

Guide 47
Version 1.0

Advanced Fortran 90/95
Programming

This guide provides an introduction to features of the Fortran 90/95 programming
language that are not in its predecessor, Fortran 77. It assumes knowledge at the
level of ITS Guide 138, An introduction to programming in Fortran 90, and
familiarity with a Fortran 90 or Fortran 95 compiler.

Document code: Guide 47

Title: Advanced Fortran 90/95 Programming

Version: 1.0

Date: 15/05/2008

Produced by: University of Durham Information Technology Service

Copyright © 2008 University of Durham Information Technology Service

Conventions:

In this document, the following conventions are used:
 A bold typewriter font is used to represent the actual characters you type at the

keyboard.

 A slanted typewriter font is used for items such as filenames which you should replace

with particular instances.

 A typewriter font is used for what you see on the screen.

 A bold font is used to indicate named keys on the keyboard, for example, Esc and

Enter, represent the keys marked Esc and Enter, respectively.

 Where two keys are separated by a forward slash (as in Ctrl/B, for example), press

and hold down the first key (Ctrl), tap the second (B), and then release the first key.

 A bold font is also used where a technical term or command name is used in the text.

Guide 47: Advanced Fortran 90/95 Programming i

1. Introduction ...1

2. The KIND Parameter for Intrinsic Data Types ...1

2.1 Selecting precision with the KIND parameter ..1

2.1.1 Making precision portable ...1

2.1.2 The KIND number of a variable or constant ...2

2.2 Exercises ...2

3. Derived Data Types and Pointers ..3

3.1 Derived data types ...3

3.1.1 The component selector ..3

3.1.2 Constructors ..4

3.2 Pointers ..4

3.2.1 The pointer attribute ...4

3.2.2 The target attribute ...5
3.2.3 The pointer assignment operator (=>) ...5

3.2.4 The NULLIFY statement ..5

3.2.5 Association status of a pointer..5

4. Array Features and Operations ..8

4.1 Arrays of intrinsic type ...8

4.2 Array Elements and array subscripts ..8

4.3 Array Sections ...8
4.3.1 Subscript triplet ...9

4.3.2 Vector subscript ..9

4.4 Intrinsic Inquiry Functions for Arrays ...9

4.5 Array constructors ..10

4.6 Array Initialization and array constants ...11

4.7 Whole Array Operations ..11

4.8 Arrays as subscripts of other arrays ..12

4.9 Array expressions, elemental array operations and assignment12

4.10 Elemental Intrinsic Functions ..13

4.11 Mask arrays ...13

4.12 Transformational Intrinsic Functions for numeric arrays14
4.13 The WHERE construct ..16

4.14 Exercices ...16

5. Dynamic Storage Allocation ..17

5.1 About Dynamic memory ..17

5.1.1 Dynamic Storage for Arrays ..17

5.1.2 The ALLOCATABLE attribute and statement ..17

5.1.3 The ALLOCATE statement ...17
5.1.4 The allocation status of an array and the ALLOCATED function18

5.1.5 De-allocating storage of an array ...18

5.1.6 Variable-sized arrays as component of a structure18

5.1.7 Dynamic Storage Allocation for Pointers ..18

5.2 Mixing pointers and arrays ..19

5.3 Exercises ...19

6. Program Units, Subprograms and Modules ..21

6.1 Fortran Procedures: Functions and Subroutines ...21

6.1.1 The INTENT attribute of procedure arguments ...21

Guide 47: Advanced Fortran 90/95 Programming ii

6.2 A comparison of the structure of the three kinds of program units. 22

6.3 Modules ... 22

6.3.1 Definition of a module.. 23

6.3.2 USE of a module .. 23
6.4 Overloading the build-in operators .. 24

6.5 Generic Procedures... 25

6.6 Summary ... 25

6.7 An extended example ... 25

6.8 Exercises ... 27

Guide 47: Advanced Fortran 90/95 Programming 1

1. Introduction

2. The KIND Parameter for Intrinsic Data Types

Fortran 90/95 introduced a mechanism to specify the precsion of the intrinsic
data types with the KIND parameter.

2.1 Selecting precision with the KIND parameter

The terms single and double precision floating point numbers are not precisely
defined and depend on the computer. Usually double precision values have
approximately twice the precision of single precision values. On many
computers single precision floating point numbers are stored in 4 bytes (32
bits) with typically 24 bits for the mantissa and 8 bits for the exponent. This is
sufficient for about 7 significant decimal digits and an exponent approximately
in the range 10^-38 to 10^38. Double precision has then 64 bits with 53 bits
usually devoted to the mantissa and 11 bits to the exponent. This is sufficient
to give a precision of approximately 16 significant decimal digits and an
exponent in the range 10^-308 to 10^308. However on some computer
architectures single and double precision values are represented by 64 and
128 bits respectively. Therefore a program that runs properly in single precision
on such a computer may need double precision when run on a 32 bit computer.

To make Fortran programs more portable between different computer systems
the KIND parameter for intrinsic data types was introduced. Single and double
precision real numbers are different kinds of the real data type, specified with a
different KIND number. On some systems it indicates the number of bytes of
storage for the type, however the standard does not require this. Therefore the
KIND number itself is not portable between computer architectures but is used
to distinguish between different kind of literal constants by appending it to the
value separated by an underscore. For example

 INTEGER, PARAMETER :: single = 4

 REAL (KIND = single) :: a , b

 a = 1.2_single , b = 34.56E7_4

If the KIND number for a variable or constant is not specified then it is of the
default kind and its value depends on the computer platform.

2.1.1 Making precision portable

Since the KIND number is not portable, Fortran provides functions to specify the
required precision across platforms. The compiler will then select the smallest
value of the KIND parameter that still can represent the requested precision, or
otherwise it will fail to compile. In the case of integers the number of digits can be
specified with the SELECED_INT_KIND function which has as argument the
number of digits (ignoring the sign) and returns a default integer with the minimum
KIND number.

Example

To specify an integer type with up to 9 decimal digits the following declarations can
be used:

INTEGER, PARAMETER :: long = SELECED_INT_KIND (9)
INTEGER (KIND = long) :: n , m

n = 1_long , m = -10_long.

Guide 47: Advanced Fortran 90/95 Programming 2

The range of values for n and m is thus between -999999999 and +999999999.

The corresponding intrinsic function for real numbers is

SELECTED_REAL_KIND (p , r)

which returns the minimum KIND number necessary to store real numbers with a
precision of p decimal digits and an exponent in the range 10^-r to 10^r.

Example
INTEGER, PARAMETER :: dble = SELECTED_REAL_KIND (15, 300)
REAL (KIND = dble) :: planck_constant = 6.631 * 10 ** -31_dble
PRINT *, 'Planck's constant is ', planck_constant

2.1.2 The KIND number of a variable or constant

Fortran 90/95 also provides an intrinsic function to determine the kind
number of any variable or constant.

 WRITE (*, „(„‟The KIND number for default integer is „‟ , I2) „) KIND (0)

 WRITE (*, „(„‟The KIND number for default single precision is‟„ , I2) „) KIND (0.0)

 WRITE (*, „(„‟The KIND number for default double precision is „„ , I2) „) KIND (0.0D0)

On most systems this will return the values 4, 4 and 8 respectively which
could, but not have to be, the number of bytes used for storage.

2.2 Exercises

1. Write a program that prints the KIND value for default integers, real and
double precision numbers on your computer.

2. Write a program to find the largest possible value of the KIND number for
integers that your computer allows.

Guide 47: Advanced Fortran 90/95 Programming 3

3. Derived Data Types and Pointers

3.1 Derived data types

It is possible to create new data types in Fortran 90/95, alongside the intrinsic
data types. These are called derived data types and are build from any number
of components. The components can be intrinsic data types and any other
derived data types.
This is an example of an object oriented feature, sometimes called abstract
data types.

TYPE [::] type-name
component-definitions
END TYPE [type-name]

Example

TYPE :: Person

 CHARACTER (LEN = 10) :: name

 REAL :: age

 INTEGER :: id

END TYPE Person

Declaration of a variable (or object) of the type type-name is as follows

TYPE (type-name) :: var1, var2, ...

Example

TYPE (Person) :: john , mary

Each instance of a derived data type is called a structure. Arrays of derived
data types can be defined as well,

TYPE (type-name) , DIMENSION (dimensions) :: array-name

Example

TYPE (Person), DIMENSION (10) :: people

3.1.1 The component selector

The components of a structure can be accessed with the component
selector. This consists of the name of the variable (structure) followed by a
percentage sign and the component name

var % component

and in the case of an array of a derived type

array-name (subscripts) % component

Example

PRINT*, „John‟‟s age is „, john%age

PRINT*, „The name of person number 2 is „, people(2)%name

Guide 47: Advanced Fortran 90/95 Programming 4

3.1.2 Constructors

These can be used to initialise a structure, that is, its components.

When struct-name is of derived type type then

struct-name = type (component-1 , ... , component-n)

Note

 All components of type must be present with a value in the argument
list.

 The order of the arguments has to be the same as the order in which
the components are defined in the derived type definition.

Example

john = Person („Jones‟, 21, 7) ; mary = Person („Famous‟, 18, 9)

people (5) = Person („Bloggs‟, 45, 3045)

people (6) = john

3.2 Pointers

3.2.1 The pointer attribute

Pointers are special kinds of variables (objects) that can be made to refer to
other variables (of the same type) or other pointers (of the same type). Storage
for pointers is defined by assignment to a target or with the ALLOCATE
statement (Sect).

assignin

p => t where t is a target attribute makes p an alias of t

provide information where an object can be found. They are used to allocate
unnamed storage and to pass arrays by reference in subprograms.

Pointers can be considered as variables that have certain variables as values.
This requires the declaration of the pointer and the target attribute.
The type of the objects that can a pointer can point at has to be stated in its
declaration. Pointer objects are declared with the POINTER attribute

type , POINTER :: ptr [, ptr]
type , DIMENSION (: [, ;]) , POINTER :: ptr [, ptr]

where ptr is a pointer to scalars and arrays respectively.

Alternatively, a POINTER statement can be used, after the object has been
declared:

type :: ptr [, ptr]
POINTER :: ptr [, ptr]

Note:

 type can be a structure (derived type).

 If the pointer is an array then only the rank has to be declared and the
bounds are taken from the array that it points at.

Guide 47: Advanced Fortran 90/95 Programming 5

3.2.2 The target attribute

A variable can be become a target for a pointer by adding the TARGET
attribute on declaration

type , TARGET :: ptr [, ptr]
type , DIMENSION (shape) , TARGET :: ptr [, ptr]

Targets can only be associated with pointers of the same type. Note that other
pointers do not need the target attribute.

Summary:

 Pointers can only be assigned to variables that have the TARGET
attribute or to other pointers. If the pointer is an array its rank must
match the rank of the target.

 Once a pointer is associated with a target then the pointer can be used
in the same way as the target (in expressions), it is an alias for the
target

 A pointer cannot be specified in a DATA, EQUIVALENCE, or
NAMELIST statement.

3.2.3 The pointer assignment operator (=>)

The pointer assignment operator associates a pointer with a target

pointer => target

where pointer can be the name of a pointer or a structure component that is a
pointer and target can be the name of a variable with the TARGET attribute or
a reference to a pointer-valued function.

In all these cases the type of the pointer must match that of the target.

3.2.4 The NULLIFY statement

A pointer can be made to point at nothing with the NULLIFY statement
NULLIFY (var [, var] ...)

Example
 REAL, POINTER :: temperature
 REAL, POINTER, DIMENSION (:) :: position, velocity
 REAL, POINTER, DIMENSION (:, :) :: potential
 CHARACTER, POINTER :: name

 NULLIFY (temperature, position, velocity, potential, name)

3.2.5 Association status of a pointer

Pointers have an association status. For example if a pointer points to an
object it is called associated. The association status can be one of the
following:

 undefined: This is the initial association status on declaration of a
pointer in Fortran 90. This is an undesirable state as there is no way to
test for it. This can be avoided in Fortran 95 where a pointer can be
disassociated on initialization with the NULL () intrinsic function.

 associated: The pointer points to a target or unnamed object.

Guide 47: Advanced Fortran 90/95 Programming 6

 disassociated: The pointer does not point at any object. In Fortran90
this status can be achieved with a NULLIFY statement applied to an
undefined pointer. Fortran95 has an intrinsic function NULL () for this
purpose.

To determine whether a pointer is associated with a particular target the
intrinsic function

ASSOCIATED (pointer [, target])

returns a logical value with the following meaning:

 If only pointer appears, the result is true if it is currently associated with
any target; otherwise, the result is false.

 If target also appears and is a target variable, the result is true if pointer
is currently associated with target; otherwise, the result is false.

 If target is a pointer, the result is true if both pointer and target are
currently associated with the same target; otherwise, the result is false.
(If either pointer or target is disassociated, the result is false.)

Example Illustration of the difference between ordinary assignment (=) and
pointer assignment (=>)
 REAL, TARGET :: a, b
 REAL, POINTER :: p1, p2

 NULLIFY(p1, p2) ! Fortran 90 ?????????
! some values
 a = 1.1
 b = 3.2
 PRINT*, 'a = ', a, ' b = ', b ! gives a = 1.1 b = 3.2
 p1 => a
 p2 => b
 PRINT*, 'p1 = ', p1, ' p2 = ', p2, ' p1 + p2 = ', p1 + p2 ! Note: Can print pointers just as

variables!
 ! gives p1 = 1.1 p2 =3.2 p1 + p2 = 4.3

 p2 = p1 ! p2 still points to b!
 PRINT*, 'p1 = ', p1, ' p2 = ', p2 ! gives p1 = 1.1 p2 =1.1
 PRINT*, 'a = ', a, ' b = ', b ! gives a = 1.1 b =1.1
 ! b has been overwritten !

 a = -4.5
 b = 6.7
 ! p1 still points to a, p2 to b
 PRINT*, 'p1 = ', p1, ' p2 = ', p2 ! gives p1 = -4.5 p2 = 6.7
 p2 => p1
 PRINT*, 'a = ', a, ' b = ', b ! not changed
 PRINT*, 'p1 = ', p1, ' p2 = ', p2 ! gives p1 = -4.5 p2 = -4.5

Example
 TYPE POINT
 REAL :: x
 REAL :: y
 END TYPE

 TYPE(POINT), TARGET :: a, b, c
 TYPE(POINT), POINTER :: pa, pb, pc

 TYPE(POINT), DIMENSION(3) :: tri1 = (/ POINT(1.0, -2.0), POINT(-3.0, 4.0), &
 POINT(5.0, -6.0) /)

Guide 47: Advanced Fortran 90/95 Programming 7

 TYPE(POINT), DIMENSION(3), TARGET :: tri2
 TYPE(POINT), DIMENSION(:), POINTER :: ptri ! assumed shape!

 REAL :: x1, y1, x2, y2, x3, y3
 REAL, TARGET :: x4, y4
 REAL, POINTER :: ptr

 NULLIFY(pa, pb, pc, ptri, ptr) ! Fortran 90

 x1 = 1.0 ; y1 = -2.0
 x2 = -3.0 ; y2 = 4.0
 x3 = 5.0 ; y3 = -6.0
 PRINT*, 'Area is ', area_coords(x1, y1, x2, y2, x3, y3)
 x4 = x1 ; y4 = y1
 ptr => a

Guide 47: Advanced Fortran 90/95 Programming 8

4. Array Features and Operations

4.1 Arrays of intrinsic type

In various areas vectors and matrices are required. Fortran provides for
these compound variables the array type. An array of an intrinsic type is
declared with the dimension attribute following the type of the array elements.
An array can have up to 7 dimensions.

The general format is

type , DIMENSION (index_range [, index_range]...) :: array_name

type :: array_name (index_range [, index_range]...)

General rules:

 the subscript range is specified by a lower and upper bound

 the lower bound is optional and the default value is 1

 the rank of an array is the number of dimensions

 the number of elements along a dimension is the extent in that
dimension

 the shape of an array is the sequence of extents

 the size of an array is the total number of elements (the product of the
extents for all dimensions)

Example:
REAL, DIMENSION (10) :: a
REAL :: b (5, 3)

4.2 Array Elements and array subscripts

Array elements are addressed with the array name followed by the indices or
subscripts in brackets, for example a (2).
Each array element is a scalar and the usual operations for scalar variables
apply, as for example in the expression

2.0 * a (2) + a (3) * b (2, 3)

Elements of an array are referenced by subscripts,

 the number of subscripts must equal the rank and

 each subscript must lay within the range for that dimension.

4.3 Array Sections

These are subsets of arrays, specified by replacing one or more array
subscripts with.
An array section of an array is a subset of the elements of the array and
defined by replacing one or more subscripts by a subset in the form of a
subscript triplet or a vector subscript. An array section is itself an array and
all the usual rules for arrays apply. The rank of an array section is the same as
the rank of the array or smaller.

Guide 47: Advanced Fortran 90/95 Programming 9

4.3.1 Subscript triplet

These have the form

subscript-1 : subscript-2 : stride

This works much like an implied DO loop.

Example
REAL :: a (3, 5), b (2, 2) , c (5)
The array a has the structure
 a(1,1) a(1,2) a(1,3) a(1,4) a(1,5)
 a(2,1) a(2,2) a(2,3) a(2,4) a(2,5)
 a(3,1) a(3,2) a(3,3) a(3,4) a(3,5)
Then the array section a (1 : 2, 2 : 4 : 2) can be assigned to array b which is
conformable
 b = a (1 : 2, 2 : 4 : 2)
The array b has the elements
 a(1,2) a(1,4)
 a(2,2) a(2,4)

An array section with rank one is

 c = a (2 , :)

Example
 INTEGER :: i
 REAL :: a (10) = (/ (REAL(i) , i = 1, 10) /)
 PRINT*, a
 a (2 : 10 : 2) = a (1 : 9 : 2)
 PRINT*, a

4.3.2 Vector subscript

A vector subscript is a rank one integer array where the elements are the
subscripts that specify the array section. For example to access the elements
a(1, 2) , a(2, 2) , a(1, 4) and a(2, 4) you can use

INTEGER :: p = (/ 2 , 4 /) and set

B = a ((/ 1 , 2 /) , p)

4.4 Intrinsic Inquiry Functions for Arrays

There are number of intrinsic functions that can be used to inquire about the
general properties of a given array, namely its rank, extents etc.

SIZE (array-name [, dim])

This function returns a default integer which is the number of elements (the
size) of the array if the dimension number dim is absent, or, the extent of the
array along dimension dim if it is present.

 Returns a default INTEGER

 dim is an optional integer, if it is absent its values is assumed to be one

 If dim is present it must be a valid dimension of array.

Information about the shape of an array can be found with some intrinsic
functions.

Example
SIZE (a) returns 10, SIZE (b) returns 15 whereas SIZE (b, 2) returns 3.

Guide 47: Advanced Fortran 90/95 Programming 10

SHAPE (array-name)

returns a one dimensional array of default integers with extent (= size) equal to
the rank of array-name and the elements give the extent of array-name in
each dimension

Example
REAL :: s1(1) , s2(2)
s1 (1) = SHAPE (a) ! gives the array s1 with one element and value s1(1)
equal to 10.
s_2 = SHAPE(b) returns the rank-one array s2 with elements 5 and 3.

LBOUND (array-name [, dim])
when the dimension dim is absent returns a rank-one default integer array
holding the lower bound for the dimensions
when dim is present returns a default integer with as value the lower bound for
the dimension

UBOUND (array--name [, dim])
as for LBOUND except it returns upper bounds.

UBOUND (array-name , dimension)
type , DIMNSION (range) :: array
INTEGER, OPTIONAL :: dim

RESHAPE (array , shape , pad , order)

Elements of an array are specified by subscripts
the number of subscripts must equal the rank
each subscript must lay within the range for that dimension

4.5 Array constructors

Array constructors can be used to initialize or assign values to a whole array or
array section. The values are given as a list between the delimiter pair (/ and /)
as

(/ value-list /)

where value in value-list is either an expression or an implied DO loop. The
values in the list are used in array element order and define a rank one array.
The implied DO loops may be nested.

Example
 REAL :: a (5) , b (3)

 a = (/ 1.0, 2.0, 3.0, 4.0, 5.0 /)

 PRINT*, a

 b = (/ (REAL(i), i = 1, 3) /)

 PRINT*, b

An array of rank greater than one can be constructed with the intrinsic function
RESHAPE.

Example
 REAL :: a (3, 5)

 INTEGER :: i, j
 a = RESHAPE ((/ (REAL(i), i = 1, 15) /) , (/ 3, 5 /))

 PRINT*, ((a(i , j) , j = 1, SIZE(a, 2)), i = 1, SIZE(a , 1)

Guide 47: Advanced Fortran 90/95 Programming 11

The first argument of the RESHAPE function is the array that has to be
reshaped; the second argument specifies that the set of 15 real numbers are
stored as an array with 3 rows and 5 columns.

Array constructors can also be used with constant objects of derived type in the
value list.

4.6 Array Initialization and array constants

Just as with scalar variables it is possible to initialize arrays during declaration
and to define constant arrays. This can be done with an array constructor or
with a whole array assignment. Fortran 77 has the DATA statement for initialization of

arrays

Example
 INTEGER, PARAMETER :: three = 3

 INTEGER :: I , j
 REAL :: b (three) = (/ (REAL(i), i = 1, three) /)
 REAL, PARAMETER :: a (5) = (/ 1.0, 2.0, 3.0, 4.0, 5.0 /)

 REAL, PARAMETER :: c(5, 6) = 1.0 ! all elements initialized to 1.0

 REAL :: d (-3 : 3 , 10)

 DATA ((d (i , j) , I = -3 , 3), j = 1, 10) / 70 * 1.0 /

4.7 Whole Array Operations

In order to simplify code arithmetic operations on arrays can be written
symbolically in the same fashion as mathematical expressions. This also
reduces the risk of coding errors but a more important reason is that the
compiler can optimize the order in which the underlying scalar operations
on the array elements are executed on the target computer architecture.

Array expressions and assignment
An array expression may be assigned to an array of the same shape. Such
an assignment is done on an element by element basis.

To be able to operate on an array element by element the two arrays must
have the same shape.
Two arrays are called conformable if they have the same shape.
A scalar is conformable with any array.

Note: The correspondence is by position in the extent of each dimension,
not by subscript value. For example, the two arrays declared as

REAL, DIMENSION :: a(-2 : 2 , 3), b(5 , 3)

are conformable.

Example: A system of N point particles in 3D space is described by
position and velocity vectors and interact through a mutual potential field.
The data declarations to describe this are

INTEGER :: N = 100 ! Initialised here to some value.

REAL, DIMENSION :: r (3, N), v (3, N), F (3, N, N)
INTEGER :: i, j

! some operations:
! add postion of particle 1 and 2:
SUM = R(:, 1) + R(:, 2)

Guide 47: Advanced Fortran 90/95 Programming 12

The distance between particles i and j is

d (:) = r (:, i) - r (:, j)
d = SQRT ((r (:, i) - r (:, j)) ** 2)

Often the velocity of a particle is approximated by a finite difference. If
r_old (: , i) and r_new (: , i) are the position vectors of particle i at times
t1 and t2 respectively then its average velocity vector may be approximated
by the expression

v_average (: , i) = (r_new (: , i) - r_old (: , i)) / (t2 - t1)

In fact this can be written as a whole array operations for all particles:

v_average (: , :) = (r_new (: , :) - r_old (: , :)) / (t2 - t1)

However whole array multiplication is not what might be expected.

Example The Inner product of two vectors.
REAL :: x (3), y (3), prod(3)
REAL :: sum
prod = x * y

sum = SUM (x * y)

The product of the arrays x and y is evaluated on an element by element
basis and assigned to prod with elements prod (i) = x (i) * y (i). The
intrinsic SUM function returns the sum of the elements of prod.

4.8 Arrays as subscripts of other arrays

The range of an array can also be defined with a rank-one integer array
 INTEGER, DIMENSION :: odd (5) = (/ (i, i= 1, 9, 2) /), even (5) = (/ (i, i= 2, 10, 2)
/)
 ! same as odd = (/ 1, 3, 5, 7, 9 /) ; even = (/ 2, 4, 6, 8, 10 /)
 REAL :: a (10)
 a (odd) = 1.0
 a (even) = - 1.0
 PRINT*, a

The range of an array can also be defined with a rank-one integer array

INTEGER, DIMENSION :: odd (5) = (/ (i, i= 1, 9, 2) /), even (5) = (/ (i, i= 2, 10, 2) /)
! same as odd = (/ 1, 3, 5, 7, 9 /) ; even = (/ 2, 4, 6, 8, 10 /)
REAL, DIMENSION :: a (10), b (10, 10)
a (odd) = 1.0
a (even) = - 1.0
! this creates a 'checker board' pattern of one and zeros
b (odd, even) = 1.0
b (even, odd) = 0.0
! also
a = b (1, even)
b (even, odd) = 1.0 - b (odd, even)

4.9 Array expressions, elemental array operations and assignment

Arithmetic operations on arrays can be written symbolically in the same
fashion as mathematically. This also reduces the risk of coding errors but
more importantly reason is that the compiler can optimize the order in
which the scalar operations are executed as it sees fit for the target
computer architecture. This includes addition, subtraction, multiplication,
division and exponentiation

Guide 47: Advanced Fortran 90/95 Programming 13

An array expression may be assigned to an array of the same shape. Such
an assignment is done on an element by element basis.

The scalar arithmetic operations of addition, subtraction, multiplication, division
and exponentiation can be generalized to arrays. These are called elemental
operations because they work on an element by element basis.
For example
 REAL :: a (3, 5), b (3, 5)

 a + b

The sum is an array expression with elements a (i, j) + b (i, j) with 1 <= i <= 3
and 1 <= j <= 5.
To be able to operate on two arrays on an element by element basis they both
must have the same shape.
Two arrays are called conformable if they have the same shape.
A scalar is conformable with any array.
Note: The correspondence is by position in the extent in each dimension, not
by subscript value. For example the two arrays a (5, 6) and b (-2 : 2 , 0 : 5)
have the same shape although their lower and upper bound values differ.

Note: Whole array multiplication and division are not what might be expected.
For example the multiplication of two square matrices a and b (rank 2 arrays
with same extent in each dimension) would not form a product with the usual
rule of matrix multiplication. Instead the result would be a square matrix with
elements a (i, j) * b (i, j).

4.10 Elemental Intrinsic Functions

Most intrinsic functions for scalars can also be applied to arrays. The intrinsic
function will be applied on an element by element basis. Usually the same
result could be obtained by applying the intrinsic functions inside a series of
nested DO loops.
Example:
b = SIN (a)
c = ABS (a + SQRT (b))
This requires a , b and c all having the same shape.

 elemental, each element is operated on in the same way

 singel operation to the whole array, e.g. the sum of all elements

 operations on indvidual elements

 match certain conditions

4.11 Mask arrays

These are arrays of LOGICAL type and are used to select a subset of array
elements for which the correponding mask array element is true. This is usefull
in whole array operations when an operation should only be applied array
elements that satisfy some condition. For example
 INTEGER :: i
 REAL :: a (5) = (/ ((-1.0) ** i , i = 0, 4) /)
 LOGICAL :: lg (SIZE (a))
 PRINT*, a
 lg = a > 0.0
 PRINT*, lg

Guide 47: Advanced Fortran 90/95 Programming 14

4.12 Transformational Intrinsic Functions for numeric arrays

The following intrinsic functions have an array of numeric type as argument
and some optional arguments to control the behaviour of the function.

 They all return a scalar result of the same type as the array.

 If the dimension dim is present then the function will be applied only to
the elements in that dimension.

 If the LOGICAL array mask is present then it must be conformable to
array and the function will be applied only to those elements for which
the corresponding element of the mask array is true.

SUM (array [, DIM = dim]) returns the sum of the elements of a numeric
type array and zero if its size is zero

PRODUCT (array [, DIM = dim]) returns the sum of the elements of a
numeric type array and zero if its size is zero

MAXVAL (array [, DIM = dim]) returns the maximum value

MINVAL (array [, DIM = dim] [, MASK = mask]) returns the minimum
value

MAXLOC (array [, MASK = mask]) returns a rank-one with the rank of
array as size and the subscripts of the maximum value as elements

MINLOC(array [, MASK = mask]) as MAXLOC except for the minimum
value

DOT_PRODUCT
gives the sum of all products of corresponding elements as in
a (i, j) * b (i, j) with 1 <= i <= 10, 1 <= j < = 20

Example
 REAL, DIMENSION (5) :: a = (/ 1.2, -0.3, 0.0, 1E-5, 1.6E3 /)
 REAL :: min
 INTEGER :: loc (SIZE (SHAPE (a)))
 ! find the smallest positive number in this array and its index
 PRINT*, a > 0.0
 min = MINVAL (a, a > 0.0)
 loc = MINLOC (a , a > 0.0)
 PRINT*, min, loc, a (loc (1))

single argument case
have an array as argument and some optional arguments to control the
behaviour of the function return a scalr result

ALL (mask [, dim])

ANY (mask [, dim])

in the following mask is of type logical, it can also be an expression

ALL(mask, dim)

ANY(mask, dim)

Guide 47: Advanced Fortran 90/95 Programming 15

Returns a logical array

Example:
If A(1:10, -4:4) is a REAL array then ANY(A(:,:) < 0.0) will return .TRUE. if any
array elements are negative, otherwise .FALSE.
If a set of 10 files have to be opened and the STATUS value returned for each
file is stored in a vector IOSVECTOR(10) then ANY(IOSVECTOR(:) /= 0) will
return .TRUE. if there was an error for at least one file.

COUNT (mask [, DIM = dim]) default integer the number of elements
of mask that are .TRUE.
mask a LOGICAL array

SUM (array [, DIM = dim]) returns the sum of the elements of a
numeric type array and zero if its size is zero

PRODUCT (array [, DIM = dim]) returns the sum of the elements of a
numeric type array and zero if its size is zero

MAXVAL (array [, DIM = dim]) returns

MINVAL (array [, DIM = dim] [, MASK = mask]) returns

CEILING(array)
integer elemental fnx
array of type real, returns scalar of type integer, which is the least integer
greater than or equal to array
FLOOR(array)
returns the greatest default??? integer less than or equal to array

Arithmetic operations on elements of a single matrix

SUM(array, dim, mask)
type[, DIMENSION(:[,:])] :: array
INTEGER, OPTIONAL :: dim

PRODUCT(

Operations on multiple arrays

MERGE(truearray,falsearray,maskarray)
All arguments must have the same shape, the return type is of that shape.
maskArray is logical

MERGE(true, false, mask)

elemental function
true and false are of same type and shape
return type is same type and shape as parameters true and false
mask is type logical and same shape as true and false
Example:
INTEGER, DIMENSION :: A(10) = / 0,1, 2, 3,4, 5, 6,7 ,8 ,9/
A(:) = MERGE(0, A(:), A(:) > 5) ! sets all array values greater than 5 to zero:

matrix transpose

Guide 47: Advanced Fortran 90/95 Programming 16

4.13 The WHERE construct

[name :] WHERE (mask-expr)
 array-assignment
ELSEWHERE
 array-assignment
END WHERE

Example
 INTEGER :: i
 REAL :: a (5) = (/ ((-1.0 * (i + 1)) ** i, i = 0, 4) /)
 REAL :: b (5)
 PRINT*, a
 WHERE (a >= 0.0)
 b = SQRT (a)
 ELSE WHERE
 b = SQRT (-a)
 END WHERE
 PRINT*, b

4.14 Exercices

1) Find the rank of an array using intrinsic functions.

2) Write a program that reads two vectors of length 3 and calculates the inner
product.

3) Write a program for the example in section

4) Write a program that processes students' exam marks. Every student
who scores more than 50% has passed the exam. Use arrays and array
constructors to record the students' names, their marks and whether
they have passed. Calculate the total number who have passed, the
average mark, and identify the person with the top mark. Display the
arrays in a vertical layout, e.g.
Student: Mark: Pass?

Fred 64 P

Susie 57 P

Tom 49

Anita 71 P

Peter 37

No. of passes = 3

Average mark = 55.6

Prize awarded to Anita

Guide 47: Advanced Fortran 90/95 Programming 17

5. Dynamic Storage Allocation

5.1 About Dynamic memory

The rules for allocating storage are very similar for array variables and pointer
variables. The main differences are in the fact that pointers are associated with
unnamed storage (that is storage not assigned to an allocatable variable) and
the allocation status intermixes with the association status.

Also, all pointers are implicitly ALLOCATABLE whereas variables need that
attribute.

5.1.1 Dynamic Storage for Arrays

Often the size of an array is only known after data has been read or as the
result of some calculation.

Allocatable arrays are arrays whose rank is declared but the extent (bounds) in
each dimension is determined at runtime (dynamically). An array that is not a
dummy argument of a procedure or the return value of an array valued
function. (later)

5.1.2 The ALLOCATABLE attribute and statement

Use of the ALLOCATABLE attribute in the declaration of an array specifies the
array as allocatable.

The formal notation is:

type , DIMENSION(shape), ALLOCATABLE, [SAVE] :: array_name , [
array_name] ...

type , ALLOCATABLE, [SAVE] :: array_name (shape) , [array_name (
shape)] ...

This is an example of a deferred-shape array as the actual shape will be
defined until storage is allocated. The initial allocation status of such an array is
“not currently allocated”. Allocatable arrays are useful to save large arrays
between procedure calls.

5.1.3 The ALLOCATE statement

This is defined with the ALLOCATE statement and keyword

ALLOCATE (array-name (shape) [array_name (shape)] ... [, STAT =
status])

array-name is the name of an array, but which cannot be a structure
component.

INTEGER status

must not be allocated in the same ALLOCATE statement as where it is used.

If the STAT = statement is absent and the ALLOCATE produces an error then
the program will terminate with an error.

The STAT return values are:
 0 indicates success.
 > 0 indicates a system dependent runtime error.

Guide 47: Advanced Fortran 90/95 Programming 18

Example
REAL, ALLOCATABLE :: a(:), b(:)
INTEGER :: err
 ALLOCATE(a(1:10), b(1:10), STAT=err)

! should test for err /= 0 here

If more than one array, dimensions cannot depend on each other:
ALLOCATE(a(1:10), b(SIZE(a)), STAT=err)

Note: It is not allowed to allocate an array that is already in the allocated state
and this will generate a run time error. (See)

5.1.4 The allocation status of an array and the ALLOCATED function

It is always possible to use the intrinsic logical function ALLOCATED to check
the allocation status of an array.

ALLOCATED (array_name)

This function will return true if the array is allocated, otherwise false.

5.1.5 De-allocating storage of an array

Once an allocatable array is no longer required the allocated memory should
be released to the heap. This is to ensure that no unused memory will be held
by the program.
This is called de-allocating the array and the DEALLOCATE statement is the
counterpart of the ALLOCATE statement. Once the array has been deallocated
any data in it is no longer accessible

DEALLOCATE (array_name (shape) [array_name (shape)] ... [, STAT
= status])

Again the STAT = clause is optional.

5.1.6 Variable-sized arrays as component of a structure

It is not allowed to declare an array allocatable if it is a component of a
structure. In this case an array pointer must be used, see Section .

5.1.7 Dynamic Storage Allocation for Pointers

As was explained in the beginning of this chapter, pointers are by default
allocatable and this applies to any type of pointer. A number of examples are
given below. This reflects the various structures of the storage allocated.

REAL, POINTER :: temperature
REAL, POINTER, DIMENSION (:) :: position, velocity
REAL, POINTER, DIMENSION (: , :) :: potential
CHARACTER, POINTER :: name

Example
NULLIFY (temperature, position, velocity, potential, name)

An object pointer can be allocated storage with the ALLOCATE statement

ALLOCATE (pointer [(shape)] , [pointer (shape)] ... [, STAT = status])

In the case of the above declarations one could have

Guide 47: Advanced Fortran 90/95 Programming 19

ALLOCATE (temperature, position (3), velocity (3), potential (2, 3), name (8))

temperature = 18.0
position = (1.5, -0.2, 1.4E8)
velocity =

De-allocation is done similar to allocatable arrays

DEALLOCATE (pointer [, pointer] ... [, STAT = status])

An error will be flagged if a pointer is deallocated in the following situations

 if the pointer has undefined association status.

 a pointer whose target was not created by allocation.

 if it is associated with an allocatable array.

 it the pointer is associated with a component of an object.

The usefulness of the STAT clause is to prevent trying to deallocate a pointer
which is associated with a not allocated target.

Example
REAL, TARGET :: x = 10
REAL, POINTER :: p
NULLIFY (p)
p => x
PRINT*, p
DEALLOCATE (p) ! This will cause a run time error!

The absence of the STAT parameter will cause a runtime error.

Allocating and de-allocating storage for a pointer also affects the association
status.

If the pointer is de-allocated, the association status of any other pointer
associated with the same target (or component of the target) becomes
undefined.

Example
integer, parameter :: dimensions = 3
integer status
real, pointer :: ptr_vector(:)
...
allocate(ptr_vector(dimensions), status)
! use ptr_vector
deallocate()

5.2 Mixing pointers and arrays

The allocate and de-allocate statements can contain both pointers and arrays
as arguments.

5.3 Exercises

1) Write a procedure where the user can enter an integer to allocate an array.
Use the UNIX/Linux time command to plot the time required to allocate
increasing amount of memory.

2) Are the following statements valid?
ALLOCATE (a (SIZE (B),)
ALLOCATE (a (n), b (SIZE (a))

Guide 47: Advanced Fortran 90/95 Programming 20

Guide 47: Advanced Fortran 90/95 Programming 21

6. Program Units, Subprograms and Modules

A program unit is contained in a program source file that can be compiled
separately. They are self contained and in principle the compiler does not need
any further information to compile the file as an independent unit.
There are three kinds of program units:

 main program
can contain internal subprograms

 external subprogram
can contain internal subprograms

 module
can contain module and internal subprograms

Functionality that is internal to the module can be "hidden" and therefore be
changed without need to alter any program that uses the module.

6.1 Fortran Procedures: Functions and Subroutines

Fortran 90/95 introduced a new concept of subroutines and functions as
compared to Fortran 77. To distinguish these from the old version a distinction
is now made between external and internal subprograms.
The internal subprograms correspond to the Fortran 77 subroutines and
functions whereas the external subprograms act as container of multiple
internal subprograms.
A subprogram defines one or more procedures. A procedure is either a
function, which returns a value, or a subroutine which does not return a value
but can return values through its argument list.
Functions have the advantage that they can be used in expressions.
An external subprogram is neither part of the main program nor part of a
module.
Internal subprograms are defined inside the main program, any external
subprogram or any module. In this case its definition is placed inside a
CONTAINS section of the program unit. An internal subprogram can only be
invoked from within the program unit where it is defined.
Internal subprograms are convenient because they allow to break up a large
(external) subprogram into smaller logical units (the internal subprograms)
without the need of introducing additional (external) subprograms that would be
accessible by other external subprograms. This is in line with exposing
functionality to other units only when they need it.

Note: External procedures require an interface, see the section on modules
(Section).

6.1.1 The INTENT attribute of procedure arguments

Procedure arguments have an INTENT attribute
INTENT (intent)
This can only be used for dummy arguments and helps to improve correctness
and aids in maintaining the code as incorrect use will give a compilation error.
Values of intent are:
IN a dummy argument with this attribute cannot be changed in the
procedure. The actual argument has to be defined
OUT the dummy argument returns information from the procedure and must
be given a value in the procedure. The actual argument does not have to be
defined.
INOUT both IN and OUT values apply. The actual variable has to be defined

Guide 47: Advanced Fortran 90/95 Programming 22

on entry and has to be modified by the procedure.

Note: The dummy arguments of a function should always be given the
INTENT(IN) attribute as the function returns a result .

6.2 A comparison of the structure of the three kinds of program units.

main program (one instance only) module external

subprogram
[PROGRAM program_name]

 [specification_statements]

 [executable_statements]

[CONTAINS

 internal-subprogram(s)]

END [PROGRAM [program_name]]

MODULE module_name

 [specification_statements]

[CONTAINS

 module subprogram(s)]

END [MODULE [module_name]]

(external)

procedure(s)

Notes:

The PROGRAM program_name is optional but is recommended for clarity.

There is exactly one main program in a complete program

The compiler will only go as far as the END statement and during execution
this will cause termination of the program, so no STOP is required.

External subprogram defines an external procedure.

A module can contain module subprograms which define module procedures.

External procedure / Module procedure has the structure:

SUBROUTINE name [(argumentlist)] ret-type FUNCTION name (argumentlist)

 [spec-stmnts]

 [exe-stmnts]

[CONTAINS

 internal-subprogram(s)]

Note:
FUNCTION or SUBROUTINE must be present in the END statement for a
module procedure (the last statement in a module is END MODULE)

Internal subprogram has the structure:

SUBROUTINE (name

argumentlist)
ret-type FUNCTION name (argumentlist)

 [specification_statements]

 [exe-stmnts]

6.3 Modules

Modules are usually defined in their own source file. After compilation there will
be a special object file with .mod extension.
Modules are used for:

 sharing definitions of derived data types

 global access to variables and derived types, control which variables
and internal subprograms can be accessed by users of the module,
therefore provides data hiding

Guide 47: Advanced Fortran 90/95 Programming 23

 providing an explicit interface for external procedures

 defining new operators

 extending the meaning of intrinsic operators and assignment

 defining internal procedures (module procedures)

 defining generic procedures

6.3.1 Definition of a module

Example:
This module declares and initializes a number of variables that can be
accessed by any subprogram that has the the USE statement.
MODULE global_data
IMPLICIT NONE
 INTEGER, PARAMETER :: N = 500
 REAL, DIMENSION (N) :: XAR, YAR
 REAL :: XINIT = 1.0
END MODULE global_data

A program that requires access to these variables can USE the module:
PROGRAM use_global_data
USE global_data
IMPLICIT NONE
 PRINT*, N
END PROGRAM

Note: If the variable N would also be declared in PROGRAM use_global_data
then a compiler error would result. With the USE statement all the variables in
this example of a MODULE are automatically also accessible in the program.

6.3.2 USE of a module

USE association makes the entities of a module available to a program unit.

USE module_name
provides access to all public

named data objects

derived types

interface blocks

procedures

Note: The USE statement must precede the IMPLICIT NONE statement and
any other specification statements.

Example: It makes sense to combine the definition of the POINT type and the
area function in a module like this:

MODULE points_2D_mod
IMPLICIT NONE
 TYPE POINT
 REAL :: x
 REAL :: y
 END TYPE
CONTAINS
 FUNCTION area_points(p1, p2, p3)
 REAL :: area_points
 TYPE(POINT), INTENT(IN) :: p1, p2, p3
 area_points = 0.5 * ABS(p2%y * (p3%x - p1%x) + p1%y * (p2%x - p3%x) + &
 p3%y*(p1%x-p2%x))

Guide 47: Advanced Fortran 90/95 Programming 24

 END FUNCTION area_points
END MODULE
! To use this module one could write a program like
PROGRAM points_2D
USE points_2D_mod
IMPLICIT NONE
 TYPE(POINT) :: a, b, c
 a = POINT(1.0, -2.0)
 b = POINT(-3.0, 4.0)
 c = POINT(5.0, -6.0)
 PRINT*, 'Area is ', area_points(a, b, c)
END PROGRAM

6.4 Overloading the build-in operators

Similar to whole array operators where the usual arithmetic operator have been
extended to work on arrays, it is possible to extend these operators also to
arbitrary data types. For example, it is possible to extend the addition operator
(+) to variables of the TYPE POINT that were defined in a previous example.
Each point in the plane can be considered the endpoint of a vector with begin
point in the origin. In that case the + operator for two POINTs could mean the
usual vector addition, giving the endpoint of the sum vector.
The assignment operator (=) can also be extended to arbitrary types, which
would be useful in the POINT example to assign the endpoint of the vector sum
to another POINT.
This mechanism of giving a different meaning to the intrinsic operators is called
operator overloading. The compiler can decide from the type of the operands
(the context) what definition of the operator is intended.
Overloading is done with specific interface blocks.

Example:
MODULE points_2D_mod
IMPLICIT NONE
 TYPE POINT
 REAL :: x
 REAL :: y
 END TYPE
 ! overloaded assignment operator (=)
 INTERFACE ASSIGNMENT (=) ! interface ASSIGNMENT block
 MODULE PROCEDURE assign
 END INTERFACE
 ! overloaded operator (+)
 INTERFACE OPERATOR (+) ! interface OPERATOR block
 MODULE PROCEDURE add
 END INTERFACE
CONTAINS
 SUBROUTINE assign(lhs, rhs)
 TYPE(POINT), INTENT(OUT) :: lhs
 TYPE(POINT), INTENT(IN) :: rhs
 ! here you have to fill in what you want this procedure to do
 END SUBROUTINE
 ! overloaded + operator
 TYPE(POINT) FUNCTION add(pt1, pt2)
 TYPE(POINT), INTENT(IN) :: pt1, pt2
 ! here you have to fill in what you want this procedure to do
 END FUNCTION
END MODULE

Exercise: Copy the above example in a file and fill in the bodies of the
assignment and addition operators. The write a main program that declares
some points and does some addition and assignment operators. Also add

Guide 47: Advanced Fortran 90/95 Programming 25

some more overloaded operators, e.g. subtraction of two vectors. With what
would functionality could you overload the * operator for two POINTs?

6.5 Generic Procedures

Previously it was shown that a generic intrinsic function like SIN can be applied
to both scalar and array arguments of any intrinsic type. It is also possible to
apply this to user defined procedures, and make them into a single generic
name but allowing different types of arguments.

Example:
Returning to the example of calculating the area of a triangle in 2D, there were
a number of functions available for this purpose but each had a different name,
e.g. area_coords(x1, y1, x2, y2, x3, y3), area_points(a, b, c) and
area_triangle(triangle) depending on the argument types. In the next example
a generic interface block is used to define the generic function area which
covers all the different types of arguments, including the derived types.

Example: (Continued from previous)
MODULE points_2D_mod
IMPLICIT NONE
 TYPE POINT
 REAL :: x, y

END TYPE
 ! interface blocks for overloaded assignment and addition operators here
 ! generic interface for the area function
 INTERFACE area
 MODULE PROCEDURE area_coords
 MODULE PROCEDURE area_points
 MODULE PROCEDURE area_triangle
 END INTERFACE
CONTAINS
 ! overloaded functions for assignment and addition operators here

 REAL FUNCTION area_coords(x1, y1, x2, y2, x3, y3) RESULT(area)
 REAL, INTENT(IN) :: x1, y1, x2, y2, x3, y3
 area = 0.5 * ABS(y2 * (x3 - x1) + y1 * (x2 - x3) + y3*(x1-x2))
 END FUNCTION area_coords
! and similar for area_points and area_triangle here
END MODULE

6.6 Summary

 A module may contain USE statements itself to access other modules.

 A module but must not access itself directy or indicrectly through a
chain of USE statements.

 The standard does not require ordering of modules for compilation.
However many compilers require this. Eg if the file mod_a.f90 defines
MODULE mod_a and USEs MODULE mod_b, which is defined in
mod_b.f90 then often mod_b.f90 has to be compiled before mod_a.f90.

6.7 An extended example

Example 1
PROGRAM points ! in the plane described by x and y coordinates
IMPLICIT NONE
REAL,EXTERNAL :: area_coords ! a function to calculate the area of a triangle

Guide 47: Advanced Fortran 90/95 Programming 26

 REAL :: x1, y1, x2, y2, x3, y3

 x1 = 1.0 ; y1 = -2.0
 x2 = -3.0 ; y2 = 4.0
 x3 = 5.0 ; y3 = -6.0

 PRINT*, 'Area is ', area_coords(x1, y1, x2, y2, x3, y3)
END PROGRAM

FUNCTION area_coords(x1, y1, x2, y2, x3, y3)
REAL :: area_coords
REAL, INTENT(IN) :: x1, y1, x2, y2, x3, y3
 area_coords = 0.5 * ABS(y2 * (x3 - x1) + y1 * (x2 - x3) + y3*(x1-x2))
END FUNCTION area_coords

Example 2
PROGRAM points ! in the plane described by x and y coordinates
IMPLICIT NONE
REAL,EXTERNAL :: area_coords ! a function to calculate the area of a triangle

 TYPE POINT
 REAL :: x
 REAL :: y
 END TYPE

 TYPE(POINT) :: a, b, c

 REAL :: x1, y1, x2, y2, x3, y3

 x1 = 1.0 ; y1 = -2.0
 x2 = -3.0 ; y2 = 4.0
 x3 = 5.0 ; y3 = -6.0

 a = POINT(1.0, -2.0)
 b = POINT(-3.0, 4.0)
 c = POINT(x3, y3)

 PRINT*, 'Area is ', area_coords(x1, y1, x2, y2, x3, y3)
 PRINT*, 'Area is ', area_points(a, b, c)
CONTAINS
 FUNCTION area_points(p1, p2, p3)
 REAL :: area_points
 TYPE(POINT), INTENT(IN) :: p1, p2, p3
 area_points = 0.5 * ABS(p2%y * (p3%x - p1%x) + p1%y * (p2%x - p3%x) + &
p3%y*(p1%x-p2%x))
 END FUNCTION area_points
END PROGRAM

FUNCTION area_coords(x1, y1, x2, y2, x3, y3)
REAL :: area_coords
REAL, INTENT(IN) :: x1, y1, x2, y2, x3, y3
 area_coords = 0.5 * ABS(y2 * (x3 - x1) + y1 * (x2 - x3) + y3*(x1-x2))
END FUNCTION area_coords

Example 3

PROGRAM points
IMPLICIT NONE
 ! Instead of an external statement for the function area_coords
 !REAL,EXTERNAL :: area_coords
 ! use an INTERFACE block
 INTERFACE
 FUNCTION area_coords(x1, y1, x2, y2, x3, y3)
 REAL :: area_coords
 REAL, INTENT(IN) :: x1, y1, x2, y2, x3, y3
 END FUNCTION area_coords

Guide 47: Advanced Fortran 90/95 Programming 27

 END INTERFACE

 TYPE POINT
 REAL :: x
 REAL :: y
 END TYPE

 TYPE(POINT) :: a, b, c
 TYPE(POINT), DIMENSION(3) :: triangle

 REAL :: x1, y1, x2, y2, x3, y3
 x1 = 1.0 ; y1 = -2.0
 x2 = -3.0 ; y2 = 4.0
 x3 = 5.0 ; y3 = -6.0
 a = POINT(1.0, -2.0)
 b = POINT(-3.0, 4.0)
 c = POINT(x3, y3)
 triangle(1) = a
 triangle(2) = POINT(x2, y2)
 triangle(3) = c
 PRINT*, 'Area is ', area_coords(x1, y1, x2, y2, x3, y3)
 PRINT*, 'Area is ', area_points(a, b, c)
 PRINT*, 'Area is ', area_triangle(triangle)
CONTAINS
 FUNCTION area_points(p1, p2, p3)
 REAL :: area_points
 TYPE(POINT), INTENT(IN) :: p1, p2, p3
 area_points = 0.5 * ABS(p2%y * (p3%x - p1%x) + p1%y * (p2%x - p3%x) + &
 p3%y*(p1%x-p2%x))
 END FUNCTION area_points

 FUNCTION area_triangle(t)
 REAL :: area_triangle
 TYPE(POINT), DIMENSION(3) :: t
 area_triangle = &
 area_coords(t(1)%x, t(1)%y, t(2)%x, t(2)%y, t(3)%x, t(3)%y)
 END FUNCTION area_triangle

END PROGRAM

! External procedure
FUNCTION area_coords(x1, y1, x2, y2, x3, y3)
REAL :: area_coords
REAL, INTENT(IN) :: x1, y1, x2, y2, x3, y3
 area_coords = 0.5 * ABS(y2 * (x3 - x1) + y1 * (x2 - x3) + y3*(x1-x2))
END FUNCTION area_coords

Note: In the above examples the triangle array is assigned a POINT object,
e.g. triangle(1) = a. The assign operator (=) for the type POINT has not yet
been defined here, therefore the components of the left hand side are simply
copied to the components of the right hand side, e.g. triangle(1) % x = a % x
etc. This is called a shallow copy. Although this straight copy does not cause
problems here, more care must be taken with a structure that has one or more
pointers as component.

6.8 Exercises

1. Fill in the missing code for area_points and area_triangle.

2. Copy the example of Section 6.4 in a file and complete the bodies of the
assignment and addition operators. Write a main program that declares
some POINTs and does some addition and assignment operatins. Also add
some more overloaded operators, e.g. subtraction of two vectors. With
what would functionality could you overload the * operator for two POINTs?

	/Guide 47
	Version 1.0
	Produced by: University of Durham Information Technology Service
	Copyright © 2008 University of Durham Information Technology Service
	Conventions:
	Introduction
	The KIND Parameter for Intrinsic Data Types
	Selecting precision with the KIND parameter
	Making precision portable
	The KIND number of a variable or constant

	Exercises

	Derived Data Types and Pointers
	Derived data types
	The component selector
	Constructors

	Pointers
	The pointer attribute
	The target attribute
	The pointer assignment operator (=>)
	The NULLIFY statement
	Association status of a pointer

	Array Features and Operations
	Arrays of intrinsic type
	Array Elements and array subscripts
	Array Sections
	Subscript triplet
	Vector subscript

	Intrinsic Inquiry Functions for Arrays
	Array constructors
	Array Initialization and array constants
	Whole Array Operations
	Arrays as subscripts of other arrays
	Array expressions, elemental array operations and assignment
	Elemental Intrinsic Functions
	Mask arrays
	Transformational Intrinsic Functions for numeric arrays
	The WHERE construct
	Exercices

	Dynamic Storage Allocation
	About Dynamic memory
	Dynamic Storage for Arrays
	The ALLOCATABLE attribute and statement
	The ALLOCATE statement
	The allocation status of an array and the ALLOCATED function
	De-allocating storage of an array
	Variable-sized arrays as component of a structure
	Dynamic Storage Allocation for Pointers

	Mixing pointers and arrays
	Exercises

	Program Units, Subprograms and Modules
	Fortran Procedures: Functions and Subroutines
	The INTENT attribute of procedure arguments

	A comparison of the structure of the three kinds of program units.
	Modules
	Definition of a module
	USE of a module

	Overloading the build-in operators
	Generic Procedures
	Summary
	An extended example
	Exercises

