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Java and Scientific Computing?

• Benefits of Java for Scientific Computing
– Portability
– Network centricity
– Software engineering 
– Security
– GUI development
– Trained programmers
– Availability and cost

• Problems
– Performance
– Numerical problems
– Parallel programming models
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Portability

• Java is platform neutral
– Compiler generates byte-code for the Java Virtual Machine (JVM)
– Byte-code is platform independent - runs on any platform with a JVM

• Language Specification
– No platform dependent aspects of the language specification
– e.g. size of primitive data types is specified, not platform dependent

• Hence both Java source and byte-code is extremely portable
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Why Portability?

• Rapidly changing technology
– Applications codes typically have a longer lifetime than 

hardware (3-5 years) 
– Much effort spent on porting codes between systems
– Fortran and C only portable with care and expert knowledge

• Publishing applications
– great way to share applications via the WWW
– no problem of conditional compilation, nasty configure scripts
– don’t need to publish source code (just publish byte code)

• Heterogeneous Grid computing
– The user has a single meta-resource for solving their problem
– How to compile if target hardware unknown at job submission 

time?
– Java is a natural language choice for the Grid
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Network Centricity

• Java has considerable built-in support for distributed 
computing
– e.g. remote method invocation (RMI) - allows Java to invoke 

methods of remote Java objects as if they were local
– Also stream based connections via sockets
– Dynamic class loading facilities allow a JVM to download and 

run code from across the internet

• Important for remote visualisation, computational 
steering

• Natural candidate at least for the gluing applications 
together, if not programming the computational kernels 
themselves 
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Software Engineering

• Java is an Object-Oriented Language
– well establish programming paradigm

• Encapsulation and polymorphism
– facilitates code re-use
– reduced development time

• Some scientific applications don’t fit the O-O model nicely, 
but you don’t need to use it

– can write Java codes in a procedural manner 

• Simpler and cleaner than C++
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Software Engineering

• Java has many nice features 
– No pointers 
– Garbage collection
– Type checking 
– Array and string bounds checking
– Exception handling
– Standard debugger with JDK
– Extensive standard class libraries

• Faster development times
– Rapid prototyping
– Less buggy code
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Security

• Java has a number of security features
– Essential for a distributed language

• No direct access to memory
– Cannot forge pointers to memory, overflow arrays, read memory outside 

array bounds

• Byte verification process
– Performed on any untrusted code
– Ensure code is well formed - prevents corrupted byte code

• Sandbox
– Untrusted code runs within a “sandbox”
– Has restrictions on what it can do. e.g. no access to local file system

• Digital Signatures
– Can be attached to Java code - trusted code can run without sandbox 

restrictions
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Other Benefits

• Java provides a portable and easy to use GUI library
– Advantage over C/C++ which has platform specific libraries
– Allows GUIs / applets to be developed for scientific applications
– Easier to view and share results

• Trained Programmers
– Java is rapidly becoming the language of choice in undergraduate

courses
– Students / teenagers interested in Java - creating applets for their 

web pages.
– Will become easier to recruit good Java programmers, Fortran 

programmers (even C programmers?) will become rare.
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Availability

• Java is available on almost every platform
– PC (Windows and Linux), Sun, SGI, HP, IBM, Hitachi, ….

• Cheap
– Java technology is free for almost all platforms

• Reliable
– A decent Java implementation is seen as important by most vendors
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Issues

• Performance
– is Java performance unacceptable compared to traditional 

languages (e.g. C and Fortran)?

• Numerics
– number of concerns relating to complex numbers, floating 

point arithmetic, multidimensional arrays..

• Parallel programming models
– does Java support any standard parallel programming 

models?
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Performance

• Java has a bad name for performance
– early implementations were interpreters
– Java based GUIs can be very poor 

• Much effort has been expended on just-in-time compilers.

• Performance is dependent on how code is written
– Standard class libraries often much worse than user-written code
– Heavy OO design can be costly in performance

• In best case
– Within a factor of 2 of highly optimising Fortran and C compilers
– Competitive with gcc 
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Java Grande Benchmarks

See www.epcc.ed.ac.uk/javagrande/ for details

• SOR
– 100 iterations of successive over-relaxation on an NxN grid

• Sparse
– matrix vector multiplication using an unstructured sparse matrix stored in 

compressed-row format with a prescribed sparsity structure

• MolDyn
– a simple O(N2) N-body code modelling particles interacting under a Lennard-

Jones potential in a cubic spatial volume with periodic boundary conditions

• Euler
– solves the time-independent Euler equation for flow in a channel with a bump 

on one of the walls
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Sun Ultrasparc III

0

5

10

15

20

25

30

SOR Sparse Euler MolDyn

Ti
m

e 
(s

ec
on

ds
)

Sun JDK 1.4.1 (client)

Sun JDK 1.4.1.(server)

Sun WS 6 cc 5.3

Sun WS 6 f90 6.2



16

IBM Power4
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Numerics Issues

• Java was not primarily designed for numerically intensive 
computation.

• Some of the early design decisions in the language reflect 
this, and now seem cast in stone...
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Support for IEEE 754

• Java’s floating point arithmetic mostly follows IEEE 754

However:
– Java only supports Round-to-nearest
– Java cannot trap IEEE floating point exceptions
– Java only defines one bit pattern for NaNs

• For most applications this is OK, but some users really do 
care about this! 
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Complex Numbers

• Lack of efficient support in Java

• Currently need a Complex class, objects contain e.g. two 
doubles
– rather complicated method calls
– behave differently from primitive types
– performance hit involved compared to primitive types

• Technically, there are a number of possible solutions, but 
none seem likely to be adopted.
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Multidimensional Arrays

• In Java multidimensional arrays are arrays of one 
dimensional arrays
– optimisation problems
– different row lengths, multiple bounds checking at run-time, not 

contiguous in memory

• To improve performance requires true rectangular arrays (all 
rows the same length)

• A multi-dimensional array package is available, but the 
interface is not very pleasant...
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Libraries

• Java is a young language
– Fewer standardised numerical libraries available than 

traditional HPC languages

• Java Native Interface (JNI) provides Java codes with 
access to native code (e.g. MPI and LAPACK)

• Less than ideal
– loss of security, portability, reproducibility, robustness
– run-time overhead in invoking a native method

• Libraries written in Java
– Java Numerical Library (JNL), Visual Numerics
– JAMA, Mathworks + NIST
– see: http://math.nist.gov/javanumerics
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Parallel programming

• Java has some built in parallel programming paradigms:

• Java Threads
– shared memory paradigm
– tolerable efficiency on moderate size SMP systems
– utility should be improved by addition of Concurrency package in Java 

1.5 

• RMI (Remote Method Invocation)
– invoke methods on objects in another JVM
– high latency
– very different paradigm from message passing

• BSD Sockets
– high latency
– more suitable for client/server style 
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MPI and OpenMP

• No standardised equivalents in Java
– some research grade projects, but nothing of industrial strength

• Possible to use JNI to access native MPI libraries
– mpiJava, MPJ define interfaces
– not portable solution
– serialization of objects is a bottleneck

• Possible to have a pure Java implementation
– so far performance is disappointing

• Can implement a pure Java OpenMP-like interface on top of 
Java threads
– see www.epcc.ed.ac.uk/research/jomp



24

Summary

• Java has some very attractive features as a programming 
language

• It was never designed for scientific computing, so there are 
some inherent disadvantages
– don’t expect them to be fixed any time soon.....

• In the end, it depends on your priorities for your application.
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