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I have sat on several grant-giving bodies and refereed proposals for others, seeing 
many hundreds of power calculations.  I have done hundreds more for medical 
researchers who have put their heads round my door.  I have even done a few on my 
own account.  I find myself increasingly dissatisfied with them. 

When I began my career in medical statistics, back in 1972, little was heard of power 
calculations.  In major journals, sample size often appeared to be whatever came to 
hand.  For example, in that month, September 1972, the Lancet contained 31 research 
reports which used individual subject data, excluding case reports and animal studies.  
The median sample size was 33 (quartiles 12 and 85).  In the British Medical Journal 
in September 1972, there were 30 reports of the same type, with median sample size 
37 (quartiles 12 and 158).  None of these publications reported any explanation of the 
choice of sample size, other than it being what was available.  Indeed, statistical 
considerations were almost entirely lacking from the methods sections of these 
papers.  One of the few that mentioned them at all (Bottiger and Carlson 1972) merely 
noted that ‘Statistical analyses were performed using methods described by Snedecor 
(1956)’, this being a standard statistical textbook.   

Compare the research papers of September 1972 to those in the same journals in 
September 2007, 35 years later.  In the Lancet, there were 14 such research reports, 
with median sample size 3116 (quartiles 1246 and 5584), two orders of magnitude 
greater than in 1972.  In September 2007, the BMJ carried 12 such research reports, 
with median sample size 3104 (quartiles 236 and 23351).  Power calculations were 
reported for 4 of the Lancet papers and 5 of the BMJ papers.   

The patterns in the two journals are strikingly similar (Figure 1).  For each journal, the 
differences in sample size, the number of papers reporting power calculations, and the 
number of individual subject studies published were all statistically significant 
(P<0.0001, P=0.0003, P=0.007, P=0.001,  P=0.02, P=0.008, respectively).  The 
difference in the number of reports is not because of the number of issues; in both 
years, September was a five issue month.   
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Figure 1.  Samples sizes (log scale) for research reports using individual patient data 
in the Lancet and BMJ for September in 1972 and 2007. 

 

In the past there were problems arising from what might appear to be very small 
sample sizes.  Studies were typically analysed statistically using significance tests, 
and differences were often not significant.  What does “not significant” mean?  It 
means that we have failed to demonstrate that there is evidence against the null 
hypothesis, for example that there is no evidence for a difference between two types 
of patient or patients treated with different treatments.  This was often misinterpreted 
as meaning that there is no difference.  Potentially valuable treatments were being 
rejected and potentially harmful ones were not being replaced.  I recall Richard Peto 
presenting a (never published) study of expert opinion on three approaches to the 
treatment of myocardial infarction, as expressed in leading articles in the New 
England Journal of Medicine and the Lancet, and contrasting this with the exactly 
opposite conclusions which he had drawn from a systematic review and fledgling 
meta-analysis of all published randomised trials in these areas. 

Acknowledgement of the problems with small samples led to changes.  One of these 
was the precalculation of sample size so as to try to ensure a study which would 
answer its question.  The method which has been almost universally adopted is the  
power calculation, a method which reflected the significance level approach to 
analysis.   

The idea of statistical power is deceptively simple.  We are going to do a study where 
we will evaluate the evidence using a significance test.  We decide how big a 
difference we want the study to detect, how big a difference it would be worth 
knowing about.  We then choose a sample size so that, if this were the actual 
difference in the population, a large proportion of possible samples would produce a 
statistically significant difference.   

There are problems with power calculations, however, even for simple studies.  To do 
them, we require some knowledge of the research area.  For example, if wish to 
compare two means, we need an idea of the variability of the quantity being 
measured, such as its standard deviation; if we wish to compare two proportions, we 
need an estimate of the proportion in the control group.  We might reasonably expect 
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researchers to have this knowledge, but it is surprising how often they do not.  We 
might suggest that they look at their existing records to find some data, or to look at 
published papers where the same variable has been used.  I was once told that no-one 
had ever made the measurement, in which case, I thought, we are not ready to use it as 
the outcome measure in a clinical trial.  Often we are reduced to saying that we could 
hope to detect a difference of some specified fraction of a standard deviation.  Cohen 
(1992) has dignified this by the name ‘effect size’, but the name is often a cloak for 
ignorance.   

If we know enough about our research area to quote expected standard deviations, 
proportions, or median survival times, we then come to a more intractable problem: 
the guesswork as to effect sought.  ‘How big a difference do you want to able to 
detect?’ is a question which often provokes from the inexperienced researcher the 
answer ‘Any difference at all’.  But this they cannot have, no sample is so large that it 
has a good chance of detecting the smallest conceivable difference.  One 
recommended approach is to choose a difference which would be large enough to 
change treatment policy.  In the VenUS III trial of ultrasound aimed to shorten 
healing time in venous leg ulcers, we said ‘. . . overall we have estimated that 50% of 
ulcers in the standard care group will heal within 22 weeks.  We estimate that 
clinicians and patients would, however, value a reduction in healing time of seven 
weeks (a 32% reduction in healing time, from 22 to 15 weeks) and have based our 
sample size calculation on this premise. To detect a difference in median healing time 
of 7 weeks (from 22 weeks to 15 weeks), we require 306 patients in total.’ (VenUS III 
trial protocol).  This was based on asking some clinicians and patients what would be 
sufficient return to justify the extra time involved in ultrasound treatment.  This is 
unusual, however, and more often the difference sought is the researchers’ own idea.  
An alternative is to say how big a difference the researchers think that the treatment 
will produce.  Researchers are often wildly optimistic and funding committees often 
shake their heads over the unlikeliness of treatment changes of reducing mortality by 
50% or more.  Statisticians might respond to the lack of a soundly based treatment 
difference to go for by giving a range of sample size and the differences which each 
might detect, for the researchers to ponder at leisure, but this only puts off the 
decision.  Researchers might use this to follow an even less satisfactory path, which is 
to decide how many participants they can recruit, find the difference which can be 
detected with this sample, then claim that difference as the one they want to find.  
Researchers who do this seldom describe the process in their grant applications. 

In a clinical trial, we usually have more than one outcome variable of interest.  If we 
analyse the trial using significance tests, we may carry out a large number of tests 
comparing the treatment groups for all these variables.  Should we do a power 
calculation for each of them?  If we test several variables, even if the treatments are 
identical the chance that at least one test will be significant is much higher than the 
nominal 0.05.  To avoid this multiple testing problem, we usually identify a primary 
outcome variable.  So we need to identify this for the power calculation to design the 
study.  As Chan et al (2004, 2004b) found, researchers often change the primary 
outcome variable after the study has begun, which we might suspect to have been 
done after they have seen the results of the preliminary analysis, and their original 
choice may not be reported at all.  This would make the P values invalid and over-
optimistic. 

The next difficulty is the power, the probability that a random sample from the target 
population will produce a significant difference.  This is usually arbitrary, choice 
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being governed by a trade-off between the chance of a significant difference and the 
feasibility of getting the required sample.  Popular choices in grant applications are 
0.90 or 0.80, 90% or 80%.  Wallis Simpson famously remarked that no woman could 
be too rich or too thin, and in health research I would say that no study can be too big 
or too powerful.  I once received the referee’s comment that we could design our 
study for 80% power rather than the 90% we had chosen and so have a smaller sample 
and cheaper study.  I replied that if I could have 99% power I would.  I have never 
liked the idea of staking several years’ work on a 4 to 1 chance. 

These calculations led to some shocks.  I remember a clinician asking me how many 
patients he would need for a trial aimed at reducing mortality following myocardial 
infarction by one quarter.  I estimated that to reduce mortality from 15% to 11.25% 
we would need 1715 in each group.  Why not round this up to 2000, I suggested, to 
allow for a few things going wrong?  I thought he was going to faint.  He thought this 
was impossible and went off to do a trial which was a tenth of the size, which duly 
reported a difference in the hoped-for direction, which was not significant. 

Other statisticians were more forceful than I was and Peto and Yusuf (1981) led the 
call for large, simple trials, the first being ISIS-1 (ISIS-1 Collaborative Group, 1986).  
This was spectacularly successful, as Peto et al. (1995) described.  It probably 
explains the hundred-fold increase in sample size reported in Figure 1.  No clinical 
researcher with aspirations to be in the top flight can now be happy unless a trial with 
a four-figure sample size is in progress. 

Not all studies compare two groups to see whether one group has a higher mean or 
greater proportion than other.  Sometimes we want to compare two treatments which 
we hope will have the same outcome, an equivalence trial.  In CAVATAS 
(CAVATAS investigators 2001), for example, we compared angioplasty with artery 
grafting for stenosis of the carotid artery.  The hope was that in terms of mortality or 
disabling stroke the two treatments would be similar, in which case angioplasty would 
be preferable as a less traumatic procedure.  Researchers wanted to analyse such trials 
using the familiar significance tests.  However, if the usual test to compare two groups 
were used, a non-significant result would mean that there was no evidence that a 
difference existed, not that no difference existed.  This led to the of notion of 
significance being turned round.  Instead of testing the null hypothesis that the 
outcome in the two groups is the same, we test the null hypothesis that the difference 
does not differ by more than a prespecified amount.  In their tables of sample size for 
clinical trials, Machin and Campbell (1987) give sample sizes for trials to check for 
differences between two proportions of 0.05, 0.10, 0.15, and 0.20.  If the test is 
significant, we can conclude that there is good evidence that the treatments do not 
differ by more than this specified amount.  If test were not significant, we would 
conclude that there is insufficient evidence that one or other treatment is not superior 
by more than the pre-specified amount.  A similar procedure works for non-inferiority 
trials, where we want evidence that our new treatment is no worse than an existing 
treatment, though we would not mind if it were better.  A significant result would 
mean that we could conclude that our new treatment was not worse than the control 
treatment by more than the prespecified amount, though we would not conclude that it 
were better.  These analyses seem very awkward and artificial to me and I have never 
used them, but there are power calculations for them, where we have to determine not 
only likely properties of the population but what difference we would consider 
acceptable.  For example, Machin and Campbell (1987) give sample sizes for an 
equivalence trial where we expect one proportion to be 0.20, the second to be 0.15, 



5 

and the treatments would be regarded as equivalent if the difference were not more 
than 0.10.  Whether we could regard treatments as equivalent if the death rate on one 
were 20% and on the other 10% is open to debate. 

Another reaction to the problem of small samples and of significance tests producing 
non-significant differences was the movement to present results in the form of 
confidence intervals, or Bayesian credible intervals, rather than P values (Gardner and 
Altman 1986, Bland 1987).  This was motivated by the difficulties of interpreting 
significance tests, particularly when the result was not significant.  Interval estimates 
for effect sizes were seen as the best way to present the results for most types of 
study, clinical trials in particular, and significance tests were the alternative only to be 
used when an estimate was difficult or impossible.  (In some situations, of course, a 
significance test is the better approach, when the question is primarily ‘is there any 
evidence?’ and there is no meaningful estimate to be obtained.)  This campaign was 
very successful and many major medical journals changed their instructions to authors 
to say that confidence intervals would be the preferred or even required method of 
presentation.  This was later endorsed by the wide acceptance of the Consort standard 
for the presentation of clinical trials (Begg et al. 1996).  We insist on interval 
estimates, confidence or credible, and rightly so.   

If we ask researchers to design studies  the results of which will be presented as 
confidence intervals, rather than significance tests, I think that we should base our 
sample size calculations on confidence intervals, rather than significance tests.  It 
seems quite inconsistent to say that we insist on the analysis using confidence 
intervals but the sample size should be decided using significance tests. 

This is not difficult to do.  For example, the International Carotid Stenting Study 
(ICSS) was designed to compare angioplasty and stenting with surgical vein 
transplantation for stenosis of carotid arteries, to reduce the risk of stroke.  We did not 
anticipate that angioplasty would be superior to surgery in risk reduction, but that it 
would be similar in effect.  If this were so, we would prefer angioplasty because we 
would not need to give general anaesthesia to often vulnerable and elderly patients.  
We might even think some increase in risk would be acceptable in exchange for this 
advantage.  We therefore might think of this as an equivalence or as a non-inferiority 
trial.   

The sample size calculations for ICSS were based on the earlier CAVATAS study 
(CAVATAS investigators 2001), which had the 3 year rate for ipsilateral stroke 
lasting more than 7 days = 14%.  The one year rate was 11%, so most events were 
within the first year.  There was very little difference between the treatment arms.  
The width of the confidence interval for the difference between two very similar 
percentages is given by npp /)100(296.1difference  observed −± , where n is the 
number in each group and p is the percentage expected to experience the event.  If we 
put p = 14%, we can calculate this for different sample sizes: 
     total sample       width of 95% confidence interval 
                        in percentage points 
      500                ±6.1 
     1000                ±4.3 
     1500                ±3.5 
     2000                ±3.0 
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Similar calculations were done for other dichotomous outcomes.  For health economic 
measures, the difference is best measured in terms of standard deviations.  The width 
of the confidence interval is expected to be n/296.1difference  observed σ± ,  
where n is the number in each treatment group and σ is the standard deviation of the 
economic indicator. 
 
     total sample       width of 95% confidence interval 
                        in standard deviations 
      500                ±0.18 
     1000                ±0.12 
     1500                ±0.10 
     2000                ±0.09 
 
These calculations were subsequently amended slightly as outcome definitions were 
modified.  This is the sample size account in the protocol: 

‘The planned sample size is 1500 from fully enrolled centres. We do not 
anticipate any large difference in the principal outcome between surgery 
and stenting. We propose to estimate this difference and present a 
confidence interval for difference in 30-day death, stroke or myocardial 
infarction and for three-year survival free of disabling stroke or death. For 
1500 patients, the 95% confidence interval will be the observed difference 
± 3.0 percentage points for the outcome measure of 30 day stroke, 
myocardial infarction and death rate and ± 3.3 percentage points for the 
outcome measure of death or disabling stroke over three years follow up. 
However, the trial will have the power to detect major differences in the 
risks of the two procedures, for example if stenting proves to be much 
riskier than surgery or associated with more symptomatic restenosis. The 
difference detectable with power 80% are 4.7 for 30 day outcome and 5.1 
percentage points for survival free of disabling stroke. Similar differences 
are detectable for secondary outcomes. We expect to achieve this 
recruitment within 6 years.’ (ICSS 2007) 

Despite my best attempts, power calculations could not be excluded completely.  My 
collaborators felt the need for the security that a conventional approach offered.  
However, the main sample size calculation was based on a confidence interval and the 
study was funded, by research grants from the Stroke Association, Sanofi-Synthélabo 
and the European Union. 

What led me to adopt this approach was that ICSS was to be an equivalence or 
perhaps a non-inferiority trial.  I think that this approach has particular advantages in 
equivalence trials, as deciding how different treatments could be before being 
regarded as equivalent strikes me as even more subjective and problematic than 
deciding what target treatment difference is the smallest that would change practice.  
There are so many considerations which might affect this and they might be different 
for patients in different circumstances.  However, I can see no reason why we should 
use such an approach for other kinds of study. 

I propose that we estimate the sample size required for a clinical trial or other 
comparative study by giving estimates of likely confidence interval width for a set of 
outcome variables.  This does mean that we would not need to think about sample 
size, we would still have to decide whether the confidence interval was narrow 
enough to be worth obtaining.  It does mean that we would no longer have to choose a 
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primary outcome variable, a practice which, as noted above, is widely abused.  It 
would have real advantages in large trials with both clinical and economic 
assessment.  

Power calculations have been useful.  They have forced researchers to think about 
sample size and the likely outcome of the planned study.  They have been 
instrumental in increasing sample sizes dramatically to levels where studies can 
provide  much more useful information.  But they have many problems and I think it 
is time to leave them behind in favour of something better. 
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