively.  The 
square root of this gives us the within-subject standard deviation, sw = 10.8927.  Rounding we 
get sw = 10.9 litre/min. 

In this way we obtain the standard deviation, sw, of repeated measurements from the same 
subject, called the within-subject standard deviation.  As for any standard deviation, we 
expect that about two thirds of observations will fall within one standard deviation of the 
mean, the subject’s true value, and about 95% within two standard deviations.  If errors 
(differences between the observations and the true value) follow a Normal distribution, then 
we can formalise this by saying that we expect 68% of observations to lie within one standard 
deviation of the true value and 95% within 1.96 standard deviations.   



 4 

Table 2. Repeated PEFR measurements for 28 school children 
Child      PEFR (litre/min)             mean       s.d. 
 1     190    220    200    200        202.50     12.58  
 2     220    200    240    230        222.50     17.08  
 3     240    230    215    210        223.75     13.77  
 4     260    260    240    280        260.00     16.33  
 5     210    300    280    265        263.75     38.60  
 6     260    260    280    270        267.50      9.57  
 7     270    265    280    270        271.25      6.29  
 8     275    270    275    275        273.75      2.50  
 9     280    280    270    275        276.25      4.79  
10     260    280    280    300        280.00     16.33  
11     245    290    290    295        280.00     23.45  
12     275    275    275    305        282.50     15.00  
13     280    290    300    290        290.00      8.16  
14     320    290    300    290        300.00     14.14  
15     300    300    310    300        302.50      5.00  
16     270    250    330    370        305.00     55.08  
17     300    310    310    305        306.25      4.79  
18     300    300    340    315        313.75     18.87  
19     315    325    330    295        316.25     15.48  
20     320    330    330    330        327.50      5.00  
21     335    320    335    375        341.25     23.58  
22     350    320    340    365        343.75     18.87  
23     360    320    350    345        343.75     17.02  
24     330    340    380    390        360.00     29.44  
25     335    385    360    370        362.50     21.02  
26     400    400    420    395        403.75     11.09  
27     400    420    425    420        416.25     11.09  
28     430    460    480    470        460.00     21.60  

 

For more than two subjects we could calculate the within-subject standard deviation, sw, by 
extending this formula: 
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where n is the number of subjects.  We do not do this in practice, but use a method called one 
way analysis of variance, described below.  For our purposes, it is the concept of the within-
subject standard deviation which is important, not the mechanics of it. 

Table 2 shows data taken from a larger study of lung function in schoolchildren.  Five PEFR 
readings were made for each child.  The first reading was treated as practice blow and 
ignored.  Table 2 shows the second, third, fourth and fifth readings, which we shall use to 
estimate the repeatability of PEFR in 12 year old schoolchildren.  Table 2 also shows the 
mean and standard deviation of the last four readings for each subject.  For the common 
within-subject standard deviation, we have sw = 19.6 litre/min.  This large variability in PEFR 
is well known and so individual PEFR readings are seldom used.  In this study the variable 
used for analysis was the mean of the last three readings. 
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Table 3.  Analysis of variance table for the data of Table 2 
Source   | Sum of    Degrees of  Mean      F      P 
         | squares   freedom     Square    ratio 
---------+----------------------------------------------- 
Subject  | 365604.24    27       13540.90  35.14  0.0000 
Residual |  32368.75    84         385.34    
---------+----------------------------------------------- 
Total    | 397972.99   111        3585.342 

 
Analysis of variance 
As its name suggests, analysis of variance (or ‘anova’) is a technique for estimating 
variances.  It has many other uses, but in the study of measurement error it is used for its 
original function.  We calculate a sum of squares for the repeated observations for each 
subject.  This is the sum of squares about the subject mean.  We add them together to get the 
combine sum of squares about the subject mean , or within-subject sum of squares.  From this 
we get an estimate of the variance within the subjects, dividing the sum of squares by its 
degrees of freedom.  We can also calculate a sum of squares and hence a variance for the 
subject means.  These sums of squares are set out in an analysis of variance table (Table 3).  
Here the ‘Subject’ row is the variation between subjects and the ‘Residual’ row represents the 
variation within the subjects. 

There are several things we can note about this table.  The sum of squares add up, i.e. the 
subject and residual rows add up to give the total row.  The degrees of freedom add up in the 
same way.  We had 28 subjects, 4 observations on each.  The degrees of freedom for subjects 
are given by 27 = 28 – 1.  The degrees of freedom for the residual, i.e. within subjects, are 
given by 84 = 28 × (4 – 1).  Each of the 28 subjects contributes 3 = 4 – 1 degrees of freedom 
within the subject.  For the total, there are 112 observations, which gives 111 = 28 × 4 – 1 
degrees of freedom.  The mean squares are the sums of squares divided by the degrees of 
freedom: 13540.90 = 365604.24/27 and 385.34 = 32368.75/84.  These are estimates of 
variance.   

We do not need the F ratio.  The F ratio or variance ratio is the ratio of the mean squares, in 
this case the mean square between subjects divided by the mean square within subjects: 35.14 
= 13540.90/385.34.  If the subjects are all the same, these two mean squares should both be 
estimates of the within-subject variance.  Their ratio would be expected to be 1.00.  Provided 
in the population the measurements themselves would follow a Normal distribution with 
uniform variance across subjects (as for a two sample t test), the ratio would be an 
observation from an F distribution if the null hypothesis that the subjects were all the same is 
true.  We do not need the P value, we know the subjects are different.   

We need the mean squares.  The residual mean square is also called the within subjects mean 
square.  It is the variance within the subject = the within-subject standard deviation squared: 
√385.34 = 19.63 = sw. 

The subject mean square is also called the between subjects mean square.  From it we can 
estimate the standard deviation and variance between the subjects: 13540.90 = 4sb2 + sw2 è 
sb = 57.35.  The 4 comes from the 4 observations per subject.  This is the standard deviation 
of the subjects true PEFR (i.e. average of many measurements). 
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Reporting the measurement error 
The within-subject standard deviation can be presented and used in several ways.  We can 
report sw as it stands.  There are other possibilities, which may or may not aid in 
interpretation of the statistic.  

We can report the maximum difference which is likely to occur between the observation and 
the true mean, which is 1.96sw.  For the children’s PEFR data (Table 2) this is  
1.96sw = 1.96×19.63 = 38.5 litre/min.  For 95% of measurements, the subject’s true mean 
PEFR will be within 38.5 litre/min of that observed. 

The British Standards Institution (1979) recommended the repeatability coefficient, r, the 
maximum difference likely to occur between two successive measurements.  This defined as 

ww ssr 83.222 == .  This is because the variance of the difference between two 
measurements is the sum of the error variances of each measurement, i.e. 2 sw

2, the standard 
deviation of the difference is the square root of this, and 95% of differences will be within 2 
(or more precisely 1.96) standard deviations of the mean difference.  The mean difference is 
of course zero.  To correspond to a probability of 95%, ww ssr 77.2296.1 ==  would be 
better, but the difference is numerically unimportant.  For the children’s PEFR we have 
repeatability 55.6  19.63  2.83 83.2 =×== wsr  litre/min.  This tells us that two measurements 
on the same subject are unlikely to be more than 55.6 litres apart. 

We use the symbol “r” to mean both “repeatability coefficient” and “correlation coefficient”.  
This should not be confusing, as it is usually clear from the context what is intended. 

We can use the coefficient of variation (CV or cv), defined as the ratio of the standard 
deviation to the mean.  It is not really appropriate to use the coefficient of variation when the 
error is independent of the mean, although such usage is widespread.  For the PEFR data, for 
example, we would have 064.00.307/63.19/ === xscv w , or 6.4%.  The CV is usually 
quoted as a percentage.  The implication is that the error is proportional to the magnitude of 
the measurement.  This is often the case, but then the calculation of sw assuming a constant 
error, as described above, is incorrect.  We discuss the appropriate circumstances for the use 
of the coefficient of variation and its calculation below. 

Assumptions in the calculation of the within-subject standard deviation 
Two assumptions are required for the calculation of sw: that the measurement error does not 
depend on the magnitude of the measurement, and that the measurement errors for each 
subject follow a Normal distribution. 

Independence of the magnitude is essential if we are to have one estimate of standard 
deviation.  If measurement error depends on the magnitude of the measurement, any estimate 
sw will be correct at only one particular point on the scale.  The assumption that measurement 
errors are Normally distributed is not necessary for the calculation of sw, and about 95% of 
observations will be within 2sw of the subject mean whether the errors follow a Normal 
distribution or not.   



 7 

Figure 2.  Histogram of the within-subject residuals for the data of Table 2 
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Figure 3.  Subject standard deviation against subject mean for the data of Table 2 
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The Normal assumption is reasonable and checkable, for example by using histograms like in 
Figure 1.  We need to take the difference from the subject mean, because it is the distribution 
of the errors in which we are interested (Figure 2).  A more important assumption is that the 
within-subject standard deviation is independent of the subject mean, in other words, that the 
measurement error is constant over the range of measurement.  We assume this so that we 
can calculate a common sw for all subjects.  This assumption can be checked by plotting 
subject standard deviation against subject mean.  For the schoolchild PEFR data (Table 2) we 
have Figure 3.  Inspection suggests that there is no tendency for the standard deviation to 
increase as the mean increases.   
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Figure 4.  Individual observations against subject mean for the data of Table 2 
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Figure 5.  Within-subject residuals against subject mean for the data of Table 2 
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We can also plot the observations against the mean for the subject, as in Figure 4.  If we 
subtract the subject mean from each observation, to get the within-subject residuals, we can 
plot residuals against subject mean to see whether they get more variable as the subject mean 
increases (Figure 5). 

When we have only two observations per subject, as in Table 4, the subject standard 
deviation is equal to 2  times the absolute value of the difference.  Thus we can plot the 
absolute difference against the subject mean to show the relationship between mean and 
standard deviation.  Figure 6 shows this for the FEV data.  There is little evidence of any 
relationship between mean and standard deviation.  The assumption of independence looks 
very reasonable.  This is not so for the data of Table 5, which shows cotinine measured in the 
same children (Figure 7), where the difference increases as the mean increases. 
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Table 4.  Pairs of measurements of FEV1 (litres) a few weeks apart, from 164 Scottish 
schoolchildren (D. Strachan, personal communication) 

 1st  2nd     1st  2nd     1st  2nd     1st  2nd     1st   2nd  
 0.92 0.94    1.37 1.39    1.49 1.51    1.60 1.63    1.75  1.87  
 1.04 1.72    1.37 1.52    1.49 1.60    1.60 1.66    1.76  1.62  
 1.05 1.18    1.38 1.16    1.50 1.45    1.60 1.68    1.76  1.82  
 1.08 1.28    1.38 1.29    1.50 1.47    1.60 1.75    1.77  1.78  
 1.10 1.11    1.38 1.37    1.50 1.58    1.61 1.44    1.77  1.85  
 1.17 1.24    1.38 1.39    1.51 1.51    1.61 1.53    1.78  1.72  
 1.19 1.25    1.38 1.40    1.51 1.54    1.61 1.55    1.78  1.76  
 1.19 1.26    1.38 1.43    1.51 1.73    1.61 1.61    1.80  1.72  
 1.19 1.37    1.39 1.44    1.52 1.53    1.61 1.61    1.80  1.76  
 1.20 1.24    1.40 1.38    1.53 1.46    1.62 1.57    1.80  1.79  
 1.21 1.19    1.40 1.42    1.53 1.48    1.62 1.68    1.80  1.82  
 1.22 1.26    1.40 1.57    1.53 1.48    1.63 1.70    1.80  1.82  
 1.22 1.38    1.42 1.45    1.53 1.51    1.64 1.61    1.82  1.88  
 1.23 1.28    1.42 1.46    1.53 1.56    1.64 1.72    1.85  1.73  
 1.23 1.54    1.42 1.83    1.53 2.01    1.65 1.43    1.85  1.81  
 1.27 1.31    1.43 1.38    1.54 1.56    1.65 1.60    1.85  1.89  
 1.28 1.27    1.43 1.38    1.54 1.57    1.65 2.05    1.86  1.90  
 1.28 1.29    1.43 1.41    1.55 0.69    1.66 1.64    1.87  1.88  
 1.28 1.38    1.43 1.51    1.55 1.56    1.67 1.50    1.88  1.82  
 1.29 1.23    1.43 1.54    1.55 1.60    1.67 1.63    1.89  1.90  
 1.29 1.28    1.43 1.65    1.56 1.60    1.69 1.67    1.89  2.00  
 1.32 1.37    1.45 1.29    1.57 1.57    1.69 1.69    1.92  2.00  
 1.33 1.32    1.45 1.42    1.57 1.60    1.69 1.79    1.92  2.10  
 1.33 1.35    1.45 1.48    1.58 1.36    1.70 1.82    1.94  1.43  
 1.33 1.42    1.46 1.47    1.58 1.49    1.72 1.69    1.94  2.10  
 1.34 1.39    1.46 1.49    1.58 1.60    1.72 1.73    1.95  2.27  
 1.34 1.44    1.47 1.19    1.58 1.60    1.72 1.74    1.97  2.03  
 1.35 1.40    1.47 1.44    1.58 1.65    1.73 1.73    2.10  2.20  
 1.35 1.40    1.47 1.53    1.58 1.67    1.74 1.71    2.10  2.21  
 1.35 1.40    1.47 1.65    1.59 1.41    1.74 1.79    2.11  2.13  
 1.35 1.59    1.48 1.35    1.59 1.60    1.74 1.80    2.15  2.07  
 1.36 1.25    1.48 1.48    1.59 1.71    1.75 1.61    2.21  2.02  
 1.36 1.32    1.49 1.47    1.60 1.58    1.75 1.84        

 

Figure 6.  Absolute difference against mean for the data of Table 4 
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Table 5.  Duplicate salivary cotinine measurements for a group of Scottish 
schoolchildren, ordered by magnitude (D. Strachan, personal communication) 
 1st 2nd    1st 2nd    1st 2nd    1st 2nd    1st 2nd  
 ND  ND     0.2 0.6    0.4 0.3    0.9 0.2    2.7 2.4  
 ND  ND     0.3 ND     0.4 0.4    0.9 0.3    2.7 4.0  
 ND  ND     0.3 ND     0.4 0.4    0.9 0.7    2.8 2.2  
 ND  ND     0.3 ND     0.4 0.4    0.9 0.7    2.8 3.9  
 ND  0.1    0.3 ND     0.4 1.1    0.9 3.3    2.8 6.8  
 ND  0.1    0.3 ND     0.4 1.4    1.0 0.2    3.1 1.6  
 ND  0.1    0.3 ND     0.5 0.1    1.0 1.6    3.2 2.9  
 ND  0.2    0.3 0.1    0.5 0.1    1.1 0.4    3.2 3.0  
 ND  0.2    0.3 0.1    0.5 0.3    1.1 0.9    3.2 4.5  
 ND  0.2    0.3 0.1    0.5 0.3    1.1 1.0    3.3 4.5  
 ND  0.2    0.3 0.2    0.5 0.3    1.2 0.8    3.5 3.4  
 ND  0.6    0.3 0.2    0.5 0.4    1.2 0.9    3.5 4.9  
 0.1 ND     0.3 0.3    0.5 1.0    1.2 1.5    3.6 0.2  
 0.1 0.1    0.3 0.3    0.6 ND     1.2 1.8    3.7 2.6  
 0.1 0.1    0.3 0.3    0.6 0.3    1.3 0.3    3.8 3.6  
 0.1 0.2    0.3 0.4    0.6 0.5    1.4 0.7    3.9 5.5  
 0.1 0.2    0.3 0.4    0.6 0.6    1.5 0.6    4.0 3.1  
 0.1 0.4    0.3 0.4    0.6 0.8    1.6 0.8    4.1 3.4  
 0.1 0.5    0.3 0.4    0.6 0.8    1.6 1.3    4.1 3.7  
 0.2 ND     0.3 0.5    0.6 1.0    1.7 4.7    4.1 5.0  
 0.2 ND     0.3 0.6    0.7 0.1    1.8 0.9    4.4 1.7  
 0.2 ND     0.4 ND     0.7 0.2    1.8 1.9    4.7 4.5  
 0.2 0.1    0.4 ND     0.7 0.3    1.8 2.1    4.8 4.3  
 0.2 0.1    0.4 0.1    0.7 0.3    1.8 2.3    4.9 1.4  
 0.2 0.1    0.4 0.1    0.7 0.8    1.9 1.2    4.9 3.9  
 0.2 0.1    0.4 0.1    0.7 0.9    1.9 1.5    6.5 5.4  
 0.2 0.1    0.4 0.1    0.7 1.4    1.9 2.8    7.0 4.0  
 0.2 0.2    0.4 0.2    0.8 0.4    2.0 1.4    7.6 4.7  
 0.2 0.2    0.4 0.2    0.8 0.5    2.0 3.1    7.8 3.6  
 0.2 0.3    0.4 0.3    0.8 0.8    2.0 3.4    9.3 5.4  
 0.2 0.3    0.4 0.3    0.8 0.9    2.1 2.9    9.9 7.2  
 0.2 0.3    0.4 0.3    0.8 1.8    2.3 4.1       
 0.2 0.5    0.4 0.3    0.9 0.2    2.7 1.4         
 
 

Figure 7.  Absolute difference against mean for the data of Table 5. 
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If there is a relationship between standard deviation and mean, we cannot use the within-
subject standard deviation as a measure of repeatability, as it will not be the same through the 
range of measurement.  Instead, we try to transform the data so that the relationship 
disappears. 

Data which go off the scale 
Many assays have some limit below which no measurement can be made, and the result is 
recorded as below the limit of detection.  Table 5 shows pairs of salivary cotinine 
measurements made on a sample of schoolchildren.  Many of the cotinine levels were so low 
as be undetectable.  When such data are used as outcome or predictor variables in regression 
analyses, the undetectable observations can be set to an arbitrary low value, such as half the 
lowest possible detectable value.  Provided there are not many such observations, the 
presence of these arbitrary values will not influence the analysis much.  This will not work 
for the estimation of measurement error, because serious bias may be introduced.  In 
particular, individuals for whom both measurements are recorded as not detectable will have 
differences of zero, which will not occur in the higher parts of the scale and violate the 
assumption that the measurement error is uniform throughout the scale of measurement. 

Provided the measurement error is uniform, we can simply omit observations which are 
below the detectable range. Variables which have ‘not detectable’ observations are unlikely 
to meet this assumption, however, but usually have error increasing as the quantity being 
measured increases, as does salivary cotinine (Figure 7).  (For the graphs I have set all the 
‘none detectable’ readings to 0.05, which is half the lowest observable value, 0.1.)  We can 
usually deal with this relationship between error and subject mean by transformation, as 
described below. 

If we have two observations per case, as in Table 5, to omit an observation means that the 
subject will be omitted. If we have more than two observations per case, as in Table 2, 
omitting only observations below the limit of detection and keeping the rest will mean that 
subjects with some observations below and the limit and some above will have small 
individual standard deviations, as the range of their observations will be artificially narrowed.  
We should omit all such cases.  It may also happen that the quantity being measured is too 
large and all we know is that it is above some value.  We can deal with these in the same 
way, provided the assumption of uniform error is met. 

Repeatability dependent on the magnitude of the variable 
When the within-subject standard deviation is related to the magnitude of the measurement, 
as in Figure 7, we cannot estimate sw as described above, because it is not constant.  The 
simplest alternative model to consider is that the standard deviation is proportional to the 
mean.  We then estimate the ratio of standard deviation to the mean, the coefficient of 
variation.  I shall omit the details of this.  If the standard deviation is proportional to the mean 
CV should be a constant.  For the cotinine example, the coefficient of variation is 67%. 

When the standard deviation is proportional to the mean we have a valid use and method of 
estimation of the coefficient of variation.  From it, we can estimate the standard deviation of 
repeated measurements at any point within the range of measurement, by multiplying by the 
mean at that point. 
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Figure 8.  Second measurement against first for FEV (data of Table 4) 

.5

1

1.5

2

2.5
S

ec
on

d 
FE

V
 (l

itr
e)

.5 1 1.5 2 2.5
First FEV (litre)

 
Figure 9.  Second against first measurements of plasma cotinine, data of Table 5. 
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The within-subject variability for salivary cotinine seems very large, but the possible range of 
values, from these very lightly exposed children to heavy smokers, is very wide and salivary 
cotinine is sufficient precise to distinguish between many different levels of exposure.  The 
precision of a measurement must be interpreted in the light of the use to which the method is 
to be put. 

Correlation coefficients in the study of repeatability 
When we have data like those of Tables 4 and 5, there is a great temptation to plot one 
measurement against the other.  The resulting scatter diagram, Figures 8 and 9 for example, 
in turn tempts us to calculate a correlation coefficient between the first and second 
measurement.  Such a correlation is also called a reliability coefficient, particularly in the 
social science literature.  We usually specify the type of reliability, e.g. the test-retest 
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reliability, correlation between observations by the same observer on different occasions, or 
inter-rater reliability, the correlation between observations by different observers.   

There are difficulties in interpreting the correlation coefficient as an index of repeatability.  
The correlation depends on the way the sample was chosen.  The correlation obtained from a 
sample where all subjects are similar will be smaller than that obtained from a sample with 
large differences between subjects.  Thus r reflects both within and between subject 
variability. 

For example, for the FEV data (Table 4) the correlation between repeated measurements is r 
= 0.82.  Suppose we split the FEV sample into two sub-samples at 1.5 litres (close to the 
mean).  The correlation for the first sub-sample (first FEV < 1.5) is r = 0.54  and for the 
second (first FEV ≥ 1.5) it is r = 0.73.  For the full sample r is bigger than for either sub-
sample, because the variation between subjects is greater.  This does not happen with the 
within-subject standard deviation.  For the whole sample sw = 0.10  litre, for subjects below 
1.50 litres sw = 0.09 litre, and for subjects above 1.5 litre sw = 0.11 litre. 

The correlation coefficient is thus dependent on the way the sample is chosen.  It only has 
meaning for the population from which the study subjects can be regarded as a random 
sample.  If we select subjects to give a wide range of the measurement, for example, this will 
inflate the correlation coefficient.  The within-subject standard deviation is less susceptible to 
such problems and has a direct interpretation, so it may be preferred for describing the 
characteristics of methods of clinical measurement. 

The correlation coefficient does have other uses in the study of repeatability.  We can use it to 
test the null hypothesis that the first and second measurements are independent, i.e.  that there 
is no repeatability at all.  Thus it is useful in investigating the validity of measurement 
methods.  It also enables us to compare the repeatability of different measurements collected 
on the same subjects.  This might be useful if we are piloting a number of questionnaire 
scales to which best discriminates between individuals.  We could make repeated 
measurements of all the scales on the same subjects and calculate correlations between the 
repeated measurements.  The scales with the highest correlation between repeated 
measurements would discriminate best between subjects, in other words they would carry the 
most information.  

The intra-class correlation coefficient 

There is another problem in the use of the correlation coefficient between the first and second 
measurements: there is no reason to suppose that the order is important.  Indeed, if the order 
of measurement were important we would not have repeated observations of the same thing.  
We could reverse the order of any of the pairs and get a slightly different value of the 
correlation coefficient between repeated measurements.  In fact for pairs of measurements on 
n subjects, there are 2n possible values of r.  Most of these will be very similar, of course, and 
the best estimate of the population correlation coefficient will be in the middle. 

The intra-class correlation coefficient or ICC avoids this problem.  It estimates the average 
correlation between all possible pairs within the subject (the subject being the class).  It also 
extends very easily to the case of several observations per subject, as for the PEFR data of 
Table 2.  The intra-class correlation coefficient between repeated measurements is the 
correlation usually used for reliability statistics. 

We shall omit the details of calculation.  For the FEV data, ICC = 0.82.  This is the same as 
the ordinary correlation coefficient found above.  The effect of using the intra-class 
correlation rather than ordinary correlation coefficient is very small for so large a sample.  
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However, ICC has the great advantage that we can use it when there are more than two 
observations per subject.  For the PEFR data of Table 2 it is 0.895. 

The ICC is related to the variances within-subject and between subject as follows: 
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For the data of Table 2, we have 
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as before.   

The intra-class correlation coefficient will be 1.00 when sw
2 = 0, which happens when for 

each subject all measurements are identical.  The correlation will be zero when there is no 
more difference between the subjects than would be expected by chance if the subjects were 
identical.  Thus the intra-class correlation coefficient, like the ordinary correlation coefficient, 
depends on the range of the subject means.   

For pairs of measurements, the intra-class correlation coefficient, ICC, and the ordinary 
product moment correlation coefficient, r, are estimates of the same thing.  Unless the sample 
is small, they should be very similar, as for the FEV data of Table 4, for which ICC = 0.82 
and r = 0.82.  The main advantage of ICC is that it can be used when we have more than two 
observations per subject. 

 

J. M. Bland 
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