
Mark Bull
EPCC, University of Edinburgh

markb@epcc.ed.ac.uk

Using Java
for Scientific
Computing

2

Java and Scientific Computing?

• Benefits of Java for Scientific Computing
– Portability
– Network centricity
– Software engineering
– Security
– GUI development
– Trained programmers
– Availability and cost

• Problems
– Performance
– Numerical problems
– Parallel programming models

3

Portability

• Java is platform neutral
– Compiler generates byte-code for the Java Virtual Machine (JVM)
– Byte-code is platform independent - runs on any platform with a JVM

• Language Specification
– No platform dependent aspects of the language specification
– e.g. size of primitive data types is specified, not platform dependent

• Hence both Java source and byte-code is extremely portable

4

Why Portability?

• Rapidly changing technology
– Applications codes typically have a longer lifetime than

hardware (3-5 years)
– Much effort spent on porting codes between systems
– Fortran and C only portable with care and expert knowledge

• Publishing applications
– great way to share applications via the WWW
– no problem of conditional compilation, nasty configure scripts
– don’t need to publish source code (just publish byte code)

• Heterogeneous Grid computing
– The user has a single meta-resource for solving their problem
– How to compile if target hardware unknown at job submission

time?
– Java is a natural language choice for the Grid

5

Network Centricity

• Java has considerable built-in support for distributed
computing
– e.g. remote method invocation (RMI) - allows Java to invoke

methods of remote Java objects as if they were local
– Also stream based connections via sockets
– Dynamic class loading facilities allow a JVM to download and

run code from across the internet

• Important for remote visualisation, computational
steering

• Natural candidate at least for the gluing applications
together, if not programming the computational kernels
themselves

6

Software Engineering

• Java is an Object-Oriented Language
– well establish programming paradigm

• Encapsulation and polymorphism
– facilitates code re-use
– reduced development time

• Some scientific applications don’t fit the O-O model nicely,
but you don’t need to use it

– can write Java codes in a procedural manner

• Simpler and cleaner than C++

7

Software Engineering

• Java has many nice features
– No pointers
– Garbage collection
– Type checking
– Array and string bounds checking
– Exception handling
– Standard debugger with JDK
– Extensive standard class libraries

• Faster development times
– Rapid prototyping
– Less buggy code

8

Security

• Java has a number of security features
– Essential for a distributed language

• No direct access to memory
– Cannot forge pointers to memory, overflow arrays, read memory outside

array bounds

• Byte verification process
– Performed on any untrusted code
– Ensure code is well formed - prevents corrupted byte code

• Sandbox
– Untrusted code runs within a “sandbox”
– Has restrictions on what it can do. e.g. no access to local file system

• Digital Signatures
– Can be attached to Java code - trusted code can run without sandbox

restrictions

9

Other Benefits

• Java provides a portable and easy to use GUI library
– Advantage over C/C++ which has platform specific libraries
– Allows GUIs / applets to be developed for scientific applications
– Easier to view and share results

• Trained Programmers
– Java is rapidly becoming the language of choice in undergraduate

courses
– Students / teenagers interested in Java - creating applets for their

web pages.
– Will become easier to recruit good Java programmers, Fortran

programmers (even C programmers?) will become rare.

10

Availability

• Java is available on almost every platform
– PC (Windows and Linux), Sun, SGI, HP, IBM, Hitachi, ….

• Cheap
– Java technology is free for almost all platforms

• Reliable
– A decent Java implementation is seen as important by most vendors

11

Issues

• Performance
– is Java performance unacceptable compared to traditional

languages (e.g. C and Fortran)?

• Numerics
– number of concerns relating to complex numbers, floating

point arithmetic, multidimensional arrays..

• Parallel programming models
– does Java support any standard parallel programming

models?

12

Performance

• Java has a bad name for performance
– early implementations were interpreters
– Java based GUIs can be very poor

• Much effort has been expended on just-in-time compilers.

• Performance is dependent on how code is written
– Standard class libraries often much worse than user-written code
– Heavy OO design can be costly in performance

• In best case
– Within a factor of 2 of highly optimising Fortran and C compilers
– Competitive with gcc

13

Java Grande Benchmarks

See www.epcc.ed.ac.uk/javagrande/ for details

• SOR
– 100 iterations of successive over-relaxation on an NxN grid

• Sparse
– matrix vector multiplication using an unstructured sparse matrix stored in

compressed-row format with a prescribed sparsity structure

• MolDyn
– a simple O(N2) N-body code modelling particles interacting under a Lennard-

Jones potential in a cubic spatial volume with periodic boundary conditions

• Euler
– solves the time-independent Euler equation for flow in a channel with a bump

on one of the walls

14

Pentium III PC

0

5

10

15

20

25

30

35

SOR Sparse Euler MolDyn

Ti
m

e
(s

ec
on

ds
)

Sun JDK 1.4.1 (client)

Sun JDK 1.4.1.(server)

gcc 2.95.3-5

g77 2.95.3-5

15

Sun Ultrasparc III

0

5

10

15

20

25

30

SOR Sparse Euler MolDyn

Ti
m

e
(s

ec
on

ds
)

Sun JDK 1.4.1 (client)

Sun JDK 1.4.1.(server)

Sun WS 6 cc 5.3

Sun WS 6 f90 6.2

16

IBM Power4

0

2

4

6

8

10

12

14

16

18

SOR Sparse Euler MolDyn

Ti
m

e
(s

ec
on

ds
)

IBM J2RE 1.3.0

XL Fortran 7.01

C for AIX 6.0

17

Numerics Issues

• Java was not primarily designed for numerically intensive
computation.

• Some of the early design decisions in the language reflect
this, and now seem cast in stone...

18

Support for IEEE 754

• Java’s floating point arithmetic mostly follows IEEE 754

However:
– Java only supports Round-to-nearest
– Java cannot trap IEEE floating point exceptions
– Java only defines one bit pattern for NaNs

• For most applications this is OK, but some users really do
care about this!

19

Complex Numbers

• Lack of efficient support in Java

• Currently need a Complex class, objects contain e.g. two
doubles
– rather complicated method calls
– behave differently from primitive types
– performance hit involved compared to primitive types

• Technically, there are a number of possible solutions, but
none seem likely to be adopted.

20

Multidimensional Arrays

• In Java multidimensional arrays are arrays of one
dimensional arrays
– optimisation problems
– different row lengths, multiple bounds checking at run-time, not

contiguous in memory

• To improve performance requires true rectangular arrays (all
rows the same length)

• A multi-dimensional array package is available, but the
interface is not very pleasant...

21

Libraries

• Java is a young language
– Fewer standardised numerical libraries available than

traditional HPC languages

• Java Native Interface (JNI) provides Java codes with
access to native code (e.g. MPI and LAPACK)

• Less than ideal
– loss of security, portability, reproducibility, robustness
– run-time overhead in invoking a native method

• Libraries written in Java
– Java Numerical Library (JNL), Visual Numerics
– JAMA, Mathworks + NIST
– see: http://math.nist.gov/javanumerics

22

Parallel programming

• Java has some built in parallel programming paradigms:

• Java Threads
– shared memory paradigm
– tolerable efficiency on moderate size SMP systems
– utility should be improved by addition of Concurrency package in Java

1.5

• RMI (Remote Method Invocation)
– invoke methods on objects in another JVM
– high latency
– very different paradigm from message passing

• BSD Sockets
– high latency
– more suitable for client/server style

23

MPI and OpenMP

• No standardised equivalents in Java
– some research grade projects, but nothing of industrial strength

• Possible to use JNI to access native MPI libraries
– mpiJava, MPJ define interfaces
– not portable solution
– serialization of objects is a bottleneck

• Possible to have a pure Java implementation
– so far performance is disappointing

• Can implement a pure Java OpenMP-like interface on top of
Java threads
– see www.epcc.ed.ac.uk/research/jomp

24

Summary

• Java has some very attractive features as a programming
language

• It was never designed for scientific computing, so there are
some inherent disadvantages
– don’t expect them to be fixed any time soon.....

• In the end, it depends on your priorities for your application.

	Using Java for Scientific Computing
	Java and Scientific Computing?
	Portability
	Why Portability?
	Network Centricity
	Software Engineering
	Software Engineering
	Security
	Other Benefits
	Availability
	Issues
	Performance
	Java Grande Benchmarks
	Pentium III PC
	Sun Ultrasparc III
	IBM Power4
	Numerics Issues
	Support for IEEE 754
	Complex Numbers
	Multidimensional Arrays
	Libraries
	Parallel programming
	MPI and OpenMP
	Summary

