
C++ object oriented C++ object oriented
programming for scientific programming for scientific

computingcomputing

Jamshed Anwar

Institute of Pharmaceutical Innovation

University of Bradford

C++ object oriented
programming for scientific computing
C++ object oriented C++ object oriented
programming for scientific computingprogramming for scientific computing

� Problems with traditional structured programming

� Object oriented programming (OOP)

� Objects: e.g. CAtom

� OOP languages for scientific computing &
OOP features of C++

� Atomh++: Objects for molecular simulation

� Elegance & efficiency

� ‘Unbiased’ assessment of C++ OOP

� Testing of code

� Concluding remarks

Problems with traditional
structured programming
Problems with traditional
structured programming

angfrc.f

bndfrc.f

cfgscan.f

corshl.f

coul0.f

coul4.f

coul2.f

coul3.f

conscan.f

dblstr.f

dcell.f

diffsn0.f

diffsn1.f

dlpoly.f

duni.f

error.f

ewald1.f

…

DLPOLY 2.13

> 150 files

Mental image of subroutine interaction

Difficult to grasp;

Difficult to retain over an extended period.

Problems modifying and maintaining code

�20,000 lines Hardwork!

�50,000 lines Nightmare

�100,000 lines Impossible;

lose confidence

Graphics, games etc less of a problem

Large (esp. number-crunching) codes t object-oriented

Defects rates 5-6/1000lines in production code

50-100 defects/1000 lines in new programs

Large number of variables (typically reals)

being passed in arguments�scope for errors

Object-oriented programming (OOP)Object-oriented programming (OOP)

Model system close to ‘tangible’ reality

Easier to comprehend and retain in memory

Traditional programming

VERB-based

Emphasis on doing (action)

e.g. subroutine invert_matrix()

OOP

NOUN-based Emphasis on object

object Matrix

{

function invert()

function transpose()

function multiply(Matrix2)

….

}

Noun: word referring to

person, place or thing

Verb: word expressing idea

of action or being

What comprises an object?

1. Attributes that define

the object

=> data members

2. What can the object do?

=> functions

Object CAtomObject CAtom
{

// Variables defining characteristics

int Index

string Label

double Charge

double Mass

bool IsFrozen

CVectorDouble R

CVectorDouble V

CVectorDouble F

// Behaviour/action/functions/procedure

Get..

Set..

BondAngle(CAtom2&,CAtom3)

TranslateTo(R)

TranslateBy(R)

VerletStep(timestep)

WritePDB

}

Object-oriented programming:
Languages
Object-oriented programming:
Languages

� C++
Numerous features; unnecessary complexity;
operator overloading

� Java
Designed to minimise run-time errors
‘Subset’ of C++ (?)
All memory allocated dynamically; garbage collection

No operator overloading (Java Grande � no progress)
cannot do MatrixC = MatrixA * MatrixB * VectorV
instead MatrixC = MatrixA.multiply(MatrixB.multipy(VectorV))

Multi-threading is part of language
Built-in graphics (front end easy to develop)

� Smalltalk
Not for scientific codes

� C# (?)

OOP features of C++ (1 of 3)OOP features of C++ (1 of 3)

� Objects

� Encapsulation & implementation hiding

Data and functions cannot be accessed without object; Less

chance of changes in one part of code causing inadvertent

problems elsewhere; Strong type-casting;

First encounter: difficult to get objects to talk!

Separate implementation from interface

Can change implementation without changes to interface

� Polymorphism

Same name for functions→consistent interface

function force(Atom1, Atom2, cutoff)

function force(Atom1, Molecule2, cutoff)

function force(Molecule1, Molecule2, cutoff)

OOP features of C++ (2 of 3)OOP features of C++ (2 of 3)

� Inheritance
Reuse code – extend code

� Operator overloading
+ - * / MatrixC = VectorA * MatrixB

� Dynamic memory allocation
Complicated (messy!);
No garbage collection: need to explicitly delete
allocated memory

CMolecule

CRigidMolecule CFlexibleMolecule

CPartiallyRigidMolecule

OOP features of C++ (3 of 3)OOP features of C++ (3 of 3)

� Templates
Same code, different object

Minimise code

CVector<int>

CVector<double>

CVector<bool>

V<> function + (V2<>)

{

CVector<> VT

for (i=0; i<size; i++)

VT.E[I] = E[I] + V2.E[I];

return VT;

}

Molecular dynamics simulationMolecular dynamics simulation

Simulate time evolution of a

system of atoms/molecules

() t
m

t
ttttt

U

i

i
iii

j

iji i

∆+∆−−=∆+

∇−= ∑
)(

)()(2

)(

f
rrr

rf
r

Limitations

Limited system size
Cpu time (100ps -> 10ns)

Accuracy of interaction potential

Periodic boundaries &

minimum image convention

NVE, NVT, NPT & NσT

Employ extended Lagrangian

e.g. L(r,p,H,s)1. Initial configuration

2. Equilibration

3. Production (averages)

NPT ↓GNPT ↓G

Interaction potentialInteraction potential

()[]∑

∑

∑

∑∑

−++

−+

−+

+

−

=

<

torsions

angles

a

bonds

b

ij

ji

ij

ij

ij

ij

ij

ji

nk

k

rrk

r

qq

rr
U

δφ

θθ

πε

σσ
ε

φ cos1

)(
2

1

)(
2

1

4
4

2

0

2

0

0

612

Pair-interactions

N(N-1)/2

LJ: short ranged Rc

qq: long-ranged

(Ewald summation)
Parameters

empirical; from experiment

and optimised

σσ εε

UU
rr

LJ
interaction
LJ
interactionBall & springBall & spring

Atom.h++ :
objects for molecular simulation
Atom.h++ :
objects for molecular simulation

CBarostat

CAtom

CMolecule

CMolecularSpecies

CMolecularEnsemble

CCellCThermostat

CForcefield

CSimulationCell

Bond

Angle

Torsion

Constraint

CMatrix

CVector

CMolecule objectCMolecule object

Data members
{

Name

Index

CAtoms[] // array of

atoms

CentreOfMassR

Mass

DegreesOfFreedom

CBonds[]

CAngles[]

CTorsions[]

CBondConstraints[]

….

}

Functions
{

Align..()

Force()

Force(Molecule2)

Energy()

GetAtom(index)

GetCoordinates()

SetVelocity(V)

IncrementVelocity(dV)

TranslateTo(R)

TranslateBy(dR)

RotateTo(..)

RotateBy(..)

WritePDB(file)

….

}

High memory requirement

Million particle systemsX

CSimulationCell objectCSimulationCell object

Data members
{

CMolecularEnsemble

CCell

CForcefield

CBarostat

CThermostat

CMonitor

CController

….

}

Functions
{

Energy

Force()

ConstraintForce()

Verlet..()

MCCycle()

MC()

MD()

ChemicalPotWidom()

…

MC_ThermodynamicInt.

MD_ThermodynamicInt.

WriteConfig()

….

}

Dynamic memory allocationDynamic memory allocation

Memory leaks: allocation of memory but no deletion

Object Vector Double* E=new double [Size] Vectors A & B

Copy object operation A = B {A.E = B.E}

Since E is a pointer, A.E � B.E

Pointer E of object A is pointing to the same memory location as that

pointer E of object B

The original memory location of A.E has been dereferenced.

Delete B � delete B.E

Delete A � delete B.E (again) ERROR

Solution: Explicit copy constructor

SGI Irix 5.1 (1993/94)

Indy with 16MB memory: completely

unusable in 3-4 days. Transformed

R4000 processor into an intel 386SX.

SGI solution: give away free additional memory

Tools/code to check heap

before & after running code

EleganceElegance

// Advance velocity to V(t+0.5dt)
Velocity_fDT = Velocity_bDT + (Timestep * Force)/Mass;

// Advance position R(t+dt) using new velocity
R_fDT = R + Timestep * Velocity_fDT;

// Calculate Velocity(t)
Velocity = CConstant::HALF * (Velocity_fDT +Velocity_bDT);

()

() ()

()

 −+

 +=

 ++=+

+

 −=

 +

tttt

tttttt

tttttt

δδ

δδδ

δδδ

2

1

2

1

2

1

2

1
.

.
2

1

2

1

vvtv

vrr

avv

Obscure programming by designObscure programming by design

Sheldrick G M. SHELX76, program for crystal structure
determination. Cambridge, England: University of Cambridge,
1976. (Computer program.)

� 4260 citations! SCI 1989

Sheldrick G M. SHELX-90 computer program for determining
crystal structures, Acta Cryst. A, 46:467-73, 1990

� cited 2,870 times ISI

Citation ClassicsCitation ClassicsCitation ClassicsCitation Classics

Obscure programming by design:
Achieving immortality in SCI rankings
Obscure programming by design:
Achieving immortality in SCI rankings

(a) Program be robust; produce sensible numbers even when used for
purposes for which it was not intended by someone who has lost
the instructions (if there were any).

(b) “Comments” in a program and “structured programming” are
superfluous and make it easy for users to “improve” the program
and re-issue it as their own.

(c) Never publish the original algorithms employed (if any), or you will
encourage cheap imitations.

(d) Make sure that the program contains one or two undocumented
“features” or even “bugs” � user dependency and expectation of
getting final/enhanced version will encourage users to cite you.

(e) By definition, the final version is always six months from
completion, and so it never can be released.

Current Contents, 41, ISI, Oct 9, 1989

Obscure programming by design:
Copyright issues
Obscure programming by design:
Copyright issues

Scatter ‘do-nothing code’ throughout the

program. Define some important looking

variables, alter their contents in if-statements

and within loops.

�Your signature

Post copies (x2) of the code (at significant stages

of development) to yourself by special delivery.

Keep certificates of posting and DO NOT open the

packages until the lawyers need to,

EfficiencyEfficiency

Speed of execution

C and C++ should be identical – a design specification

Java ~80-90% of C/C++; in principle Java could be

faster due lack of pointers and garbage collection.

Memory usage

To comply with the idea of objects, all variables

defining the object’s characteristics need to be

defined in the class. Every molecule has info

(variables) re atoms involved in bonds, angles and

torsions; some variables may be redundant for a

particular application; No scope for using variables

transiently. � High memory requirement

Object-oriented programming:
‘unbiased’ assessment
Object-oriented programming:
‘unbiased’ assessment

Code is significantly more accessible
Easy to maintain & modify; Confidence

Major design issues
Spend 5 days pondering;
Implement in ½ day!

Obsession with elegance →
break design (again & again!)

Not good for small codes.
Superfluous code: functions coded for complete
object characterization may never be used

Steep learning curve
> 1 year to write elegant (intuitive) code

Testing of code (1 of 2)Testing of code (1 of 2)

Correct behaviour before efficiency

do 10 I=1,10

a(I) = b(I,10) * sqrt(..)

C write(5,*) print a(I);

….

10 continue

At some later stage, may even remove

commented line!

Testing of code (2 of 2)Testing of code (2 of 2)

Philosophy: test code is part & parcel of production code

Function test()

{

x1=10; y1=-6; z1=25;

x2=7; y2=7; z2=7;

d = distance(x1,x2,y1,y2,z1,z2)

print d, {22.4054}

..

//test angle()

…

//test torsion()

…

}

Test code is typically1/3

of real code;

Takes longer!

Use tools e.g. Mathematica;

Debugger to follow flow & values

If file has been modified

or further functions incorporated,

just run test code to check if

inadvertent editing occurred

Follow bottom up approach

Test each and every function

Further readingFurther reading

Beginners
Teach Yourself C++ by Herbert Schildt

Advanced
1. Effective C++: 50 specific ways to improve

your programs and design, Scott Meyers
2. The C++ programming language

Bjarne Stroustrup (Specification)

Free online resources
http://www.freeprogrammingresources.com/cppbooks.html
Thinking in C++, Bruce Eckel for C programmers

Concluding remarksConcluding remarks

1. Consider OOP for large projects

Be prepared to spend time in the design phase

Don’t forget the end goal:

Simulation => results => publications

2. Test each and every function of your code

using appropriate input data

Test code is part & parcel of the production code

Employ debuggers to follow flow and values

of variable => confidence

