THE UNIVERSITY of York

High Performance Computing - The Future

Prof Matt Probert

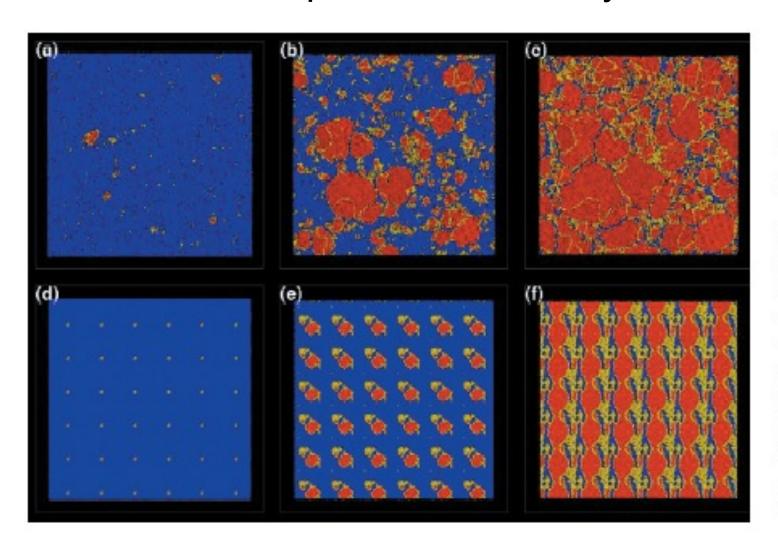
http://www-users.york.ac.uk/~mijp1

Autumn Term 2022

Overview

Big Computing / Big Data

HPC Languages


GPU programming

New CPUs

Big Computing

Why do we need Big Computing?

Domain decomposed MD with dynamic domains

Snapshots from simulations of solidification in tantalum. The top sequence displays nucleation (a) and growth (b) occurring in a 16,372,000-atom simulation, resulting in a realistic distribution of grains and grain boundaries (c). The same process modeled using 64,000 atoms (d–f) produced the artificial final structure shown in (f).

Beowulf

- Beowulf designs are cheap and popular
 - Hardly use this name anymore become so ubiquitous
 - Rapid growth since mid 1990s large part of Top500
 - Enabled by powerful and cheap CPUs and developments in network technology (Infinband, etc.)
- Typically "fast compute, slow interconnect"
 - Challenges to large-scale parallelism
 - Need lots of latency hiding to get good scaling
- Hence interest in slow/low-power CPUs
 - E.g. Intel Atom, ARM and IBM Power PC CPUs
 - High packing density, lower running costs,
 - And easier to get codes to scale!

ExaScale Computing

- ExaScale = 10¹⁸ FLOPs
 - Original plan was 2018 according to Moore's Law but only reached in 2022 –delayed
 - Frontier is first true Exa with 1.1 ExaFLOPs
 - UK target is 2024?
 - Power/cooling limitations
 - Programming methods
 - Component reliability MTBF
 - Parallel scaling challenges
- What science will become capable? How to manage the data generated?

Compare Fugaku ...

- Fujitsu with ARM CPUs & no accelerators
- A64FX 48core 2.2GHz CPU
 - -7,630,848 cores in 158,976 nodes
- Performance:
 - LINPACK 442 TFLOPs
 - Peak = 537 TFLOPs
 - i.e. 83% peak at 29.9 MW
- Cost ~\$1b

... with Frontier

- HPE Cray with ARM CPUs & GPUs
 - AMD 3rd gen EPYC 64core 2GHz CPU
 - AMD INSTINCT MI250X GPU
 - 8,730,112 cores in 9,472 nodes
- Performance:
 - LINPACK 1.102 EFLOPs
 - Peak = 1.685 EFLOPs
 - i.e. 65% peak at 17.8 MW
- Cost ~\$0.6b
- Cheaper, less power but harder to program
 - Need hybrid MPI + HIP or OpenMP
- Many of the Top500 are hybrid machines
 - Not a trend that is going away soon
 - But we desperately need open standards to get portability and longevity of codes

Big Data

- LHC at CERN generates huge datasets 35
 TB/day which need to be stored and analysed
 - Hence CERN is at the forefront of implementing distributed computing – cannot store & process such large amounts of data – needs to be able to distribute it around the world to get local storage and analysis
 - Large strain on networks dedicated 10 Gbit/s fibre optic links to 11 "Tier 1" institutions
 - Called 'LHC Computing Grid' a practical way of managing the volumes of data to be generated

Distributed Data

- Who else?
 - Large data sets requiring distributed processing
 - Issue with trust not standard PC types.
- Square Kilometre Array (SKA)
 - Sites in South Africa & Australia
 - Building started in 2018, treaty signed in 2019, full size system to be online by 2027
 - Will have total x50 sensitivity and 10,000x faster than any other radio telescope array
 - On-site computer power of 10⁸ PCs using Chinese CPUs
 - Generate one exabyte of data/day
 - Phase 1 (underway) = £2b & Phase 2 (future) = ?? £20b ??
- Distributed computing?

Distributed Computing Projects

- Folding@Home
 - Focus on SARS-CoV-2 & proteins that interact with it as part of the Moonshot Collaboration to find treatments
 - 1st computing project ever to sustain 1 PFLOP (Sept07)
 - Now at 2.4 ExaFLOPs for COVID research!
 - Using 700,000 home PCs
 - Can run on CPU/GPU and Win/Mac/Linux and ...
 - Was also PS3 until Sony 2012 stopped support
 - Data generated has produced over 225 papers so far
 - MPI parallel since 2006, threads and OpenCL (not CUDA) for both nVidia & AMD GPUs in 2010
- Lots of other "@home" projects including SETI@home (the first) ...

Cloud Computing

- An increasingly popular (commercial) approach to providing compute cycles
- Replace 'capital' by 'recurrent' costs
- Buy cycles from large compute farms,
 - e.g. Amazon (AWS since 2006) or Google
 Cloud Platform or Microsoft Azure or ...
- Used to be generic VM offering
- Then went to 'Software as a Service' with dedicated images for particular packages
- Now providing dedicated HPC offerings

HPC on Cloud

Advantages

- Access to additional hardware on demand
- Now includes GPU, Xeon-Phi, FPGA, etc
- Useful for occasional users or to try-out tech

Disadvantages

- High cost for regular users
- Typically 6p/core-hour vs 2p for own hardware
- Amazon EC2 allows for spot pricing
- Limited in system size available
- Non-local geography for parts of system
- Data security? Storage costs?

HPC Languages

Dedicated Language?

- Alternative to using a common language (e.g.
 C/C++ or Fortran) + libraries or directives
 - Tried in early days but lost out
- DARPA started High Productivity Computing Systems program in 2004 to build peta-scale
 - IBM Roadrunner 2008 at Los Alamos USA
 - Develop hardware + languages + o/s + file system
- Languages included
 - Fortress (Sun), Chapel (Cray), X10 (IBM)
 - All examples of PGAS (partitioned global address space) languages
- Or improve traditional languages?

Fortress (Sun)

- In mid-2000s there was a lot of effort to rebrand Java as a HPC language (Java Grande) but:
 - No IEEE 754 support + few intrinsic math functions
 - Not in MPI or OpenMP standards
 - Slow unless converted to native code
 - Java Grande Forum died brief revival when Java went
 GPL (end 06) but then nothing ...
- SUN created a new HPC language "Fortress"
 - Designed to be a secure Fortran that was intrinsically parallel and type-safe with pseudocode syntax
 - Started in 2005, open source in 2007, but then problems with JVM licensing meant Oracle decided to drop the project in 2012 so now looks dead ...

Chapel (Cray)

- Designed to separate algorithms from data representation
- Multi-threaded parallelism for data
 - + task + nested parallelism
 - -Based upon HPF ideas
- With support for OOP
- Started in 2009, open source, still being actively developed

X10 (IBM)

- Focus on concurrency and distribution with OOP like Java or C#
- Asynchronous PGAS
- Uses parent + child to handle locks/race conditions
 - Parent can wait for child but not v.v.
- Can use JVM or compile to native code
- Started in 2004, open source, still being actively developed

UPC/UPC++ (Unified Parallel C)

- Based upon C99 with SPMD model
- Can handle either shared or distributed memory machines
 - An explicitly parallel execution model
 - Appears as shared address space to programmer
 - any variable can be r/w from any processor but physically associated with a single processor
 - Synchronization primitives and a memory consistency model
 - Memory management primitives

Fortran 2008 – Co-Arrays

- Allows SPMD within Fortran
 - easier to use than MPI
 - designed for data decomposition
- Example

```
REAL, DIMENSION(N) [*] :: X,Y
X(:) = Y(:)[Q]
```

- Additional [] shows that this item is a co-array and is distributed
- Second line shows how to copy values from one "memory image" to another (c.f. MPI_Send/Recv)
- Full support in gfortran since v5.0
 - Most F2008 in gfortran 6.0, few minor bits not in 9.0
- Idea copied by Cray for Coarray C++

Future Fortran?

- Fortran 2018 standard published (Nov 2018)
 - Minor revision of F2008 & originally called F2015
- Two major additions:
 - TS29113 (Further Interoperability with C), was approved in 2012 and available in Intel ifc v16
 - TS18508 (Additional Parallel Features in Fortran), extends coarrays and SELECT RANK (gfortran v10).
 Extends DO CONCURRENT with data locality (not yet)
- Plus minor improvements
 - to environment variables, STOP commands, etc.
- Some features already implemented

GPU Programming

How to program a GPU

- nVidia has CUDA for its GPUs
 - Vendor lock-in with nvcc and hardware but cross-platform (Windows, Mac and Linux)
 - SDK supports PathScale Open64 C compiler + third-party wrappers available for Python, .Net, etc.
 - v8 (Sept 2016) aka Pascal has unified memory model and direct access to main RAM
 - Removes key performance bottleneck but only on non-x86 architectures (hence SUMMIT & Bede using Power9 CPUs)
- AMD has HIP as high-level and ROCm as low-level alternatives for Radeon GPUs
- Intel promotes OneAPI for its GPU & FPGAs
- Also OpenCL, OpenACC and OpenMP v4 for non-vendor specific approaches!

New CPUs

Low Power HPC

- Green500 focuses on power-per-Watt
 - #1 machine (2022) uses Intel Xeon Platinum + nVidia H100
 - Linpack = 2.0 TFLOPs vs peak = 5.4 TFLOPs at 31 kW
 - 7 in top #10 are AMD EPYCC based & 3 are Xeon Platinum
 - 6 use AMD Instinct accelerators, 3 nVidia, 1 with MN-Core
 - Lots of different CPUs in the list inc. ARM and novel designs
- Exascale?
 - If could scale #1 machine to Exascale it would need 16 MW
 - When Green500 was launched in 2007 it was projected to take 3000 MW => almost 200x better!
 - Frontier is #6 and IS 1st Exascale & takes only 21 MW
- Also look at SWaP (space, wattage and performance) = performance/(space*power)

MN-Core

- Japanese accelerator developed by Preferred Networks
- Designed for training phase of deep learning with focus on matrix math
 - 1 TFLOP/W in ½ precision tensor core
 - Massive SIMD
 - Minimal instruction set no if-branches!
 - NOT a general-purpose accelerator

Designed to be used within pyTorch ...

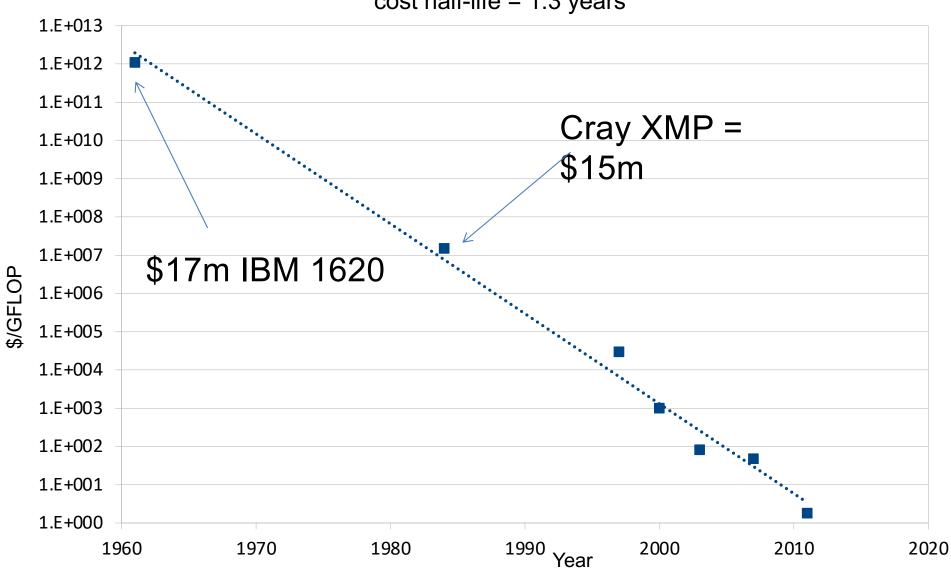
AMD

- Now at 7 nm process Intel still at 14 nm until 2023!
- Radeon Vega/Navi GPGPU line
 - Use HIP not CUDA, or OpenMP not OpenACC
- Ryzen desktop CPU
 - Ryzen 7 ~ Intel i7 etc
 - Threadripper up to 64 cores, 128 threads
- EPYC HPC CPU
 - Server grade CPU to compete with Intel Scalable Xeon
 - Based on Zen architecture (new in 2017)
 - ARCHER2 has 2nd gen EPYC Rome (64 core)
 - Frontier (Oak Ridge) has EPYC + Radeon and 1st to sustain 1 EFLOPS
- APU line (Accelerated Processing Unit)
 - Fusion of multiple CPU + GPU cores in a single package with flat memory
 - Used in PS4 & Xbox One 'system on a chip'
 - Ryzen 4000 (2020) = Zen2 CPU + Vega GPU

Intel

- Falling behind AMD & ARM
 - Still 14nm. 10nm was a disaster & 7nm now due in 2023.
 - Cancelled Xeon Phi in 2017 so no 3rd gen.
 - 2nd gen had 72 Atom cores with 4 threads/core so 2.8 TFLOP dp@200 W. c.f. Intel ASCI Red (1997) was 1st TFLOP supercomputer with 10,000 Pentiums - cost \$55 m!
 - Focus now on Xeon Scalable (but Ryzen cheaper)
 - Aurora (Argonne) was to be based on 3rd Gen Phi for pre-Exa in 2018. Change to Scalable chips in 2021. Due now ...
 - Frontier 1st to Exa with AMD DoE keen on 'made in USA'.
 - 3rd Gen Xeon Scalable (Platinum) up to 40 cores (80 threads)
 - + support for Optane 'persistent memory' for fastest I/O
 - Optane up to 4.5 TB/socket as replacement HD
 - Ponte Vecchio GPU at 7nm in 2022

ARM


- Suddenly big in HPC space
 - Isambard (Tier-2) in 2016 at Bristol
 - Was #1 in Top500 in 2020 (Fugaku) no GPUs
 - 7nm process at Taiwan fab
 - Came from Acorn in Cambridge for BBC-B
 - Dominant in mobile/embedded as low-power
 - Bought by Japanese 'SoftBank Group' in 2016 for £24b. nVidia was buying for \$40b but blocked.
 - Apple M1 Macs have ARM CPU (2020+)
 - EU developing own chip from ARM design for the European Processor Initiative

Affordable Supercomputing?

- Cost/FLOP has been going down for many years
- Recent developments in supercomputing include Beowulf / GPU / MIC etc
- New trends include ARM and custom CPU designs
- New dedicated ML/Al accelerators including MN-Core, Cerebras, Graphcore and nVidia Tensor Cores
 - Designed for SGEMM etc
- New dedicated DPUs including nVidia BlueField (bought Mellanox in 2020)
- Often new design is ARM or FPGA based

Moore's Law for HPC Cost

Progress in HPC cost half-life = 1.3 years


FPGA?

- Field-Programmable Gate Array
- A chip where the interconnects between logic blocks can be decided by the user 'in the field' using Hardware Description Lang
 - NOT a general purpose computer but can implement key functions in hardware
 - Popular in lattice-QCD
- Traditionally much slower and more expensive and lower volumes than ASIC
- Being developed by IBM & Intel & ...

MD-GRAPE

- Special purpose computer for protein MD calcs
- Dedicated hardware for particular classes of force calculation etc
- System-on-Chip design: combines dp and sp cores + memory + 3D torus interconnect
- V3 had 1 PFLOP with 4080 CPUs in 2006 and cost \$9m c.f. BlueGene/L at same time had 131,072 cores for 0.28 PFLOP and \$250m
- V4 in beta since Feb 2016 ... stalled?
- Lead designer now with PFN working on MN-Core

MDGRAPE-4

Further Reading

- Folding@Home at http://foldingathome.org/
- Fortress at https://github.com/stokito/fortress-lang
- Chapel at https://chapel-lang.org
- X10 at http://x10-lang.org
- UPC at http://upc-lang.org
- Fortran2018 at http://fortranwiki.org/fortran/show/Fortran+2018
- Green500 at http://www.top500.org/list/green5000
- MN-Core at https://projects.preferred.jp/mn-core/en/
- European Processor Initiative at https://www.european-processor-initiative.eu/
- Programming Aurora at https://www.iwocl.org/wp-content/uploads/iwoclsyclcon-2020-finkel-keynote-slides.pdf
- FPGA for Lattice-QCD at https://en.wikipedia.org/wiki/QPACE
- MDGRAPE at https://en.wikipedia.org/wiki/RIKEN_MDGRAPE-3