Cross-over trials

Martin Bland

Professor of Health Statistics University of York http://martinbland.co.uk

Cross-over trials

Use the participant as their own control. Each participant gets more than one treatment. Also known as change-over trials.

Cross-over trials

Example: a two treatment cross-over trial: pronethalol vs placebo for the treatment of angina.

Patients received placebo for two periods of two weeks and pronethalol for two periods of two weeks, in random order.

Completed diaries of attacks of angina.

Pritchard BNC, Dickinson CJ, Alleyne GAO, Hurst P, Hill ID, Rosenheim ML, Laurence DR. Report of a clinical trial from Medical Unit and MRC Statistical Unit, University College Hospital Medical School, London} *BMJ* 1963; **2**: 1226-7.

Cross-over trials

Example: a two treatment cross-over trial: pronethalol vs placebo for the treatment of angina.

Attacks of angina recorded over four weeks:

Placebo:	2	3	7	8	14	17	
	23	34	60	79	71	323	
Pronethalol:	0	0	1	2	7	15	
	16	25	29	41	65	348	
Mann Whitney U test: P = 0.4.							

But this ignores the data structure.

These observations should be paired.

ured alvsis
ian test):
0.000
= 0.006.
vo samnlo
vo sampie alveis
norina
iring,
lann
hitney U
st):
= 0.4.

Advantages of cross-over designs

 $\boldsymbol{\boldsymbol{\diamond}}$ each participant acts as their own control

 $\boldsymbol{\diamondsuit}$ removes variability between participants,

fewer subjects needed.

Disadvantages of cross-over designs

- short term treatment,
- no follow-up.

Cross-over trials are suitable for:

- chronic diseases (angina, asthma, arthritis),
- ✤ symptomatic treatment,
- quick, quantitative outcome (attack frequency, lung function, pain scores),
- ✤ early stage in treatment development.

Cross-over trials are not suitable for:

- ✤ acute conditions (myocardial infarction, pneumonia),
- ✤ treatment to cure (clot-busters, antibiotics),
- slow or qualitative outcomes (time to recurrence, death),
- later stages in development (side effects of long term treatment).

Estimation and significance tests

Trialists are encouraged to present results as estimates with confidence intervals rather than use significance tests, i.e. give P values.

Cross-over trials are typically small, so t methods are required for this.

In the pronethalol example, only P values were given.

Does this matter?

Not so much as in a larger trial, as cross-over trials are usually at an early stage in treatment development.

P values are often more important than estimates.

Analysis for an AB/BA cross-over trial

A trial where there are two treatments, each given once, in random order, is called a simple two period two treatment cross-over trial or AB/BA design.

Analysis will be illustrated using a cross-over trial of a homeopathic preparation intended to reduce mental fatigue.

This was a trial in healthy volunteers. On different occasions, paid student and staff volunteers received either the homeopathic preparation or a placebo.

They underwent a psychological test to measure their resistance to mental fatigue.

There were two treatments labelled A and B, one is a homeopathic dose of potassium phosphate and the other a control.

This is a triple blind trial, in that I do not know which is which.

Subjects took A or B, in random order, on different occasions, and carried out a test where accuracy was the outcome measurement.

There were 86 subjects, 43 for each order.

	A :	fir	st		1		в	fiı	st		Τ.	Sorted by
acc1	acc2	1	acc1	acc2	1	acc1	acc2	1	acc1	acc2	1	
 84	108	-!-	106	104	-1-	50	101	-1-	105	107	-	observation
85	108	÷	106	107	÷	86	99	÷	105	108	i.	<u>.</u>
88	82	÷.	106	107	÷.	89	106	÷	106	96	i.	Clear ceil
88	89	i.	106	107	i.	91	102	÷.	106	108	i.	offoot
88	107	1	106	108	1	92	100	1	106	108	Τ.	eneci.
91	104	1	106	108	1	93	106	1	106	108	1	
92	107	1	106	108	1	93		1	106		Τ.	Two stude
93	89	1	107	100	1	97	106	1	107	105	1	all all as a second
98	89	1	107	104	1	99	106	1	107	106	Τ.	ala not co
98	107	1	107	105	1	101	103	1	107	106	1	back for t
101	80		107	107		102	95		107	106	1	back for t
101	90		107	107		102	99	1	107	107	1	second
101	99		107	108		102	101		107	107	1	
103	98		107	108		102	101		107	108	1	measurer
103	106		108	94		102	106		108	107	1	
103	107		108	104		102	108		108	107	1	
104	107		108	106		102	108		108	108	1	
104	108		108	108		103	105		108	108	1	
105	106	1	108	108	1	103	108		108	108		
105	107	1	108	108		104	90		108	108	1	
105	108	1	108	108		105	104		108	108	1	

Analysis for an AB/BA cross-over trial								
We can c the mean	lo a sin differe	nple test o ence, A m	of the trea inus B.	itment eff	ect, by es	timating		
. ttest diff One-sample t	famb=0 test							
Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf	. Interval]		
diffamb	84	1.035714	1.0045	9.206397	9621963	3.033625		
Degrees of f Ha: mea t = P < t = Estimated Are the a	reedom: ; 1.0311 0.8472 d treatr ssump	[₽] > nent effections of th	mean (diffamb Ha: mean != t = 1.0 t = 0.3 tt = 1.0 (9 is analys)) = 0 0 311 055 5% CI –1 is met?	Ha: mean t = 1 P > t = 0 .0 to 3.0,	> 0 1.0311 0.1528 P=0.3).		

Assumptions for t method not met.

Non-parametric analysis, Wilcoxon paired test :

. signrank diffamb=0 Wilcoxon signed-rank sign o	test obs	sum ranks	expected
positive	36	1991.5	1739.5
negative	35	1487.5	1739.5
zero	13	91	91
all	84	3570	3570
unadjusted variance	502	77.50	
adjustment for ties	-1	80.00	
adjustment for zeros	-2	04.75	
adjusted variance Ho: diffamb = 0	498	92.75	

z = 1.128 Prob > |z| = 0.2592

P = 0.3, as before.

Conclusion: no evidence for a treatment effect.

Analysis for an AB/BA cross-over trial

Using the period effect, step by step method using t tests (Armitage and Hills, 1982).

To see how the analysis works, we will use the following notation:

- A1 = the mean for A in the first period
- A2 = the mean for A in the second period
- B1 = the mean for B in the first period
- B2 = the mean for B in the second period

Armitage P and Hills M. (1982) The two period cross-over trial. *The Statistician* **31**, 119-131.

First we ask whether there is evidence for a period effect, i.e. are scores in the first period the same as in the second?

For example, there might be a learning effect, with accuracy increasing with repetition of the test.

If there is no period effect, we expect the differences between the treatment to be the same in the two periods.

Analysis for an AB/BA cross-over trial

The period effect, first period mean minus second period mean, will be estimated by

(A1 - A2 + B1 - B2)/2.

We can rearrange this as

(A1 - B2 - A2 + B1)/2 = (A1 - B2)/2 - (A2 - B1)/2

(A1 - B2) is the mean treatment difference for the group with A first, (A2 - B1) is the mean treatment difference for the group with A first.

We can test the null hypothesis that the difference between these two mean differences is zero.

Compare difference A minus B between orders.

Compare difference A minus B between orders.

. ttest diffamb, by(order) Two-sample t test with equal variances Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] A first | B first | 43 -.8604651 41 3.02439 1.295952 1.498978 -3.475803 -.0051582 1.754872 6.053939 8.498127 9.598145 combined 84 1.035714 1.0045 9.206397 -.9621963 3.033625 diff | -3.884855 1.975746 -7.815243 .0455321 Degrees of freedom: 82 Bo: mean(A first) - mean(B first) = diff = 0 Ha: diff < 0</td> Weak evidence of a period effect, P=0.05.

Analysis for an AB/BA cross-over trial

Compare difference A minus B between orders.

Non-parametric analysis using Mann-Whitney U test:

. ranksum diffamb	, by(orde	r)	
Two-sample Wilcox	on rank-s	um (Mann-Whi	tney) test
order	obs	rank sum	expected
A first	43	1610	1827.5
B first	41	1960	1742.5
combined	84	3570	3570
unadjusted varian	ce 124	87.92	
adjustment for tie	es -1	51.09	
adjusted variance	123	36.83	
Ho: diffamb(order:	==A first) = diffamb	(order==B first)
z =	-1.958		
Prob > z =	0.0502		

Weak evidence of a period effect, P=0.05.

Analysis for an AB/BA cross-over trial

We can allow for a possible period effect.

We estimate the average of the differences between A and B for each period: (A1 - B1)/2 + (A2 - B2)/2

(A1 - B1)/2 + (A2 - B2)/2 = (A1 - B2)/2 - (B1 - A2)/2

(A1-B2) and (B1-A2) are the differences between periods 1 and 2, for those starting with A and for those starting with B.

Test the difference between difference between periods 1 and 2 for the two orders.

This is called the CROS analysis.

Test the difference between difference between periods 1 and 2 for the two orders.

. ttest diff1m2, by(order) Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]		
A first B first	43 41	8604651 -3.02439	1.295952 1.498978	8.498127 9.598145	-3.475803 -6.053939	1.754872 .0051582		
combined	84	-1.916667	. 9887793	9.062312	-3.883309	. 0499756		
diff	I	2.163925	1.975746		-1.766462	6.094313		
No evid	lence fo	r a treatme	ent effect.					

Estimate 2.163925/2 = 1.1 (95% CI -0.9 to 3.0, P=0.3).

Analysis for an AB/BA cross-over trial

Test the difference between difference between periods 1 and 2 for the two orders.

. ranksum diff1m2,	by (ord	er)	
Two-sample Wilcoxo	n rank-	sum (Mann-Wh	itney) test
order	obs	rank sum	expected
+			
A first	43	1949	1827.5
B first	41	1621	1742.5
+			
combined	84	3570	3570
unadjusted variance	e 12	487.92	
adjustment for tie	s –	100.77	
adjusted variance	12	387.15	
Ho: diff1m2(order=	=A firs	t) = diff1m2	(order==B first)
z =	1.092		
Prob > z =	0.2750		
No ovidonoo fr	or o tr	ootmont a	ffoot D 0 2
NO evidence it	Jali	ealmente	r=0.3.

Analysis for an AB/BA cross-over trial Same analysis by analysis of variance: . anova score sub treat period Number of obs = 170 Root MSE = 6.40033 R-squared = 0.6490 Adj R-squared = 0.2765 Source | Partial SS df MS F Prob > F Model | 6210.08374 87 71.3802729 1.74 0.0059 sub | 5990.61699 treat | 49.1391331 period | 158.377228 85 70.4778469 1 49.1391331 1 158.377228 1.72 1.20 3.87 0.0071 0.2766 0.0527 Residual | 3359.0692 82 40.9642585 Total | 9569.15294 169 56.6222068

Is the treatment difference the same whatever order of treatments is given?

I.e., is there an interaction between period and treatment? Is there an order effect?

If not, the participant's average response should be the same whichever order treatments were given: is A1 + B2 = A2 + B1?

To test for period × treatment interaction, we compare the sum or the average of the scores between orders.

To test for period × treatment interaction, we compare the sum or the average of the scores between orders.

Analysis for an AB/BA cross-over trial

To test for period × treatment interaction, we compare the sum or the average of the scores between orders.

. LLESL av.	Lau	102, 1	DĂ (OTC	ler)	
Two-sample	t	test	with	equal	variances

and 2

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
A first	43	102.593	. 9138191	5.992312	100.7489	104.4372
B first	41	103.2439	.9346191	5.984482	101.355	105.1328
combined	84	102.9107	. 6504313	5.961301	101.617	104.2044
diff		6508792	1.307167		-3.251251	1.949493
Degrees of	f freedom: Ho:	82 mean(A first) - mean(B f	irst) = diff	= 0	
Ha: d	diff < 0		Ha: diff !=	0	Ha: diff	> 0
t	-0.4979		t = -0.4	979	t = -0	. 4979
P < t =	= 0.3099	P >	t = 0.6	199	P > t = 0	.6901.
t : P < t :	= -0.4979 = 0.3099	P >	t = -0.4 t = 0.6	979 199	t = -0 $P > t = 0$.4979 .6901.

In the mental fatigue trial, there could be an interaction because of the ceiling effect and practice.

One treatment could raise scores to the ceiling in the first period and all get near the ceiling in the second period.

Another possibility in cross-over trials is a carry-over effect, where the first treatment continues to have an effect in the second period.

Note that if the interaction is significant, there is a significant treatment effect.

Period × treatment interaction

Should we test it? Two views:

Grizzle (1965) says yes.

If significant, use period 1 data only.

Difference, A - B = 0.5 (95% Cl -3.2 to 4.2, P=0.8). Called the two-stage analysis.

Grizzle JE. (1965) The two-period change-over design and its use in clinical trials. *Biometrics*, **21**, 467-480.

Period × treatment interaction

Should we test it? Two views:

Grizzle (1965) says yes.

If significant, use period 1 data only.

Difference, A - B = 0.5 (95% Cl -3.2 to 4.2, P=0.8). Called the two-stage analysis.

Compare the full data estimate:

Difference, A - B = 1.1 (95% Cl –0.9 to 3.0, P=0.3).

We lose power and precision.

Should we test it? Two views:

Senn (1989) says no.

The average of the first and second periods is highly correlated with the first period.

Senn S. Cross-Over Trials in Clinical Research. Chichester: Wiley, 1989.

Period × treatment interaction

Should we test it? Two views:

Senn (1989) says no.

The average of the first and second periods is highly correlated with the first period.

Hence the correlated treatment test using first period only is highly correlated with the interaction test.

The alpha value conditional on the interaction test is >0.05.

Period × treatment interaction

The power of the test is low and alpha = 0.10 is often recommended as a decision point.

Example: Nicardipine against placebo in patients with Raynaud's phenomenon (Kahan *et al.*, 1987, given by Altman, 1991).

Kahan A, Amor B, Menkes CJ, *et al.*, Nicardipine in the treatment of Raynaud's phenomenon: a randomised doubleblind trial. *Angiology* 1987; **38**: 333-7.

Altman DG. *Practical Statistics for Medical Research* Chapman and Hall, London, 1991.

Period 1 Nicardipine	Period 2 Placebo	Placebo – Nicardipine	Period 1 Placebo	Period 2 Nicardipine	Placebo – Nicardipine
16	12	_4	18	12	6
26	19	-7	12	4	8
8	20	12	46	37	ę
37	44	7	51	58	-7
9	25	16	28	2	26
41	36	-5	29	18	11
52	36	–16	51	44	-
10	11	1	46	14	32
11	20	9	18	30	-12
30	27	-3	44	4	4(
Mean		1.0			12.0

Nicardipine data, testing for interaction:

. ttest av , by(order)

Two-sample t test with equal variances						
Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1st peri 2nd peri	10 10	24.5 28.3	3.952496 4.782027	12.49889 15.1221	15.55883 17.4823	33.44117 39.1177
combined	20	26.4	3.050582	13.64262	20.01506	32.78494
diff	1	-3.8	6.204031		-16.83419	9.234185
diff = mean(lst peri) - mean(2nd peri) t = -0.6125 Ho: diff = 0 degrees of freedom = 18						
Ha: d Pr(T < t	diff < 0 c) = 0.2739	Pr(Ha: diff != F > t) =	0 0.5479	Ha: d Pr(T > t	iff > 0) = 0.7261
No evidence for an interaction, $P = 0.5$.						

Compare treatments:

. ttest diff1m2, by(order)

Two-sample t test with equal variances						
Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
1st peri 2nd peri	10 10	-1 12	3.119829 5.168279	9.865766 16.34353	-8.057544 .3085399	6.057544 23.69146
combined	20	5.5	3.294733	14.73449	-1.395955	12.39595
diff		-13	6.036923		-25.68311	3168945
diff = mean(1st peri) - mean(2nd peri) t = -2.1534 Ho: diff = 0 degrees of freedom = 18						
Ha: di Pr(T < t)	ff < 0 = 0.0225	Pr(T	Ha: diff != ! > t) =	0 0.0451	Ha: d Pr(T > t	iff > 0) = 0.9775
Evidence for a treatment effect, P = 0.045.						
But the estimate must be in doubt, due to the interaction.						

An aside, CROS or simple paired t test?

CROS: Evidence for a treatment effect, P = 0.045.

Simple paired t test:

. ttest diffamb=0

One-sample	t test					
Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
diffamb	20	6.5	3.19745	14.29943	192339	13.19234
mean = Ho: mean =	mean(diffamb) 0			degrees	t = of freedom =	= 2.0329 = 19
Ha: mea Pr(T < t)	an < 0 = 0.9719	Pr(Ha: mean != T > t) = 0	0.0563	Ha: me Pr(T > t)	ean > 0) = 0.0281
	• · ·					

Evidence for a treatment effect, P = 0.056.

CROS adjusts for the period effect so reduces the effect of the (non-significant) period difference a bit. It is more powerful.

Period × treatment interaction

Should we test for a period × treatment interaction?

Grizzle (1965) proposed this.

Senn (1989) claims this is an error.

Jones and Kenward (1989) review the question but do not make a strong recommendation.

Jones B and Kenward MG. *Design and Analysis of Cross-Over Trials*. London: Chapman and Hall, 1989.

Should we test for a period × treatment interaction?

Grizzle (1965) proposed this.

Senn (1989) claims this is an error.

Jones and Kenward (1989) review the question but do not make a strong recommendation.

I find Senn's argument convincing. I would say do not test or do the two-stage analysis.

However, I think it is worth inspecting the data to see whether the assumption of no interaction required for the CROS estimate is plausible. If it is not, rely on the P value.

Period × treatment interaction

What should we do instead of Grizzle's approach using the first period only?

Senn (1989) suggests that if the estimate is needed, we should repeat the trial and design the carryover out of it, using washout periods described next.

Washout periods

A washout period is a time when the participants do not receive any active trial treatment.

Intended to prevent continuation of the effects of the trial treatment from one period to another.

Typical cross-over trial with washout periods:

washout / run-in	removes effects of pre-trial treatments
treatment 1	
washout	removes effects of treatment 1
treatment 2	
washout	removes effects of treatment 2
usual care	

Washout periods

A washout period is necessary if treatments might interact in an adverse way.

In a placebo controlled trial, we could simply make the treatment periods longer.

In drug trials, washout periods should be at least $3 \times$ half life of drug in body (FDA).

If no washout periods are used, the treatment periods should be longer than would be required for washout and no measurements made in the time that would be needed for washout.

Two texts:

Senn S. *Cross-Over Trials in Clinical Research, 2nd ed.* Chichester: Wiley, 2002.

Jones B and Kenward MG. *Design and Analysis of Cross-Over Trials, 2nd ed.* London: Chapman and Hall, 2003.

For a brief introduction:

Altman DG. *Practical Statistics for Medical Research* Chapman and Hall, London, 1991.