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SUMMARY 

Sometimes we want to estimate the difference in proportions between two groups where some 

subjects appear in both.  We present an approach which does not require the assumption that the 

proportions in the overlapping and non-overlapping samples are the same, and which can be 

extended very easily to comparisons of means, odds, etc.  The method has the disadvantage that we 

need each group to contain some subjects observed once only.  We illustrate the method with an 

example from the UK National Child Development Study, and compare the results with other 

methods. 

 

INTRODUCTION 

Sometimes we want to compare two groups where some subjects appear in both.  For example, we 

might follow a group of people over time, observing them at several points.  People being what 

they are, we may not be able to observe everyone at each time.  We may want to compare the 

subjects at two time points.  Some subjects were observed at both times, some at the first time only, 

and some at the second only.  The first and second samples, corresponding to the first and second 

time points, overlap. 



For example, in the National Child Development Study,1 children were studied at several ages, 

including 11 and 16.  At these ages, parents were asked whether the child had experienced attacks 

of asthma or wheezy bronchitis in the past 12 months.2  There were 9742 children with information 

on both occasions, a further 3952 children with information on the first occasion only and 1790 

children with information on the second occasion only.  We want to estimate the change in 

prevalence of reported disease.   

There are several possible approaches to this problem.  One described recently by Thomson 3 

provides a confidence interval which is easy to calculate, but involves the assumption that the 

proportion in the overlapping and non-overlapping samples are the same.  Here we present an 

alternative approach, which does not require this strong assumption, and can be extended very 

easily to comparisons of means, odds, etc.  It has the disadvantage that we need each sample to 

contain some subjects observed once only. 

 

THE PROPOSED METHOD 

We can separate our subjects into two distinct comparisons: the paired comparison using subjects 

observed on both occasions, and the unpaired comparison of those seen on the first occasion only 

with those seen on the second occasion only. 

We shall assume that the difference we wish to estimate is the same in the paired sample and 

between the two unpaired samples.  However, we do not require the proportions themselves to be 

the same in the paired and unpaired samples.  The method of Thomson 3 requires this because it 

forms combined estimates of the proportions for the first sample and for the second sample. 

Methods for estimating the separate differences and their standard errors are familiar to most 

medical researchers: the McNemar test for paired data and the large sample comparison of two 
proportions for unpaired data.  It is straightforward to get estimates for the paired difference, pd̂ , 

and of the unpaired difference, ud̂ , and their sampling variances.   



Table 1.  Paired and unpaired data in symbolic form 
 

Paired sample 
Second sample First Sample 

Yes No 
Total at second 

Yes n11 n10 n11 + n10 
No n01 n00 n01 + n00 
Total at first n11 + n01 n10 + n00 n 

 
Unpaired samples 

Sample Yes No Total 
First nx k – nx k 
Second ny m – ny m 

 

 

Using the notation of Table 1 we have  
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To obtain the estimate ud̂  we must have both k and m greater than zero. 

We can combine these two estimates by a weighted average.  We find suitable weights, wp and wu, 

then get the combined estimate by  
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We can find weights which make the variance of the weighted estimate a minimum using the 
inverses of the individual variances, wp = 1/Var( pd̂ ) and wu = 1/Var( ud̂ ).4 



The variance of d̂ is then  
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Using these weights ensures that Var( d̂ ) is always less than both Var( pd̂ ) and Var( ud̂ ), so it is 

better to use both paired and unpaired data than it is to drop either the paired or the unpaired 

samples. 

In contrast, the method of Thomson 3 weights the paired and unpaired data by the number of 

subjects. 

This general approach can be used for estimation of the difference between proportions, log odds, 

means, indeed anything for which a standard error can be calculated.  If the proportions in the 

unpaired samples are clearly different from those in the paired sample, log odds may be preferred 

for dichotomous data. 

It is straightforward to check the assumption that the differences in the paired and unpaired samples 

are the same.  We have estimated separately the differences in proportion for the paired and 

unpaired samples. These are assumed to estimate the same quantity and so should be similar.  We 

can test this formally, though as always non-significant results should be treated with caution.  For 
the test, instead of the weighted average we find the difference pd̂  – ud̂ , which has variance 

Var( pd̂ ) + Var( ud̂ ).  Hence we can test the null hypothesis that the difference in the population is 

zero by  
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which, under the usual large sample assumptions, would follow a Standard Normal distribution if 

the null hypothesis were true. 

If we want a test of significance for d̂ , rather than a confidence interval, we can simply divide the 

estimated difference by its standard error and refer to the Standard Normal distribution.  However, 

this does not take into account the presence in the paired and unpaired variances of the two 



proportions, which are the same under the null hypothesis.  We can replace Var( pd̂ ) and Var( ud̂ ) 

by 

2
0110

null )ˆ(Var
n

nn
d p

+=  

�
�

�
�
�

� +
+

−−++
=

mkmk

nnmknn
d yxyx

u
11

)(

))((
)ˆ(Var 2null  

 

APPLICATION TO THE EXAMPLE 

For the National Child Development Study data, Table 2 shows the reported asthma or wheezy 

bronchitis for the paired sample and Table 3 shows data for the unpaired sample.  The different 

structures of Tables 2 and 3 reflect the different structure of the paired and unpaired samples. 

 

Table 2.  Reported asthma or wheezy bronchitis for children with information 
on both occasions 

              
Asthma/wheezy bronchitis at age 16 Asthma/wheezy 

bronchitis 
at age 11 

Yes No Total at age 11 

Yes 151 298 449 (4.74% ) 
No 203 8820 9023 
Total at age 16 354 (3.74%) 9118 9472 

 
 

Table 3. Reported asthma or wheezy bronchitis for children with information 
on one occasion only 

 
Asthma/wheezy bronchitis Age at report 

Yes No Total 
11 215 (5.44%) 3737 3952 
16 73 (4.08%) 1717 9023 

 
 

The proportions reporting asthma or wheeze are larger in the unpaired than in the paired samples at 

age 11 and at age 16, although the difference is not significant (P=0.08, Mantel Haenszel test).  

This difference could reflect a ‘healthy respondent’ effect, where people with problems are less 



likely to respond to research requests.  Thus a method which does not assume that the proportions 

in the paired and unpaired samples are the same is desirable for these data. 

For the paired data, the difference in proportions (age 11 minus age 16) was pd̂  = 0.0474 – 0.0374 

= 0.0100, with standard error sep = 0.00236.  For the unpaired data, the difference was ud̂  = 0.0544 

– 0.0408 = 0.0136, with standard error seu = 0.00591.  The weights are wp = 1/0.002362 = 179546 

and wu = 1/0.005912 = 28630.  The paired sample carries more weight than the unpaired, partly 

because it is larger but also because the paired data give us a more precise estimate of the 

difference.  The weighted estimate is thus 
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and standard error �0.0000048212 = 0.00219.  Hence the 95% confidence interval for the 

difference is 0.0105 ± 1.96×0.00219 which gives 0.0062 to 0.0148.  Thus we estimate that the 

prevalence of reported asthma or wheezy bronchitis in the past 12 months was between 0.6 and 1.5 

percentage points lower at age 16 than at age 11. 

To check the assumption that the differences in the paired and unpaired samples are the same, we 
have pd̂  – ud̂  = 0.0100 – 0.0136 = –0.0036, fairly small compared to the magnitude of the 

difference between the first and second samples.  For the test of significance, 
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which has P = 0.6.  Hence there is no evidence that the change in prevalence differs between the 

paired and unpaired samples. 

For the test of the null hypothesis that there is no difference in proportion between the first and 

second samples, we have  
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The new weights are the inverse of these, 1/0.0000055841 = 179080 and 1/0.000038670 = 25860.  

The weighted estimate using these null variances is  
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and standard error �0.0000048795 = 0.0022090.  The Standard Normal deviate is thus 
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which is highly significant, P<0.0001. 

 

COMPARISON WITH OTHER METHODS 

Thomson 3 estimated the difference between the usual point estimates of the proportions, ignoring 

the pairing: 
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The variance of the difference then allows for the non-independence of xp̂  and yp̂  to give  
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where 11p  is the expected proportion of the n units which are ‘yes’ on both occasions.  We do not 

know this, but we can estimate it by 

n
n

p 11
11ˆ =  

the observed proportion of the n units which are ‘yes’ on both occasions. 

For our data this gives xp̂  – yp̂  = 0.01155, Var( xp̂  – yp̂ ) = 0.00000497885, standard error = 

0.0022313 and hence 95% confidence interval = 0.0072 to 0.0159.  The Thomson method gives 

similar results to the proposed method, with a variance which is very slightly larger.  The numerical 

example given by Thomson cannot be analysed by our method, because m = 0. 

In general, the Thomson method gives more weight to the unpaired sample than does ours, and so 

may be expected to give a larger variance.  How much larger depends on the correlation between 

the variable on the first and second occasion.  On the other hand, the stronger assumption of the 

Thomson method may lead to a smaller variance when it is met. 

For the significance test, Thomson gives a variance under the null hypothesis which is relatively 

complicated to find, involving iteration.  We agree with him that estimation is far preferable 

anyway and so do not think the much simpler formulation here is a great advantage. 

From the significance test point of view, Choi and Stablein 5 investigated seven methods of 

approaching this problem, as follows:  

1. ignoring the paired sample 

2. ignoring the unpaired sample 

3. pairing unmatched observations randomly, discarding any excess 

4. use of a weighted combination of Standard Normal deviates found for the 

5. separate paired and unpaired comparisons, weighted by number of subjects 

6. combining P values for the paired and unpaired comparisons 

7. comparing combined weighted estimates of the first and second 

8. proportions, a method similar to that of Thomson $ ^3 $ 

9. likelihood ratio test 



Choi and Stablein 5 conclude that method 7 is best but computationally difficult, and the methods 4 

and 6 are to be recommended.  As might be expected, methods 1, 2 and 3, which sacrifice some of 

the data, lose power as a result.  All these tests can lead to possibly biased results if the mechanisms 

which caused the incompleteness of the data are related to the factor under investigation. 5  In the 

NCDS example, subjects who provided data on only one occasion included those who refused to 

provide data on the other.  This self-selection should make us reluctant to assume that proportions 

are the same in this group as in those who provided data on both occasions, if we can avoid it.  

Although not significant, the proportions are higher for those with partial information than for those 

with full information.  Our proposed method does not require this assumption. 

Shih 6, 7 has produced a maximum likelihood method, which also requires the assumption that the 

paired and unpaired samples are from the same population (‘missing at random’). 

 

EXTENSION TO ODDS RATIOS 

We can extend the method to odds ratios fairly easily, provided the samples are large enough.  For 
the paired data, the log odds ratio is given by )/(logˆ
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For the example, pl̂  = log(298/203) = 0.38389 with estimated variance 
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The weights are pw  = 1/0.0082818 = 121 and uw  = 1/0.019200 = 52, giving combined estimate 
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and so the standard error is �0.0057803 = 0.076028 .  The 95% confidence interval is thus  

0.35942 ± 1.96×0.076028 which gives 0.21041 to 0.50843.  Exponentiating we get estimated odds 

ratio = 1.43, 95% confidence interval 1.23 to 1.66. 

We can check the assumption that the log odds ratios in the paired and unpaired samples are the 

same. The difference between them is 0.38389 – 0.30247 = 0.08142 with standard error  

�(0.0082818 + 0.019200) = 0.16578.  As the standard error is larger than the estimate there is no 

evidence that the assumption of equal log odds ratios is not met. 

 

ADEQUACY OF THE APPROXIMATION 

Any approach using standard errors for proportions relies on the sample being large enough for the 

standard error to be a reasonable estimate.  For matched samples, only the discordant pairs enter 

into the estimate and its standard error.  The effect of this is that standard errors are not so well 

estimated for n matched pairs as they are for the comparison of two independent groups each of 

size n.  The standard error for both the difference between two independent proportions and for the 

log odds ratio are quite well estimated provided the observed frequencies exceed 5.  (The condition 

applies to observed rather than expected frequencies because we are dealing with estimation rather 

than testing.)  For matched samples, simulations suggest that the standard error of the difference 

between two proportions is reasonable provided the off diagonal frequencies exceed 10, but for the 

log odds ratio these frequencies should exceed 20.  Many authors do not give the standard error 



method for the paired log odds ratio, but quote more complex formulae which give better 

approximations when numbers are small. 

 

DISCUSSION 

The method proposed here seems to us a simple and attractive solution to the problem of comparing 

overlapping samples, which can be applied easily to several types of data.  We have presented the 

extension to odds ratios, it would be equally straightforward to apply the method to the 

combination of paired and two-sample t tests.  No doubt we are not the first to consider this 

approach, and others have either not thought it worth while publishing, or it has been published and 

we and others have failed to retrieve it.  Only the presence in the literature of methods which are 

computationally more difficult 3, 5, 6, 7 or wasteful of data 5 made us think it worth presenting to the 

medical statistics community. 

Compared to the method described by Thomson, 3 our method has two advantages: it is slightly 

computationally easier, particularly for the significance test, and it does not require the assumption 

of equal proportions in the paired and unpaired samples.  In repeated surveys, where data may be 

present on only one occasion because subjects refuse to answer on the other, it is quite possible that 

non-response is related to the outcome.  For such data, the assumption that refusers are from the 

same population as acceptors is a strong one.  In his example, Thomson 3 emphasised that the 

reason for data being present on only one occasion was administrative and unrelated to the variable 

observed.  Our proposed method, which requires only that the difference be the same in the paired 

and unpaired observations, is therefore preferable for many applications.  It has the disadvantage of 

requiring that there be unpaired data in both the first and second samples. 

If unpaired data are present in only one sample, we cannot estimate the difference for the unpaired 

data.  We can only use the unpaired data to improve the estimate of the proportion in the sample to 

which it applies.  To do this, we must assume that the proportion in the paired and unpaired data are 

the same and a method which does not require this assumption cannot be used.  If we cannot make 

this assumption, the only possible approach is to omit the unpaired data altogether. 



Thus we conclude that our method is preferable to others on the grounds of ease of computation 

and less stringent assumptions, provided there are unpaired data in both samples.  If not, the 

method of Thomson 3 would be the method of choice. 
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