Introduction to Statistics for Clinical Trials

Regression and multiple regression

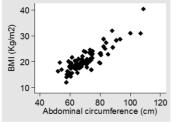
Martin Bland
Professor of Health Statistics
University of York
http://www-users.york.ac.uk/~mb55/

Regression analyses

- > Simple linear regression
- > Multiple linear regression
- > Dichotomous predictor variables
- > Regression in clinical trials
- Dichotomous outcome variables and logistic regression
- ➤ Interactions
- > Sample size

Simple Linear Regression

Example: Body Mass Index (BMI) and abdominal circumference in 86 women



(Data of Malcom Savage)

What is the relationship?

Regression: predict BMI from observed abdominal circumference.

Simple Linear Regression

Example: Body Mass Index (BMI) and abdominal circumference in 86 women.

What is the relationship?

Regression: predict BMI from observed abdominal circumference.

What is the mean BMI for women with any given observed abdominal circumference?

BMI is the **outcome**, **dependent**, **y**, or **left hand side** variable.

Abdominal circumference is the predictor, explanatory, independent, x, or $right\ hand\ side\ variable$.

Simple Linear Regression

Example: Body Mass Index (BMI) and abdominal circumference in 86 women.

What is the relationship?

Regression: predict BMI from observed abdominal circumference.

What is the mean BMI for women with any given observed abdominal circumference (AC)? $\begin{tabular}{ll} \end{tabular}$

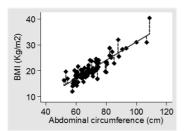
Linear relationship:

BMI = intercept + slope x AC

Equation of a straight line.

Simple Linear Regression

Which straight line should we choose?

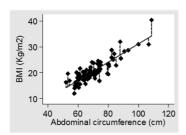


Choose the line which makes the distance from the points to the line *in the y direction* a minimum.

Differences between the observed strength and the predicted strength.

Simple Linear Regression

Which straight line should we choose?

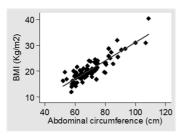


Minimise the sum of the squares of these differences.

Principle of least squares, least squares line or equation.

Simple Linear Regression

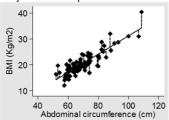
 $BMI = -4.15 + 0.35 \times AC$



We can find confidence intervals and P values for the coefficients subject to assumptions.

Simple Linear Regression

We can find confidence intervals and P values for the coefficients subject to assumptions



Deviations from line should have a Normal distribution with uniform variance.

Simple Linear Regression Can find confidence intervals and P values for the coefficients subject to assumptions.

Slope = $0.35 \text{ Kg/m}^2/\text{cm}$, $95\% \text{ CI} = 0.31 \text{ to } 0.40 \text{ Kg/m}^2/\text{cm}$, P<0.001 against zero.

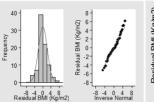
Intercept = -4.15 Kg/m^2 , 95% CI = $-7.11 \text{ to } -1.18 \text{ Kg/m}^2$.

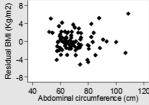
Assumptions: deviations from line should have a Normal distribution with uniform variance. Calculate the deviations or residuals, observed minus predicted.

Check Normal distribution:

Simple Linear Regression

Check uniform variance:





Multiple Linear Regression

More than one predictor:

 $BMI = -1.35 + 0.31 \times AC$ $BMI = -4.59 + 1.09 \times MUAC$

 $BMI = -5.94 + 0.18 \times AC + 0.59 \times MUAC$

We find the coefficients which make the sum of the squared differences between the observed BMI and that predicted by the regression a minimum.

This is called **ordinary least squares** regression or **OLS** regression.

Multiple Linear Regression

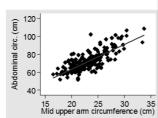
More than one predictor:

 $BMI = -1.35 + 0.31 \times AC$ $BMI = -4.59 + 1.09 \times MUAC$

 $BMI = -5.94 + 0.18 \times AC + 0.59 \times MUAC$

Both coefficients are pulled towards zero because abdominal circumference and arm circumference are related:

 $MUAC = 7.52 + 2.79 \times AC,$ P < 0.001



Multiple Linear Regression

More than one predictor:

We can find confidence intervals for the coefficients and test the null hypotheses that coefficients are zero in the population.

Each predictor reduces the significance of the other because they are related to one another as well as to BMI.

They can both become not significant, even though the regression as a whole is highly significant.

Multiple Linear Regression

Assumptions:

Just as for simple linear regression, for our confidence intervals and P values to be valid, the data must conform to the assumptions that

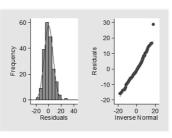
- > deviations from line should have a Normal distribution,
- > with uniform variance,
- > observations must be independent.

Finally, our model of the data is that the relationship with each of our predictors is adequately represented by a straight line rather than a curve.

Multiple Linear Regression

Assumptions:

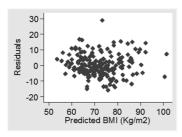
Check by histogram and Normal plot of residuals:



Multiple Linear Regression

Assumptions:

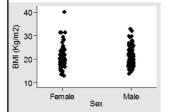
and by plot of residuals against regression estimate:



Multiple Linear Regression

Dichotomous predictor: sex.

Variable male = 0 for a female, = 1 for a male.



Sex is not a significant predictor alone.

Multiple Linear Regression

Dichotomous predictor: sex.

Variable male = 0 for a female, = 1 for a male.

$$\begin{array}{rll} & \text{BMI} & = & 20.51 & + & 0.40 \times \text{male} \\ 95\% \ \text{CI} & & 19.64 \ \text{to} \ 21.38 & -0.75 \ \text{to} \ 1.55 \\ & & P = 0.5 \end{array}$$

Male has become a significant predictor because abdominal circumference and arm circumference have removed a lot of variability.

Mean BMI is lower for men than women of the same abdominal and arm circumference by 1.39 units.

Multiple Linear Regression

Dichotomous predictor: sex.

Variable male = 0 for a female, = 1 for a male.

BMI = -6.44 + 0.18 × AC + 0.64 × MUAC -1.39 × male -8.49 to -4.39 0.14 to 0.22 0.50 to 0.78 -1.94 to -0.84 P<0.001 P<0.001 P<0.001

When we have continuous and categorical predictor variables, regression is also called **analysis of covariance** or **ancova**.

The continuous variables (here AC and MUAC) are called **covariates**.

The categorical variables (here male sex) are called **factors**.

Regression in clinical trials

Used to adjust for prognostic variables and baseline measurements.

An example: specialist nurse education for acute asthma

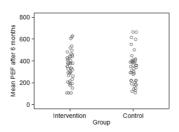
Measurements: peak expiratory flow and symptom diaries made before treatment and after 6 months.

Outcome variables: mean and SD of PEFR, mean symptom score.

Levy ML, Robb M, Allen J, Doherty C, Bland JM, Winter RJD. (2000) A randomized controlled evaluation of specialist nurse education following accident and emergency department attendance for acute asthma. *Respiratory Medicine* 94, 900-908.

Regression in clinical trials

An example: specialist nurse education for acute asthma



Means:

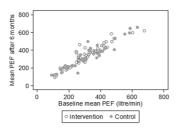
342

338 litre/min

95% CI (intervention - control) -48 to 63 litre/min, P=0.8.

Regression in clinical trials

An example: specialist nurse education for acute asthma



If we control for the baseline PEF, we might get a better estimate of the treatment effect because we will remove a lot of variation between people.

P<0.001

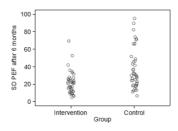
0.907 to 1.064

P=0.046

0.4 to 39.7

95% CI

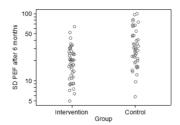
In asthma, large fluctuations in PEF are a bad thing. Use SD. $\,$



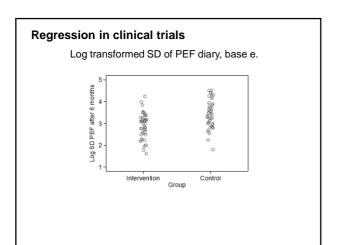
Clearly we have a skew distribution. Try log transformation.

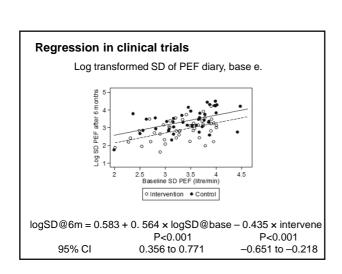
Regression in clinical trials

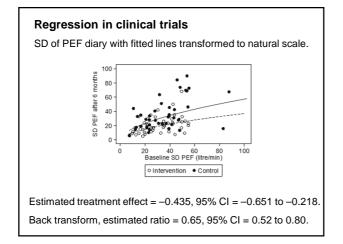
Clearly we have a skew distribution. Try \log transformation.



The log scale suggests that this will work.







Regressio	n in clinical t	trials	
Advantages	3		
	riability between fidence intervals		increase power
Removes eff	fects of chance i	mbalances in p	redicting variable
ls adjustme	nt cheating?		-
	re keep adjusting		nore variables ur
We should sadjust for an	tate before we c d stick to it.	collect the data	vhat we wish to
centre in mu	de any stratifica lti-centre trials, a iable, known im	any baseline me	easurements of th
	ous outcome	variables ar	nd logistic
regression			
	inical trial: Anti- ation leaflets to		
treatment.		improvo dano	ones to arag
Patients	reporting contir	nuing treatment	at 12 weeks
Leaflet	Drug cou	unselling	Total
	Yes	No	
Yes	34/52 (65%)	22/53 (42%)	56/105 (53%)
No	32/53 (60%)	20/55 (36%)	52/108 (48%)
Total	66/105 (63%)	42/108 (39%)	
antidepressant d	ge C, Kinmonth A-L, (Irug counselling and i	nformation leaflets or	adherence to drug
treatment in prim	nary care: randomised	d controlled trial. BM	J 1999; 319 : 612-615.
Logistic re	egression		
•	reporting contin	nuing treatment	at 12 weeks
. attorits			
Leaflet	Yes	unselling No	Total
Yes	34/52 (65%)	22/53 (42%)	56/105 (53%)
No	32/53 (60%)	20/55 (36%)	52/108 (48%)
Total	66/105 (63%)	42/108 (39%)	22, 100 (1070)
Total	00/103 (03/0)	42/100 (33/0)	

Done by logistic regression.

Logistic regression

Patients reporting continuing treatment at 12 weeks

Leaflet	Drug cou	Total		
Leaner	Yes	No	iolai	
Yes	34/52 (65%)	22/53 (42%)	56/105 (53%)	
No	32/53 (60%)	20/55 (36%)	52/108 (48%)	
Total	66/105 (63%)	42/108 (39%)		

Our outcome variable is dichotomous, continue treatment yes or no.

We want to predict the proportion who continue treatment.

We would like a regression equation.

Logictic	regression
LUUISIIC	i cui caaiuii

We want to predict the proportion who continue treatment.

We would like a regression equation:

proportion = intercept + slope × counselling + slope × leaflet

Problem: proportions cannot be less than zero or greater than one. How can we stop our equation predicting impossible proportions?

Find a scale for the outcome which is not constrained.

Odds has no upper limit, but must be greater than or equal to

Log odds can take any value.

Use log odds, called the logit or logistic transformation.

Logistic regression

Predict the log odds of continuing treatment.

log odds = intercept + slope × counselling + slope × leaflet

The slope for counselling will be the increase in the log odds when counselling is used from when counselling is not used.

It will be the log of the odds ratio for counselling, with both the estimate and its standard error adjusted for the presence or absence of the leaflet.

If we antilog, we get the adjusted odds ratio.

Logistic regression Predict the log odds of continuing treatment. $log odds = intercept + slope \times counselling + slope \times leaflet$ $\log \text{ odds} = -0.559 + 0.980 \times \text{ counselling} + 0.216 \times \text{ leaflet}$ 95% CI 0.426 to 1.53 -0.339 to 0.770 P=0.001 P=0.4 Antilog: odds = $0.57 \times 2.66^{\text{counselling}} \times 1.24^{\text{leaflet}}$ 95% CI 1.53 to 4.64 0.71 to 2.16 N.B. counselling = 0 or 1, 2.66° = 1, 2.66° = 2.66. The odds ratio for counselling is 2.66, 95% CI 1.53 to 4.64, The odds ratio for the leaflet is 1.24, 95% CI 0.71 to 2.16, P = 0.4Interactions Does the presence of the leaflet change the effect of counseling? Define an interaction variable = 1 if we have both counseling and leaflet, zero otherwise. The counseling and leaflet variables are both 0 or 1. Multiply the counseling and leaflet variables together. Interaction = counseling x leaflet. log odds = intercept + slope x counselling + slope x leaflet + slope x interaction $\log \text{ odds} = -0.560 + 0.981 \times \text{counselling} + 0.217 \times \text{leaflet}$ - 0.002 × interaction 0.203 to 1.78 -0.558 to 0.991 -1.111 to 1.107 95% CI P=0.01 P=0.6 P=1.0 Interactions interaction = counseling \times leaflet. $\log \text{ odds} = -0.560 + 0.981 \times \text{counselling} + 0.217 \times \text{leaflet}$ - 0.002 × interaction 0.203 to 1.78 -0.558 to 0.991 -1.111 to 1.107 95% CI P=0.01 P=0.6 P=1.0 Compare the model without the interaction: $\log \text{ odds} = -0.559 + 0.980 \times \text{ counselling} + 0.216 \times \text{ leaflet}$ 95% CI 0.426 to 1.53 -0.339 to 0.770 P=0.001 P=0.4

The estimates of the treatment effects are unchanged by adding this non-significant interaction but the confidence

We do not need the interaction in this trial and should omit it.

intervals are wider and P values bigger.

Interactions

BMI data: interaction between AC and MUAC.

interaction = $AC \times MUAC$

 $BMI = -6.44 + 0.18 \times AC + 0.64 \times MUAC - 1.39 \times male \\ P < 0.001 \qquad P < 0.001 \qquad P < 0.001$

Adding the interaction term:

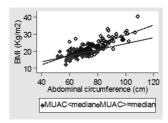
 $BMI = 8.45 - 0.02 \times AC + 0.03 \times MUAC - 1.22 \times male \\ + 0.0081 \times AC \times MUAC$

P<0.8 P<0.9 P<0.001 P=0.01

If the interaction is significant, both main variables must have a significant effect, so ignore the other P values.

Interactions

BMI data: interaction between AC and MUAC.



Interactions

BMI data: interaction between AC and MUAC.

interaction = $AC \times MUAC$

Adding the interaction term:

BMI = $8.45 - 0.02 \times AC + 0.03 \times MUAC - 1.22 \times male + 0.0081 \times AC \times MUAC$

P<0.9 P<0.001 P=0.01

The coefficient for AC now depends on MUAC:

 $slope = -0.02 + 0.0081 \times MUAC$

The slope for MUAC depends on AC:

P<0.8

slope = $0.03 + 0.0081 \times AC$

We cannot interpret the main effects on their own.

Sample size	
We should always have more observations than variables.	
Rules of thumb:	
Multiple regression: at least 10 observations per variable.	
Logistic regression: at least 10 observations with a 'yes' outcome and 10 observations with a 'no' outcome per variable.	
Otherwise, things get very unstable.	
	l
	1
Types of regression	
Types of regression Multiple regression and logistic regression are the types of regression most often seen in clinical trials and in the medical literature in general.	
Multiple regression and logistic regression are the types of regression most often seen in clinical trials and in the medical	
Multiple regression and logistic regression are the types of regression most often seen in clinical trials and in the medical literature in general. There are many other types for different kinds of outcome	
Multiple regression and logistic regression are the types of regression most often seen in clinical trials and in the medical literature in general. There are many other types for different kinds of outcome variable:	
Multiple regression and logistic regression are the types of regression most often seen in clinical trials and in the medical literature in general. There are many other types for different kinds of outcome variable: > Cox regression (survival analysis) > Ordered logistic regression (ordered categories)	
Multiple regression and logistic regression are the types of regression most often seen in clinical trials and in the medical literature in general. There are many other types for different kinds of outcome variable: > Cox regression (survival analysis) > Ordered logistic regression (ordered categories) > Multinomial regression (unordered categories)	
Multiple regression and logistic regression are the types of regression most often seen in clinical trials and in the medical literature in general. There are many other types for different kinds of outcome variable: > Cox regression (survival analysis) > Ordered logistic regression (ordered categories) > Multinomial regression (unordered categories) > Poisson regression (counts)	
Multiple regression and logistic regression are the types of regression most often seen in clinical trials and in the medical literature in general. There are many other types for different kinds of outcome variable: > Cox regression (survival analysis) > Ordered logistic regression (ordered categories) > Multinomial regression (unordered categories)	
Multiple regression and logistic regression are the types of regression most often seen in clinical trials and in the medical literature in general. There are many other types for different kinds of outcome variable: > Cox regression (survival analysis) > Ordered logistic regression (ordered categories) > Multinomial regression (unordered categories) > Poisson regression (counts)	