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1. Introduction 

2. The KIND Parameter for Intrinsic Data Types 

Fortran 90/95 introduced a mechanism to specify the precsion of the intrinsic 
data types with the KIND parameter. 

2.1 Selecting precision with the KIND parameter 

The terms single and double precision floating point numbers are not precisely 
defined and depend on the computer. Usually double precision values have 
approximately twice the precision of single precision values. On many 
computers single precision floating point numbers are stored in 4 bytes (32 
bits) with typically 24 bits for the mantissa and 8 bits for the exponent. This is 
sufficient for about 7 significant decimal digits and an exponent approximately 
in the range 10^-38 to 10^38. Double precision has then 64 bits with 53 bits 
usually devoted to the mantissa and 11 bits to the exponent. This is sufficient 
to give a precision of approximately 16 significant decimal digits and an 
exponent in the range 10^-308 to 10^308. However on some computer 
architectures single and double precision values are represented by 64 and 
128 bits respectively. Therefore a program that runs properly in single precision 
on such a computer may need double precision when run on a 32 bit computer. 

To make Fortran programs more portable between different computer systems 
the KIND parameter for intrinsic data types was introduced. Single and double 
precision real numbers are different kinds of the real data type, specified with a 
different KIND number. On some systems it indicates the number of bytes of 
storage for the type, however the standard does not require this. Therefore the 
KIND number itself is not portable between computer architectures but is used 
to distinguish between different kind of literal constants by appending it to the 
value separated by an underscore. For example  

 

   INTEGER, PARAMETER :: single = 4 

   REAL ( KIND = single ) :: a , b 

   a = 1.2_single , b = 34.56E7_4 

 

If the KIND number for a variable or constant is not specified then it is of the 
default kind and its value depends on the computer platform. 

2.1.1 Making precision portable 

Since the KIND number is not portable, Fortran provides functions to specify the 
required precision across platforms. The compiler will then select the smallest 
value of the KIND parameter that still can represent the requested precision, or 
otherwise it will fail to compile. In the case of integers the number of digits can be 
specified with the SELECED_INT_KIND function which has as argument the 
number of digits (ignoring the sign) and returns a default integer with the minimum 
KIND number. 

Example  

To specify an integer type with up to 9 decimal digits the following declarations can 
be used: 

INTEGER, PARAMETER :: long = SELECED_INT_KIND ( 9 ) 
INTEGER ( KIND = long ) :: n , m 

n = 1_long , m = -10_long. 
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The range of values for n and m is thus between -999999999 and  +999999999. 

The corresponding intrinsic function for real numbers is  

SELECTED_REAL_KIND ( p , r  ) 

which returns the minimum KIND number necessary to store real numbers with a 
precision of p decimal digits and an exponent in the range 10^-r to 10^r. 

Example 
INTEGER, PARAMETER :: dble = SELECTED_REAL_KIND ( 15, 300 ) 
REAL ( KIND = dble ) :: planck_constant = 6.631 * 10 ** -31_dble 
PRINT *, 'Planck's constant is ',  planck_constant 

2.1.2 The KIND number of a variable or constant 

Fortran 90/95 also provides an intrinsic function to determine the kind 
number of any variable or constant. 

   WRITE ( *, „(  „‟The KIND number for default integer is „‟ , I2) „ ) KIND ( 0 ) 

   WRITE ( *, „(  „‟The KIND number for default single precision is‟„ , I2) „ ) KIND ( 0.0 ) 

   WRITE ( *, „(  „‟The KIND number for default double precision is „„ , I2) „ ) KIND ( 0.0D0 ) 

On most systems this will return the values 4, 4 and 8 respectively which 
could, but not have to be, the number of bytes used for storage. 

2.2 Exercises 

1. Write a program that prints the KIND value for default integers, real and 
double precision numbers on your computer. 

2. Write a program to find the largest possible value of the KIND number for 
integers that your computer allows. 
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3. Derived Data Types and Pointers 

3.1 Derived data types 

It is possible to create new data types in Fortran 90/95, alongside the intrinsic 
data types. These are called derived data types and are build from any number 
of components. The components can be intrinsic data types and any other 
derived data types. 
This is an example of an object oriented feature, sometimes called abstract 
data types. 

 
TYPE [ :: ] type-name 
component-definitions 
END TYPE [ type-name ]  
 

Example 

TYPE  ::  Person 

   CHARACTER ( LEN = 10 ) :: name 

   REAL :: age 

   INTEGER :: id 

END TYPE Person 

 

Declaration of a variable (or object) of the type type-name is as follows 
 
TYPE ( type-name ) :: var1, var2, ...  
 
Example 

TYPE ( Person )  ::  john , mary 

 

Each instance of a derived data type is called a structure. Arrays of derived 
data types can be defined as well, 
 
TYPE ( type-name ) , DIMENSION ( dimensions ) :: array-name 
 
Example 

TYPE ( Person ), DIMENSION ( 10 ) :: people 

3.1.1 The component selector 

The components of a structure can be accessed with the component 
selector. This consists of the name of the variable (structure) followed by a 
percentage sign and the component name 
 
var % component 

 
and in the case of an array of a derived type  

 
array-name ( subscripts  ) % component 

 

Example 

PRINT*,  „John‟‟s age is „,  john%age 

PRINT*, „The name of person number 2 is „, people(2)%name 
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3.1.2 Constructors 

These can be used to initialise a structure, that is, its components. 

When struct-name is of derived type type then 

 
struct-name  =  type  (  component-1 , ... , component-n ) 
 

Note 

 All components of type must be present with a value in the argument 
list. 

 The order of the arguments has to be the same as the order in which 
the components are defined in the derived type definition. 

Example 

john = Person (  „Jones‟,  21,  7 ) ; mary = Person ( „Famous‟,  18, 9 ) 

people ( 5 ) = Person ( „Bloggs‟, 45, 3045 ) 

people ( 6 ) = john 

3.2 Pointers 

3.2.1 The pointer attribute 

Pointers are special kinds of variables (objects) that can be made to refer to 
other variables (of the same type) or other pointers (of the same type). Storage 
for pointers is defined by assignment to a target or with the ALLOCATE 
statement (Sect ). 

assignin  

p => t where t is a target attribute makes p an alias of t 

provide information where an object can be found. They are used to allocate 
unnamed storage and to pass arrays by reference in subprograms. 

Pointers can be considered as variables that have certain variables as values. 
This requires the declaration of the pointer and the target attribute. 
The type of the objects that can a pointer can point at has to be stated in its 
declaration. Pointer objects are declared with the POINTER attribute 
 
type , POINTER :: ptr [, ptr ] 
type ,  DIMENSION ( : [, ; ] ) , POINTER :: ptr [, ptr ] 
 
where ptr is a pointer to scalars and arrays respectively. 

Alternatively, a POINTER statement can be used, after the object has been 
declared: 

 
type :: ptr [, ptr ] 
POINTER :: ptr [, ptr ] 
 
Note: 

 type can be a structure (derived type). 

 If the pointer is an array then only the rank has to be declared and the 
bounds are taken from the array that it points at. 
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3.2.2 The target attribute  

A variable can be become a target for a pointer by adding the TARGET 
attribute on declaration 
 

type , TARGET :: ptr [, ptr ] 
type ,  DIMENSION ( shape ) , TARGET :: ptr [, ptr ] 
 

Targets can only be associated with pointers of the same type. Note that other 
pointers do not need the target attribute. 

 

Summary: 

 Pointers can only be assigned to variables that have the TARGET 
attribute or to other pointers. If the pointer is an array its rank must 
match the rank of the target.  

 Once a pointer is associated with a target then the pointer can be used 
in the same way as the target (in expressions), it is an alias for the 
target 

 A pointer cannot be specified in a DATA, EQUIVALENCE, or 
NAMELIST statement. 

3.2.3 The pointer assignment operator (=>) 

The pointer assignment operator associates a pointer with a target  

pointer  =>  target 

where pointer can be the name of a pointer or a structure component that is a 
pointer and target can be the name of a variable with the TARGET attribute or 
a reference to a pointer-valued function. 

In all these cases the type of the pointer must match that of the target. 

3.2.4 The NULLIFY statement 

A pointer can be made to point at nothing with the NULLIFY statement 
NULLIFY (  var  [, var ] ... ) 
 
Example 
    REAL, POINTER :: temperature 
    REAL, POINTER, DIMENSION ( : ) :: position, velocity 
    REAL, POINTER, DIMENSION ( :, : ) :: potential 
    CHARACTER, POINTER :: name 
 
    NULLIFY ( temperature, position, velocity, potential, name ) 

3.2.5 Association status of a pointer 

Pointers have an association status. For example if a pointer points to an 
object it is called associated. The association status can be one of the 
following: 

 undefined: This is the initial association status on declaration of a 
pointer in Fortran 90. This is an undesirable state as there is no way to 
test for it. This can be avoided in Fortran 95 where a pointer can be 
disassociated on initialization with the NULL ( ) intrinsic function. 

 associated: The pointer points to a target or unnamed object. 
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 disassociated: The pointer does not point at any object. In Fortran90 
this status can be achieved with a NULLIFY statement applied to an 
undefined pointer. Fortran95 has an intrinsic function NULL ( ) for this 
purpose. 

 

To determine whether a pointer is associated with a particular target the 
intrinsic function 
 
ASSOCIATED ( pointer [, target ] )  
 
returns a logical value with the following meaning: 

 If only pointer appears, the result is true if it is currently associated with 
any target; otherwise, the result is false. 

 If target also appears and is a target variable, the result is true if pointer 
is currently associated with target; otherwise, the result is false. 

 If target is a pointer, the result is true if both pointer and target are 
currently associated with the same target; otherwise, the result is false. 
(If either pointer or target is disassociated, the result is false.) 

 

Example Illustration of the difference between ordinary assignment (=) and 
pointer assignment (=>)  
    REAL, TARGET :: a, b 
    REAL, POINTER :: p1, p2 
     
    NULLIFY(p1, p2) ! Fortran 90 ????????? 
! some values 
    a = 1.1 
    b = 3.2 
    PRINT*, 'a = ', a, ' b = ', b     ! gives a = 1.1     b = 3.2 
    p1 => a 
    p2 => b 
    PRINT*, 'p1 = ', p1, ' p2 = ', p2, ' p1 + p2 = ', p1 + p2    ! Note: Can print pointers just as 

variables! 
    ! gives p1 = 1.1     p2 =3.2     p1 + p2 = 4.3 
     
    p2 = p1     ! p2 still points to b! 
    PRINT*, 'p1 = ', p1, ' p2 = ', p2    ! gives p1 = 1.1     p2 =1.1 
    PRINT*, 'a = ', a, ' b = ', b         ! gives a = 1.1     b =1.1 
    !  b has been overwritten ! 
 
    a = -4.5 
    b = 6.7 
    ! p1 still points to a, p2 to b 
    PRINT*, 'p1 = ', p1, ' p2 = ', p2      ! gives p1 = -4.5     p2 = 6.7 
    p2 => p1 
    PRINT*, 'a = ', a, ' b = ', b   ! not changed 
    PRINT*, 'p1 = ', p1, ' p2 = ', p2      ! gives p1 = -4.5     p2 = -4.5 

 
Example 
    TYPE POINT 
        REAL :: x 
        REAL :: y 
    END TYPE 
     
    TYPE(POINT), TARGET :: a, b, c 
    TYPE(POINT), POINTER :: pa, pb, pc 
     
    TYPE(POINT), DIMENSION(3) :: tri1 = (/ POINT(1.0, -2.0), POINT(-3.0, 4.0), & 
                                                        POINT(5.0, -6.0) /) 
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    TYPE(POINT), DIMENSION(3), TARGET :: tri2 
    TYPE(POINT), DIMENSION(:), POINTER :: ptri ! assumed shape! 
     
    REAL :: x1, y1, x2, y2, x3, y3 
    REAL, TARGET :: x4, y4     
    REAL, POINTER :: ptr 
     
    NULLIFY(pa, pb, pc, ptri, ptr) ! Fortran 90 
     
    x1 = 1.0 ; y1 = -2.0 
    x2 = -3.0 ; y2 = 4.0 
    x3 = 5.0 ; y3 = -6.0     
    PRINT*, 'Area is ', area_coords(x1, y1, x2, y2, x3, y3) 
    x4 = x1 ; y4 = y1 
    ptr => a 
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4. Array Features and Operations 

4.1 Arrays of intrinsic type 

In various areas vectors and matrices are required. Fortran provides for 
these compound variables the array type. An array of an intrinsic type is 
declared with the dimension attribute following the type of the array elements. 
An array can have up to 7 dimensions. 
 
The general format is 
 
type ,  DIMENSION (  index_range  [ ,  index_range  ]...  )  ::  array_name 
 
type  ::  array_name (  index_range  [ ,  index_range  ]...  ) 
 
General rules: 

 the subscript range is specified by a lower and upper bound 

 the lower bound is optional and the default value is 1 

 the rank of an array is the number of  dimensions 

 the number of elements along a dimension is the extent in that 
dimension 

 the shape of an array is the sequence of extents 

 the size of an array is the total number  of elements (the product of the 
extents for all dimensions) 

Example: 
REAL, DIMENSION ( 10 ) :: a 
REAL :: b ( 5, 3 ) 
 

4.2 Array Elements and array subscripts 

Array elements are addressed with the array name followed by the indices or 
subscripts in brackets, for example a ( 2 ).  
Each array element is a scalar and the usual operations for scalar variables 
apply, as for example in the expression 

2.0 * a ( 2 ) + a ( 3 ) * b ( 2, 3) 
 
Elements of an array are referenced by subscripts,  

 the number of subscripts must equal the rank and  

 each subscript must lay within the range for that dimension. 

4.3 Array Sections 

These are subsets of arrays, specified by replacing one or more array 
subscripts with. 
An array section of an array is a subset of the elements of the array and 
defined by replacing one or more subscripts by a subset in the form of a 
subscript triplet or a vector subscript. An array section is itself an array and 
all the usual rules for arrays apply. The rank of an array section is the same as 
the rank of the array or smaller. 
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4.3.1 Subscript triplet 

These have the form 

subscript-1  :  subscript-2  :  stride 

This works much like an implied DO loop. 

Example 
REAL :: a ( 3, 5 ), b ( 2, 2 ) , c ( 5 ) 
The array a has the structure 
    a(1,1)    a(1,2)   a(1,3)   a(1,4)   a(1,5) 
    a(2,1)    a(2,2)   a(2,3)   a(2,4)   a(2,5)    
    a(3,1)    a(3,2)   a(3,3)   a(3,4)   a(3,5)    
Then the array section a ( 1 : 2, 2 : 4 : 2 ) can be assigned to array b which is 
conformable 
    b = a ( 1 : 2, 2 : 4 : 2 ) 
The array b has the elements 
    a(1,2)   a(1,4)  
    a(2,2)   a(2,4)  

An array section with rank one is 

   c =  a ( 2 , : ) 
 
Example 
    INTEGER :: i 
    REAL :: a ( 10) = (/ ( REAL( i ) , i = 1, 10 ) /) 
    PRINT*, a 
    a ( 2 : 10 : 2 ) = a ( 1 : 9 : 2 ) 
    PRINT*, a 

4.3.2 Vector subscript 

A vector subscript is a rank one integer array where the elements are the 
subscripts that specify the array section. For example to access the elements 
a(1, 2) , a(2, 2)  , a(1, 4) and a( 2, 4) you can use 

INTEGER :: p = (/ 2 , 4 /) and set 

B = a ( (/ 1 , 2 /) , p ) 

4.4 Intrinsic Inquiry Functions for Arrays 

There are number of intrinsic functions that can be used to inquire about the 
general properties of a given array, namely its rank, extents etc. 
 
SIZE ( array-name [ ,  dim ] ) 

 
This function returns a default integer which is the number of elements (the 
size) of the array if the dimension number dim is absent, or, the extent of the 
array along dimension dim if it is present. 

 Returns a default INTEGER  

 dim is an optional integer, if it is absent its values is assumed to be one 

 If dim is present it must be a valid dimension of array. 

 

Information about the shape of an array can be found with some intrinsic 
functions. 

 

Example 
SIZE ( a ) returns 10, SIZE ( b ) returns 15 whereas SIZE ( b, 2 ) returns 3. 
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SHAPE ( array-name ) 

 
returns a one dimensional array of default integers with extent ( = size) equal to 
the rank of  array-name and the elements give the extent of array-name in 
each dimension 
 
Example 
REAL :: s1( 1 ) , s2( 2 ) 
s1 ( 1 ) = SHAPE ( a ) ! gives the array s1 with one element and value s1( 1 ) 
equal to 10. 
s_2 = SHAPE( b ) returns the rank-one array s2 with elements 5 and 3. 
 
LBOUND ( array-name  [ ,  dim ] ) 
when the dimension dim is absent returns a rank-one default integer array 
holding the lower bound for the dimensions 
when dim is present returns a default integer with as value the lower bound for 
the dimension 
 
UBOUND ( array--name  [ ,  dim ]) 
as for LBOUND except it returns upper bounds. 

UBOUND (  array-name ,  dimension ) 
type , DIMNSION (  range  ) ::  array 
INTEGER,  OPTIONAL  ::  dim 

 

RESHAPE ( array ,  shape ,  pad  ,  order  ) 

 
Elements of an array are specified by subscripts 
the number of subscripts must equal the rank 
each subscript must lay within the range for that dimension 

4.5 Array constructors  

Array constructors can be used to initialize or assign values to a whole array or 
array section. The values are given as a list between the delimiter pair (/  and /) 
as 

(/  value-list  /) 

where value in value-list is either an expression or an implied DO loop. The 
values in the list are used in array element order and define a rank one array. 
The implied DO loops may be nested. 

Example 
   REAL :: a ( 5 ) , b ( 3 ) 

    a = (/ 1.0, 2.0, 3.0, 4.0, 5.0 /) 

    PRINT*, a 

    b  = (/ ( REAL( i ), i = 1, 3 )  /) 

    PRINT*, b 

 
An array of rank greater than one can be constructed with the intrinsic function 
RESHAPE.  

Example 
    REAL :: a ( 3, 5 ) 

    INTEGER :: i, j 
    a = RESHAPE (  (/ ( REAL( i ), i = 1, 15 )  /) ,  (/  3, 5 /) ) 

    PRINT*, ( ( a( i , j ) , j = 1, SIZE( a, 2) ), i = 1, SIZE( a , 1 ) 
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The first argument of the RESHAPE function is the array that has to be 
reshaped; the second argument specifies that the set of 15 real numbers are 
stored as an array with 3 rows and 5 columns. 

Array constructors can also be used with constant objects of derived type in the 
value list. 

4.6 Array Initialization and array constants 

Just as with scalar variables it is possible to initialize arrays during declaration 
and to define constant arrays. This can be done with an array constructor or 
with a whole array assignment. Fortran 77 has the DATA statement for initialization of 

arrays 

Example 
    INTEGER, PARAMETER :: three = 3 

   INTEGER :: I , j 
    REAL :: b ( three ) = (/ ( REAL( i ), i = 1, three )  /) 
    REAL, PARAMETER :: a ( 5 ) = (/ 1.0, 2.0, 3.0, 4.0, 5.0 /) 

    REAL, PARAMETER :: c( 5, 6 ) = 1.0  !  all elements initialized to 1.0 

    REAL ::  d ( -3 : 3 ,  10 ) 

    DATA  (  (d ( i , j ) , I = -3 , 3 ), j = 1, 10 ) /  70 * 1.0 / 

4.7 Whole Array Operations 

In order to simplify code arithmetic operations on arrays can be written 
symbolically in the same fashion as mathematical expressions. This also 
reduces the risk of coding errors but a more important reason is that the 
compiler can optimize the order in which the underlying scalar operations 
on the array elements are executed on the target computer architecture. 
 
Array expressions and assignment 
An array expression may be assigned to an array of the same shape. Such 
an assignment is done on an element by element basis. 
 
To be able to operate on an array element by element the two arrays must 
have the same shape. 
Two arrays are called conformable if they have the same shape. 
A scalar is conformable with any array. 

 
Note: The correspondence is by position in the extent of each dimension, 
not by subscript value. For example, the two arrays declared as 

REAL, DIMENSION  ::  a( -2 : 2 ,  3 ),  b( 5 , 3 ) 

are conformable. 
 
Example: A system of N point particles in 3D space is described by 
position and velocity vectors and interact through a mutual potential field. 
The data declarations to describe this are 
 
INTEGER :: N = 100 ! Initialised here to some value. 
 
REAL, DIMENSION  ::  r ( 3, N ), v ( 3, N ), F ( 3, N, N ) 
INTEGER :: i, j 
 
! some operations: 
! add postion of particle 1 and 2: 
SUM = R(:, 1) + R(:, 2) 
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The distance between particles i  and j is 

 
d (:) = r (:, i) - r (:, j) 
d = SQRT (  ( r (:, i) - r (:, j) ) ** 2 ) 
 

Often the velocity of a particle is approximated by a finite difference. If  
r_old ( : ,  i ) and r_new ( : , i ) are the position vectors of  particle i at times 
t1 and t2 respectively then its average velocity vector may be approximated 
by the expression 
 
v_average ( : ,  i )  =  ( r_new ( : , i )  -  r_old ( : ,  i ) ) /  ( t2 - t1 ) 
 

In fact this can be written as a whole array operations for all particles: 
 
v_average ( : , : )  =  ( r_new ( : , : )  -  r_old ( : ,  : ) ) /  ( t2 - t1 ) 

 
However whole array multiplication is not what might be expected. 

  
Example The Inner product of two vectors. 
REAL ::  x ( 3 ), y (3 ),  prod( 3 ) 
REAL ::  sum 
prod = x * y 

sum =  SUM ( x  * y  ) 

The product of the arrays x and y is evaluated on an element by element 
basis and assigned to prod with elements prod ( i ) = x (i ) * y ( i ). The 
intrinsic SUM function returns the sum of the elements of prod. 

4.8 Arrays as subscripts of other arrays 

The range of an array can also be defined with a rank-one integer array 
    INTEGER, DIMENSION :: odd ( 5 ) = (/  ( i,  i= 1, 9, 2 )  /), even ( 5 ) = (/  ( i,  i= 2, 10,  2 )  
/) 
    ! same as odd = (/  1, 3, 5, 7, 9 /) ; even = (/ 2, 4, 6, 8, 10 /) 
    REAL :: a ( 10 ) 
    a ( odd ) = 1.0 
    a ( even ) = - 1.0 
    PRINT*, a 

The range of an array can also be defined with a rank-one integer array 

 
INTEGER, DIMENSION :: odd ( 5 ) = (/  ( i,  i= 1, 9,  2 )  /), even ( 5 ) = (/  ( i,  i= 2, 10,  2 )  /) 
! same as odd = (/  1, 3, 5, 7, 9 /) ; even = (/ 2, 4, 6, 8, 10 /) 
REAL, DIMENSION :: a ( 10 ), b ( 10, 10 ) 
a ( odd ) = 1.0 
a ( even ) = - 1.0 
! this creates a 'checker board'  pattern of one and zeros 
b ( odd, even ) =  1.0 
b ( even, odd ) = 0.0 
! also 
a = b ( 1, even ) 
b ( even, odd ) = 1.0 - b ( odd, even) 

4.9 Array expressions, elemental array operations and assignment 

Arithmetic operations on arrays can be written symbolically in the same 
fashion as mathematically. This also reduces the risk of coding errors but 
more importantly reason is that the compiler can optimize the order in 
which the scalar operations are executed as it sees fit for the target 
computer architecture. This includes addition, subtraction, multiplication, 
division and exponentiation 
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An array expression may be assigned to an array of the same shape. Such 
an assignment is done on an element by element basis. 

The scalar arithmetic operations of addition, subtraction, multiplication, division 
and exponentiation can be generalized to arrays. These are called elemental 
operations because they work on an element by element basis. 
For example 
    REAL :: a ( 3, 5), b ( 3, 5 ) 

    a + b 

The sum is an array expression with elements a ( i, j ) + b ( i, j ) with 1 <= i <= 3 
and 1 <= j <= 5. 
To be able to operate on two arrays on an element by element basis they both 
must have the same shape. 
Two arrays are called conformable if they have the same shape. 
A scalar is conformable with any array. 
Note: The correspondence is by position in the extent in each dimension, not 
by subscript value. For example the two arrays a ( 5, 6 ) and b ( -2 : 2 , 0 : 5) 
have the same shape although their lower and upper bound values differ. 
 
Note: Whole array multiplication and division are not what might be expected. 
For example the multiplication of two square matrices a and b ( rank 2 arrays 
with same extent in each dimension ) would not form a product with the usual 
rule of matrix multiplication. Instead the result would be a square matrix with 
elements  a ( i, j ) * b ( i, j ). 

4.10 Elemental Intrinsic Functions 

Most intrinsic functions for scalars can also be applied to arrays. The intrinsic 
function will be applied on an element by element basis. Usually the same 
result could be obtained by applying the intrinsic functions inside a series of 
nested DO loops. 
Example: 
b = SIN ( a ) 
c = ABS ( a +  SQRT ( b ) ) 
This requires a , b and c all having the same shape. 

 

 elemental, each element is operated on in the same way  

 singel operation to the whole array, e.g. the sum of all elements  

 operations on indvidual elements  

 match certain conditions  

 

4.11 Mask arrays 

These are arrays of LOGICAL type and are used to select a subset of array 
elements for which the correponding mask array element is true. This is usefull 
in whole array operations when an operation should only be applied array 
elements that satisfy some condition. For example  
    INTEGER :: i 
    REAL :: a ( 5 ) =  (/  (  (-1.0 ) ** i , i = 0, 4 )  /) 
    LOGICAL :: lg ( SIZE ( a ) ) 
    PRINT*, a 
    lg = a > 0.0 
    PRINT*, lg 
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4.12 Transformational Intrinsic Functions for numeric arrays  

The following intrinsic functions have an array of numeric type as argument 
and some optional arguments to control the behaviour of the function.  

 They all return a scalar result of the same type as the array.  

 If the dimension dim is present then the function  will be applied only to 
the elements in that dimension.  

 If the LOGICAL array mask is present then it must be conformable to 
array and the function will be applied only to those elements for which 
the corresponding element of  the mask array is true. 

SUM  (  array [ , DIM =  dim ] )  returns the sum of the elements of a numeric 
type array and zero if its size is zero 
 
PRODUCT  (  array [ , DIM =  dim ] )  returns the sum of the elements of a 
numeric type array and zero if its size is zero 
 
MAXVAL  (  array [ , DIM =  dim ] )  returns the maximum value  
 
MINVAL  (  array [ , DIM =  dim ] [ , MASK =  mask ] )  returns the minimum 
value 
 
MAXLOC ( array [ , MASK =  mask ] )  returns a rank-one with the rank of  
array  as size and the subscripts of the maximum value as elements 
 
MINLOC( array [ , MASK =  mask ] ) as MAXLOC except for the minimum 
value 
 
DOT_PRODUCT 
gives the sum of all products of corresponding elements as in 
a ( i, j ) * b ( i, j )  with 1 <= i <= 10, 1 <= j < = 20 
 
Example 
    REAL, DIMENSION ( 5 ) :: a = (/  1.2,  -0.3,  0.0,  1E-5, 1.6E3  /) 
    REAL :: min 
    INTEGER :: loc ( SIZE ( SHAPE ( a ) ) )    
    ! find the smallest positive number in this array and its index 
    PRINT*, a > 0.0 
    min = MINVAL  ( a, a > 0.0 ) 
    loc = MINLOC ( a , a > 0.0 ) 
    PRINT*, min, loc,  a ( loc ( 1 ) ) 

 

single argument case 
have an array as argument and some optional arguments to control the 
behaviour of the function return a scalr result 
 
ALL (  mask [ , dim ] ) 
 
ANY (  mask [ , dim ] ) 

 

in the following mask is of type logical, it can also be an expression 
 
ALL(mask, dim) 
 
ANY(mask, dim)  
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Returns a logical array  

Example: 
If A(1:10, -4:4) is a REAL array then ANY(A(:,:) < 0.0) will return .TRUE. if any 
array elements are negative, otherwise .FALSE. 
If a set of 10 files have to be opened and the STATUS value returned for each 
file is stored in a vector IOSVECTOR(10) then ANY(IOSVECTOR(:) /= 0) will 
return .TRUE. if there was an error for at least one file. 
 

COUNT (  mask [ , DIM =  dim ] )  default integer   the number of elements 
of mask that are .TRUE. 
mask  a LOGICAL array 
 
SUM  (  array [ , DIM =  dim ] )  returns the sum of the elements of a 
numeric type array and zero if its size is zero 
 
PRODUCT  (  array [ , DIM =  dim ] )  returns the sum of the elements of a 
numeric type array and zero if its size is zero 
 
MAXVAL  (  array [ , DIM =  dim ] )  returns 
 
MINVAL  (  array [ , DIM =  dim ] [ , MASK =  mask ] )  returns 

 

CEILING(array) 
integer elemental fnx 
array of type real, returns scalar of type integer, which is the least integer 
greater than or equal to array 
FLOOR(array) 
returns the greatest default??? integer less than or equal to array 

 

Arithmetic operations on elements of a single matrix 

SUM(array, dim, mask)  
type[, DIMENSION(:[,:])] :: array 
INTEGER, OPTIONAL :: dim 
 
PRODUCT( 

Operations on multiple arrays 

MERGE(truearray,falsearray,maskarray)  
All arguments must have the same shape, the return type is of that shape.  
maskArray is logical 

 
MERGE(true, false, mask) 
 
elemental function 
true and false are of same type and shape 
return type is same type and shape as parameters true and false 
mask is type logical and same shape as true and false 
Example:  
INTEGER, DIMENSION :: A(10) = / 0,1, 2, 3,4, 5, 6,7 ,8 ,9/ 
A(:) = MERGE(0, A(:), A(:) > 5) ! sets all array values greater than 5 to zero: 
 
 
matrix transpose 
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4.13 The WHERE construct 

 
[ name : ]  WHERE  ( mask-expr ) 
    array-assignment 
ELSEWHERE 
    array-assignment 
END WHERE 
 
Example 
    INTEGER :: i 
    REAL :: a ( 5 ) = (/ ( (-1.0 * (i + 1) ) ** i, i = 0, 4 ) /) 
    REAL :: b ( 5 ) 
    PRINT*, a 
    WHERE ( a >= 0.0 ) 
        b = SQRT ( a ) 
    ELSE WHERE 
        b = SQRT ( -a ) 
    END WHERE 
    PRINT*, b 

4.14 Exercices 

1) Find the rank of an array using intrinsic functions. 

2) Write a program that reads two vectors of length 3 and calculates the inner 
product. 

3) Write a program for the example in section  

4) Write a program that processes students' exam marks. Every student 
who scores more than 50% has passed the exam. Use arrays and array 
constructors to record the students' names, their marks and whether 
they have passed. Calculate the total number who have passed, the 
average mark, and identify the person with the top mark. Display the 
arrays in a vertical layout, e.g. 
Student: Mark: Pass?  

Fred 64 P  

Susie 57 P  

Tom 49   

Anita 71 P  

Peter 37   

No. of passes  = 3  

Average mark  = 55.6  

Prize awarded to Anita  
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5. Dynamic Storage Allocation 

5.1 About Dynamic memory 

The rules for allocating storage are very similar for array variables and pointer 
variables. The main differences are in the fact that pointers are associated with 
unnamed storage (that is storage not assigned to an allocatable variable) and 
the allocation status intermixes with the association status. 

Also, all pointers are implicitly ALLOCATABLE whereas variables need that 
attribute. 

5.1.1 Dynamic Storage for Arrays 

Often the size of an array is only known after data has been read or as the 
result of some calculation. 

Allocatable arrays are arrays whose rank is declared but the extent (bounds) in 
each dimension is determined at runtime (dynamically). An array that is not a 
dummy argument of a procedure or the return value of an array valued  
function. (later) 

5.1.2 The ALLOCATABLE attribute and statement 

Use of the ALLOCATABLE attribute in the declaration of an array specifies the 
array as allocatable. 
 
The formal notation is: 
 
type , DIMENSION( shape ), ALLOCATABLE, [ SAVE ] :: array_name ,  [ 
array_name ]  ... 
 
type ,  ALLOCATABLE,  [ SAVE ] :: array_name (  shape ) , [  array_name (  
shape )  ]  ... 
 
This is an example of a deferred-shape array as the actual shape will be 
defined until storage is allocated. The initial allocation status of such an array is 
“not currently allocated”. Allocatable arrays are useful to save large arrays 
between procedure calls. 

5.1.3 The ALLOCATE statement 

This is defined with the ALLOCATE statement and keyword 
 
ALLOCATE (  array-name  (  shape  ) [ array_name  (  shape  )] ... [ , STAT = 
status  ]  ) 
 
array-name is the name of an array, but which cannot be a structure 
component. 

INTEGER status  

must not be allocated in the same ALLOCATE statement as where it is used. 

If the STAT = statement is absent and the ALLOCATE produces an error then 
the program will terminate with an error. 

The STAT return values are: 
   0 indicates success. 
   > 0 indicates a system dependent runtime error. 
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Example 
REAL, ALLOCATABLE :: a(:), b(:) 
INTEGER :: err 
    ALLOCATE(a(1:10), b(1:10), STAT=err) 

! should test for err /= 0 here  

 
If more than one array, dimensions cannot depend on each other: 
ALLOCATE(a(1:10), b(SIZE(a)), STAT=err) 

Note: It is not allowed to allocate an array that is already in the allocated state 
and this will generate a run time error. (See ) 

5.1.4 The allocation status of an array and the ALLOCATED function 

It is always possible to use the intrinsic logical function ALLOCATED to check 
the allocation status of an array. 
 
ALLOCATED (  array_name  ) 
 
This function will return true if the array is allocated, otherwise false. 

5.1.5 De-allocating storage of an array 

Once an allocatable array is no longer required the allocated memory should 
be released to the heap. This is to ensure that no unused memory will be held 
by the program. 
This is called de-allocating the array and the DEALLOCATE statement is the 
counterpart of the ALLOCATE statement. Once the array has been deallocated 
any data in it is no longer accessible  

DEALLOCATE (  array_name  (  shape  ) [ array_name  (  shape  )] ... [ , STAT 
= status  ]  ) 
 
Again the STAT = clause is optional. 

5.1.6 Variable-sized arrays as component of a structure 

It is not allowed to declare an array allocatable if it is a component of a 
structure. In this case an array pointer must be used, see Section . 

5.1.7 Dynamic Storage Allocation for Pointers 

As was explained in the beginning of this chapter, pointers are by default 
allocatable and this applies to any type of pointer. A number of examples are 
given below. This reflects the various structures of the storage allocated. 

REAL, POINTER :: temperature 
REAL, POINTER, DIMENSION ( : ) :: position, velocity 
REAL, POINTER, DIMENSION ( : ,  : ) :: potential 
CHARACTER, POINTER :: name 
 
Example 
NULLIFY ( temperature, position, velocity, potential, name ) 
 

An object pointer can be allocated storage with the ALLOCATE statement 
 
ALLOCATE ( pointer [ ( shape )  ] , [ pointer ( shape ) ] ... [ , STAT = status ] ) 
 

In the case of the above declarations one could have 
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ALLOCATE ( temperature, position (3), velocity (3), potential (2, 3), name (8) ) 
 
temperature = 18.0 
position = ( 1.5, -0.2, 1.4E8 ) 
velocity =  

 
De-allocation is done similar to allocatable arrays 
 
DEALLOCATE ( pointer [ , pointer  ] ... [ , STAT = status ] ) 
 
An error will be flagged if a pointer is deallocated in the following situations 

 if the pointer has undefined association status. 

 a pointer whose target was not created by allocation. 

 if it is associated with an allocatable array. 

 it the pointer is associated with a component of an object. 

The usefulness of the STAT clause is to prevent trying to deallocate a pointer 
which is associated with a not allocated target. 
 
Example 
REAL, TARGET :: x = 10 
REAL,  POINTER :: p 
NULLIFY ( p ) 
p => x 
PRINT*, p 
DEALLOCATE ( p ) ! This will cause a run time error! 

 

The absence of the STAT parameter will cause a runtime error. 
 

Allocating and de-allocating storage for a pointer also affects the association 
status. 

If the pointer is de-allocated, the association status of any other pointer 
associated with the same target (or component of the target) becomes 
undefined. 

Example 
integer, parameter :: dimensions = 3 
integer status 
real, pointer :: ptr_vector(:) 
... 
allocate(ptr_vector(dimensions), status) 
! use ptr_vector 
deallocate() 

5.2 Mixing pointers and arrays 

The allocate and de-allocate statements can contain both pointers and arrays 
as arguments. 

5.3 Exercises 

1) Write a procedure where the user can enter an integer to allocate an array. 
Use the UNIX/Linux time command to plot the time required to allocate 
increasing amount of memory. 
 
2) Are the following statements valid? 
ALLOCATE ( a ( SIZE ( B ), ) 
ALLOCATE ( a ( n ),  b ( SIZE ( a ) ) 
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6. Program Units, Subprograms and Modules 

A program unit is contained in a program source file that can be compiled 
separately. They are self contained and in principle the compiler does not need 
any further information to compile the file as an independent unit. 
There are three kinds of program units: 

 main program 
can contain internal subprograms 

 external subprogram 
can contain internal subprograms 

 module 
can contain module and internal subprograms 

Functionality that is internal to the module can be "hidden" and therefore be 
changed without need to alter any program that uses the module. 

6.1 Fortran Procedures: Functions and Subroutines 

Fortran 90/95 introduced a new concept of subroutines and functions as 
compared to Fortran 77. To distinguish these from the old version a distinction 
is now made between external and internal subprograms. 
The internal subprograms correspond to the Fortran 77 subroutines and 
functions whereas the external subprograms act as container of multiple 
internal subprograms. 
A subprogram defines one or more procedures. A procedure is either a 
function, which returns a value, or a subroutine which does not return a value 
but can return values through its argument list. 
Functions have the advantage that they can be used in expressions. 
An external subprogram is neither part of the main program nor part of a 
module.  
Internal subprograms are defined inside the main program, any external 
subprogram or any module. In this case its definition is placed inside a 
CONTAINS section of the program unit. An internal subprogram can only be 
invoked from within the program unit where it is defined.  
Internal subprograms are convenient because they allow to break up a large 
(external) subprogram into smaller logical units (the internal subprograms) 
without the need of introducing additional (external) subprograms that would be 
accessible by other external subprograms. This is in line with exposing 
functionality to other units only when they need it. 

 

Note: External procedures require an interface, see the section on modules 
(Section ). 

6.1.1 The INTENT attribute of procedure arguments 

Procedure arguments have an INTENT attribute 
INTENT ( intent ) 
This can only be used for dummy arguments and helps to improve correctness 
and aids in maintaining the code as incorrect use will give a compilation error. 
Values of intent are: 
IN        a dummy argument with this attribute cannot be changed in the 
procedure. The actual argument has to be defined 
OUT      the dummy argument returns information from the procedure and must 
be given a value in the procedure. The actual argument does not have to be 
defined. 
INOUT  both IN and OUT values apply. The actual variable has to be defined 
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on entry and has to be modified by the procedure. 
 
Note: The dummy arguments of a function should always be given the 
INTENT(IN) attribute as the function returns a result . 

6.2 A comparison of the structure of the three kinds of program units. 

 

main program (one instance only) module external  

subprogram 
[  PROGRAM  program_name  ] 

     [ specification_statements ] 

     [ executable_statements  ] 

[  CONTAINS  

       internal-subprogram(s)  ] 

END [ PROGRAM  [ program_name ] ] 

MODULE  module_name 

      [ specification_statements ] 

[  CONTAINS 

        module subprogram(s)  ]   

END [ MODULE  [ module_name ] ] 

(external)  

procedure(s)  

 
Notes: 

The PROGRAM program_name is optional but is recommended for clarity. 

There is exactly one main program in a complete program 

The compiler will only go as far as the END statement and during execution 
this will cause termination of the program, so no STOP is required. 

External subprogram defines an external procedure. 

A module can contain module subprograms which define module procedures. 

 

External procedure / Module procedure has the structure:  

SUBROUTINE  name [ (argumentlist ) ]  ret-type FUNCTION name (argumentlist )  

    [ spec-stmnts ] 

    [ exe-stmnts ] 

[ CONTAINS 

    internal-subprogram(s) ] 

Note: 
FUNCTION or SUBROUTINE must be present in the END statement for a 
module procedure ( the last statement in a module is END MODULE) 

Internal subprogram has the structure:  

SUBROUTINE  ( name 

argumentlist )  
ret-type FUNCTION name ( argumentlist )  

    [ specification_statements] 

    [ exe-stmnts ]  

 

6.3 Modules 

Modules are usually defined in their own source file. After compilation there will 
be a special object file with .mod extension. 
Modules are used for: 

 sharing definitions of derived data types 

 global access to variables and derived types, control which variables 
and internal subprograms can be accessed by users of the module, 
therefore provides data hiding 
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 providing an explicit interface for external procedures 

 defining new operators 

 extending the meaning of intrinsic operators and assignment 

 defining internal procedures (module procedures) 

 defining generic procedures 

6.3.1 Definition of a module 

 

Example: 
This module declares and initializes a number of variables that can be 
accessed by any subprogram that has the the USE statement. 
MODULE  global_data 
IMPLICIT NONE 
    INTEGER, PARAMETER :: N = 500 
    REAL, DIMENSION ( N ) ::  XAR, YAR 
    REAL ::  XINIT = 1.0 
END MODULE global_data 
 

A program that requires access to these variables can USE the module: 
PROGRAM use_global_data 
USE global_data 
IMPLICIT NONE 
   PRINT*, N 
END PROGRAM 
 

Note: If the variable N  would also be declared in PROGRAM use_global_data 
then a compiler error would result. With the USE statement all the variables in 
this example of a MODULE are automatically also accessible in the program. 

6.3.2 USE of a module 

USE association makes the entities of a module available to a program unit. 
 
USE module_name 
provides access to all public 

named data objects 

derived types 

interface blocks 

procedures 

 
Note: The USE statement must precede the IMPLICIT NONE statement and 
any other specification statements. 
 
Example: It makes sense to combine the definition of the POINT type and the 
area function in a module like this: 

MODULE points_2D_mod 
IMPLICIT NONE 
    TYPE POINT 
        REAL :: x 
        REAL :: y 
    END TYPE 
CONTAINS 
    FUNCTION area_points(p1, p2, p3) 
    REAL :: area_points 
    TYPE(POINT), INTENT(IN) :: p1, p2, p3 
        area_points = 0.5 * ABS( p2%y * (p3%x - p1%x) + p1%y * (p2%x - p3%x) + & 
                                         p3%y*(p1%x-p2%x)) 
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    END FUNCTION area_points  
END MODULE 
! To use this module one could write a program like 
PROGRAM points_2D 
USE points_2D_mod 
IMPLICIT NONE 
    TYPE(POINT) :: a, b, c 
    a = POINT(1.0, -2.0) 
    b = POINT(-3.0, 4.0) 
    c = POINT(5.0, -6.0)       
    PRINT*, 'Area is ', area_points(a, b, c) 
END PROGRAM 

6.4 Overloading the build-in operators 

Similar to whole array operators where the usual arithmetic operator have been 
extended to work on arrays, it is possible to extend these operators also to 
arbitrary data types. For example, it is possible to extend the addition operator 
( + ) to variables of the TYPE POINT that were defined in a previous example. 
Each point in the plane can be considered the endpoint of a vector with begin 
point in the origin. In that case the + operator for two POINTs could mean the 
usual vector addition, giving the endpoint of the sum vector. 
The assignment operator ( = ) can also be extended to arbitrary types, which 
would be useful in the POINT example to assign the endpoint of the vector sum 
to another  POINT. 
This mechanism of giving a different meaning to the intrinsic operators is called 
operator overloading. The compiler can decide from the type of the operands 
(the context) what definition of the operator is intended. 
Overloading is done with specific interface blocks. 
 
Example: 
MODULE points_2D_mod 
IMPLICIT NONE 
    TYPE POINT 
        REAL :: x 
        REAL :: y 
    END TYPE 
    ! overloaded assignment operator (=) 
    INTERFACE ASSIGNMENT (=)     ! interface ASSIGNMENT block 
        MODULE PROCEDURE assign 
    END INTERFACE 
    ! overloaded operator (+) 
    INTERFACE OPERATOR (+)     ! interface OPERATOR block 
        MODULE PROCEDURE add 
    END INTERFACE   
CONTAINS 
    SUBROUTINE assign(lhs, rhs) 
    TYPE(POINT), INTENT(OUT) :: lhs 
    TYPE(POINT), INTENT(IN) :: rhs 
        ! here you have to fill in what you want this procedure to do 
    END SUBROUTINE        
    ! overloaded + operator 
    TYPE(POINT) FUNCTION add(pt1, pt2) 
    TYPE(POINT), INTENT(IN) :: pt1, pt2 
        ! here you have to fill in what you want this procedure to do 
    END FUNCTION 
END MODULE 
 

Exercise: Copy the above example in a file and fill in the bodies of the 
assignment and addition operators. The write a main program that declares 
some points and does some addition and assignment operators. Also add 
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some more overloaded operators, e.g. subtraction of two vectors. With what 
would functionality could you overload the * operator for two POINTs? 

6.5 Generic Procedures 

Previously it was shown that a generic intrinsic function like SIN can be applied 
to both scalar and array arguments of any intrinsic type. It is also possible to 
apply this to user defined procedures, and make them into a single generic 
name but allowing different types of arguments. 

Example: 
Returning to the example of calculating the area of a triangle in 2D, there were 
a number of functions available for this purpose but each had a different name, 
e.g. area_coords(x1, y1, x2, y2, x3, y3), area_points(a, b, c) and 
area_triangle(triangle) depending on the argument types.  In the next example 
a generic interface block is used to define the generic function area which 
covers all the different types of arguments, including the derived types. 
 
Example: (Continued from previous) 
MODULE points_2D_mod 
IMPLICIT NONE 
    TYPE POINT 
        REAL :: x, y 

END TYPE 
    ! interface blocks for overloaded assignment and addition operators here 
    ! generic interface for the area function 
    INTERFACE area 
        MODULE PROCEDURE area_coords 
        MODULE PROCEDURE area_points 
        MODULE PROCEDURE area_triangle 
    END INTERFACE 
CONTAINS 
    ! overloaded functions for assignment and addition operators here 
     
    REAL FUNCTION area_coords(x1, y1, x2, y2, x3, y3) RESULT(area) 
    REAL, INTENT(IN) :: x1, y1, x2, y2, x3, y3 
        area = 0.5 * ABS( y2 * (x3 - x1) + y1 * (x2 - x3) + y3*(x1-x2)) 
    END FUNCTION area_coords 
! and similar for area_points and area_triangle here 
END MODULE 

6.6 Summary 

 A module may contain USE statements itself to access other modules. 

 A module but must not access itself directy or indicrectly through a 
chain of USE statements.  

 The standard does not require ordering of modules for compilation. 
However many compilers require this. Eg if the file mod_a.f90 defines 
MODULE  mod_a  and USEs MODULE mod_b, which is defined in 
mod_b.f90 then often mod_b.f90 has to be compiled before mod_a.f90. 

6.7 An extended example 

Example 1 
PROGRAM points !  in the plane described by x and y coordinates 
IMPLICIT NONE 
REAL,EXTERNAL :: area_coords ! a function to calculate the area of a triangle 
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    REAL :: x1, y1, x2, y2, x3, y3  
     
    x1 = 1.0 ; y1 = -2.0 
    x2 = -3.0 ; y2 = 4.0 
    x3 = 5.0 ; y3 = -6.0     
    
    PRINT*, 'Area is ', area_coords(x1, y1, x2, y2, x3, y3) 
END PROGRAM     

 
FUNCTION area_coords(x1, y1, x2, y2, x3, y3) 
REAL :: area_coords 
REAL, INTENT(IN) :: x1, y1, x2, y2, x3, y3 
    area_coords = 0.5 * ABS( y2 * (x3 - x1) + y1 * (x2 - x3) + y3*(x1-x2)) 
END FUNCTION area_coords 

 
Example 2 
PROGRAM points !  in the plane described by x and y coordinates 
IMPLICIT NONE 
REAL,EXTERNAL :: area_coords ! a function to calculate the area of a triangle 
     
    TYPE POINT 
        REAL :: x 
        REAL :: y 
    END TYPE 
 
    TYPE(POINT) :: a, b, c 
    
    REAL :: x1, y1, x2, y2, x3, y3  
     
    x1 = 1.0 ; y1 = -2.0 
    x2 = -3.0 ; y2 = 4.0 
    x3 = 5.0 ; y3 = -6.0     
 
    a = POINT(1.0, -2.0) 
    b = POINT(-3.0, 4.0) 
    c = POINT(x3, y3)     
     
    PRINT*, 'Area is ', area_coords(x1, y1, x2, y2, x3, y3) 
    PRINT*, 'Area is ', area_points(a, b, c) 
CONTAINS 
    FUNCTION area_points(p1, p2, p3)  
    REAL :: area_points 
    TYPE(POINT), INTENT(IN) :: p1, p2, p3 
        area_points = 0.5 * ABS( p2%y * (p3%x - p1%x) + p1%y * (p2%x - p3%x) + & 
p3%y*(p1%x-p2%x)) 
    END FUNCTION area_points   
END PROGRAM     
 
FUNCTION area_coords(x1, y1, x2, y2, x3, y3) 
REAL :: area_coords 
REAL, INTENT(IN) :: x1, y1, x2, y2, x3, y3 
    area_coords = 0.5 * ABS( y2 * (x3 - x1) + y1 * (x2 - x3) + y3*(x1-x2)) 
END FUNCTION area_coords 
 
Example 3 

PROGRAM points 
IMPLICIT NONE 
    ! Instead of an external statement for the function area_coords 
    !REAL,EXTERNAL :: area_coords 
    ! use an INTERFACE block 
    INTERFACE 
        FUNCTION area_coords(x1, y1, x2, y2, x3, y3) 
            REAL :: area_coords 
            REAL, INTENT(IN) :: x1, y1, x2, y2, x3, y3     
        END FUNCTION area_coords 



 

Guide 47: Advanced Fortran 90/95 Programming 27 

    END INTERFACE 
     
    TYPE POINT 
        REAL :: x 
        REAL :: y 
    END TYPE 
     
    TYPE(POINT) :: a, b, c 
    TYPE(POINT), DIMENSION(3) :: triangle 
     
    REAL :: x1, y1, x2, y2, x3, y3     
    x1 = 1.0 ; y1 = -2.0 
    x2 = -3.0 ; y2 = 4.0 
    x3 = 5.0 ; y3 = -6.0     
    a = POINT(1.0, -2.0) 
    b = POINT(-3.0, 4.0) 
    c = POINT(x3, y3)    
    triangle(1) = a 
    triangle(2) = POINT(x2, y2) 
    triangle(3) = c        
    PRINT*, 'Area is ', area_coords(x1, y1, x2, y2, x3, y3) 
    PRINT*, 'Area is ', area_points(a, b, c) 
    PRINT*, 'Area is ', area_triangle(triangle) 
CONTAINS 
    FUNCTION area_points(p1, p2, p3)  
    REAL :: area_points 
    TYPE(POINT), INTENT(IN) :: p1, p2, p3 
        area_points = 0.5 * ABS( p2%y * (p3%x - p1%x) + p1%y * (p2%x - p3%x) + & 
                                         p3%y*(p1%x-p2%x)) 
    END FUNCTION area_points 
 
    FUNCTION area_triangle(t)  
    REAL :: area_triangle 
    TYPE(POINT), DIMENSION(3) :: t 
        area_triangle = & 
                        area_coords(t(1)%x, t(1)%y, t(2)%x, t(2)%y, t(3)%x, t(3)%y) 
    END FUNCTION area_triangle 
     
END PROGRAM     
 
! External procedure 
FUNCTION area_coords(x1, y1, x2, y2, x3, y3) 
REAL :: area_coords 
REAL, INTENT(IN) :: x1, y1, x2, y2, x3, y3 
    area_coords = 0.5 * ABS( y2 * (x3 - x1) + y1 * (x2 - x3) + y3*(x1-x2)) 
END FUNCTION area_coords 

 

Note: In the above examples the triangle array is assigned a POINT object, 
e.g. triangle(1) = a. The assign operator (=) for the type POINT has not yet 
been defined here, therefore the components of the left hand side are simply 
copied to the components of the right hand side, e.g. triangle(1) % x = a % x 
etc. This is called a shallow copy. Although this straight copy does not cause 
problems here, more care must be taken with a structure that has one or more 
pointers as component. 

6.8 Exercises 

1. Fill in the missing code for area_points and area_triangle. 

2. Copy the example of Section 6.4 in a file and complete the bodies of the 
assignment and addition operators. Write a main program that declares 
some POINTs and does some addition and assignment operatins. Also add 
some more overloaded operators, e.g. subtraction of two vectors. With 
what would functionality could you overload the * operator for two POINTs? 
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