
Testing
• Unit Testing

– Think through at the design stage how the overall program
can be built from smaller units

– And how each of those units can be tested in isolation

– And how to test the interfaces/interactions between these
units in combination

• Be systematic!
– Document the tests, inputs & outputs.

– Random/ad-hoc testing is very suspect

– Try to ensure all the code is covered in your testing! Analysis
and testing tools can help here – more in later lectures.

– Regression testing – make sure any new additions do not
affect earlier functionality

• Modular approach to design, coding & testing

Validation
• What simple tests can you apply to validate a given

unit? Or whole program?

– Some simple theoretical limits (e.g. energy conservation
in MD program)?

– Specified inputs that give a known result? Also useful for
checking later modifications!

• Check robustness of code to compiler flags

– Do all initial testing with maximum debugging & compiler
support and NO optimisation (e.g. f90 –g –O0).

– Only turn on compiler optimisation once code is correct
and check it does not change anything significantly!

Debugging

• If testing shows up a problem, how do
you fix it? Just as with testing, need to be
systematic – use the scientific method!

1. Gather information and form a hypothesis

2. Test your hypothesis

3. Iterate until proven hypothesis is found

4. Propose and test solution

5. Iterate until solution is proven correct

6. Regression test – has your fix broken
something else?!

Common Types of Bug

• Memory/Resource leaks
– Make sure that everything allocated is always

deallocated (once) when finished

– Some other resources are very limited (e.g. window
handles, or file unit numbers, etc)

• Logic Errors
– Syntactically correct but code does not perform as

expected. Impossible to catch with automated tools.

– Needs rigorous testing of different sets of inputs to
show up an odd/unexpected behaviour

• Coding Errors
– E.g. parameter type and/or number mismatch, or

exceeding valid input range of a routine, etc.

More Common Bugs …
• Memory Overruns

– Beloved of hackers! Basically, trying to access a bit of
memory that does not belong to you. E.g. copying too
long a string or going beyond an array bound.

– Compiler flags can help catch this at runtime with
some languages.

– Common symptom – a strange numerical result or
crash that goes away when you insert a print statement
to try to see in more detail what is going on! Or when
add an additional variable definition, etc.

– This is an anti-fix – it masks the real problem and
makes it appear to go away but in fact it makes the real
problem even harder to find!

… and some more …
• Loop Errors

– Infinite loops – make sure loop has a guaranteed exit strategy
– Off-by-one loops – does your loop or array index go from 1 to

N or 0 to N-1? Exit condition?

• Conditional Errors
– Boolean logic mangled, e.g. testing for x<0.0 or x0.0?
– Beware nested ‘if-blocks’ – easy to get a missing ‘else’ clause.

Always make sure that there is a catch-all clause.
– Case statements better – add a ‘case default’

• Pointer Errors
– Memory style – beware uninitialised pointers (F90 as well as

C-style languages although situation better in F95), pointers
to deallocated blocks of memory, or pointers to wrong
location

– Also other situations, e.g. integers used for array indices?

… and there's more …
• Integration Errors

– i.e. when units pass tests OK but fail when put together

– Usually due to inappropriate assumptions in one unit, e.g. will
only work with data within certain ranges

• Storage Errors
– What if your program wrote out an intermediate state of the

calculation, in order to read it later to continue executing?

– E.g. trying to create a file with an invalid filename, or file
system becoming full, or file being locked by another
application, or wrong access permissions, etc.

• Conversion Errors
– SI vs. imperial units led to loss of NASA Mars Climate Orbiter

in 1998. Converting 64-bit floating point variable to 16-bit
signed integer led to loss of ESA Arianne 5 in 1996.

– E.g. integer division, 12/24=0, but 12.0/24.0=0.5 …

… and finally …
• Hard-coded Lengths/Sizes

– Magic numbers at random points in code makes changes hard
to localise and code hard to maintain.

– Much better to have assigned to variables or parameters with
meaningful names and use name everywhere not value

• Versioning Bugs

– Make file formats robust to future developments and build in
versioning info – otherwise will get strange results when using
old data in newer program version

• Inappropriate Reuse Bugs

– Must always carefully unit test code, even when reusing old
“trusted and reliable” code as it may be being used in a new
way not originally planned & tested for!

