
High Performance Computing
- MPP Programming with MPI

- part II

Prof Matt Probert
http://www-users.york.ac.uk/~mijp1

Overview

• More Point-to-Point Communication
– Non-blocking version

• Advanced Collective Communication
• Manipulating Communicators
• Miscellaneous MPI Features

Simple Example
• Consider a regular domain decomposition

with periodic boundary conditions :

Want to replace each
element by the average
of its two neighbours.

Data is distributed as
shown so need halo data
to perform smoothing at
edges of local data on
each node.

Interior data requires no
comms for update.

Deadlock Potential
• Simple-minded implementation of 1D parallel

data smoothing might be:
For each iteration do:

update all cells
send boundary data to neighbours
receive halo data from neighbours

But this has potential for deadlock:
Using a standard send, it may be
that the send cannot complete until
the receive has started – yet as all
nodes are sending, none can start
receiving, and hence get deadlock.

Possible Solutions
• There are various possible solutions to the

previous problem:
– Use buffered send
– Use “red-black” pattern, i.e. every “red” node sends

whilst every “black” node receives and then switch over.
– But both of these solutions have a drawback – system

has to idle whilst comms take place.
– A better solution would allow latency hiding, where

calculations can proceed whilst comms are in progress.
• Hence need for non-blocking (asynchronous)

comms, where a send can complete regardless of
state of receive (c.f. sending a letter by mail).

Non-Blocking Solution
• With non-blocking comms, need to use

additional MPI commands to test for state of
communication:

For each iteration do (on all nodes):
update boundary cells
initiate sending of boundary values to neighbours
initiate receipt of halo data from neighbours
update non-boundary cells
wait for completion of sending of boundary values
wait for completion of receipt of halo values

NB Cannot get deadlock with this solution and comms
can be fully bi-directional.

NB Completion tests only posted when data is needed,
hence can hide comms costs behind other updates.

Non-Blocking MPI Communications
Mode Non-Blocking

Standard MPI_Isend

Buffered MPI_Ibsend

Synchronous MPI_Issend

Receive MPI_Irecv

Non-blocking forms
have similar args to
blocking forms but
with an additional
unique request
handle which use to
test completion state.

• MPI_Issend(data, count, datatype,
destination, tag, comm, request, ierror)
• Can then proceed with calculations that do not change

the send data, until Issend is complete.
• MPI_Irecv(data, count, datatype, source,
tag, comm, request, ierror)
• This posts the receive and then need to explicitly check

for completion before can use the received data.

Testing for Completion
• Every non-blocking comm must have a matching test

– Must not modify (send) or use (recv) data until test OK
– Can choose to delay the test until data needed
– Missing out a test will lead to a resource leak …

• Simplest to use a blocking test on a single communication
– MPI_Wait(request, status, ierror)

– where request is the integer handle to the required non-blocking
communication and status is a user-defined integer array (of
MPI_STATUS_SIZE) which holds information about message, as
discussed for MPI_Recv in earlier lecture.

• Can also do non-blocking MPI_Test and also multi-message
test routines available – complex!

• NB Syntax given for Fortran – all C/C++ versions the same
except case-sensitive names, use &data, &status etc. and
no final ierror as called as function not subroutine

Advanced Collective Communications

More Collective Communications
• MPI_Bcast(data, count, datatype, root,
comm, ierror)
– As last lecture - broadcasts count items of data from
root process to all process in specified communicator.

• MPI_Scatter(send_data, send_count,
send_type, recv_data, recv_count,
recv_type, root, comm, ierror)
– NB send_count is number of items sent to each

processor not total. Send_* items only relevant on
root process. All processes in comm must participate.

– Send_type may be different to recv_type but if it is
the same then send_count must equal recv_count

• MPI_Gather(…) same syntax as MPI_Scatter but
recv_* items only relevant on root.

Non-Root Collectives
• MPI_Allgather (send_data, send_count, send_
type, recv_data, recv_count, recv_type,
comm, ierror)
– Like MPI_Gather but without a root process.
Send_* and recv_* items relevant on all processes.
All processes in comm must participate.

• Ditto for MPI_Alltoall(…)
• Also MPI_Scatterv, MPI_Gatherv,
MPI_Allgatherv, MPI_Alltoallv
– Augmented versions of MPI_Scatter etc.
– send_count becomes an array send_counts (i.e.

can send different number of elements to each
process)

– Extra integer array displs is added (“displacements”
so the data to be scattered need not be contiguous, i.e.
can send sub-blocks of arrays).

Global Reduction
• Use to compute a

global result from
distributed data.

• Result is an array
on root process
only, undefined on
others.

• All processes call
with identical
arguments except
for send_data
and recv_data
…

Global Reductions
• MPI_Reduce(send_data, recv_data,
count, type, op, root, comm,
ierror)
– Where op is either one of the predefined

MPI reduction operators for MPI standard
datatypes:

• MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD,
MPI_LAND, MPI_BAND, MPI_LOR,
MPI_BOR, MPI_LXOR, MPI_BXOR,
MPI_MAXLOC, MPI_MINLOC (b=bitwise)

– Or a user-defined operation which must then
register with MPI library via
MPI_Op_create – see literature for details

Non-Root Global Reductions

MPI_ALLREDUCE is like MPI_REDUCE but no root so all processes receive same result.
MPI_REDUCE_SCATTER differs in that processes elect to receive a certain sized segment
of the result.

Manipulating Communicators
• By default, all comms is within MPI_COMM_WORLD

but sometimes useful to split into smaller groups
• Can create a (set of) new communicators by

splitting existing communicator using
– MPI_Comm_split(old_comm, split_key,
split_rank, new_comm, ierror)

– Where all processors with same value of split_key
will be in same new_comm, and rank in new_comm will
be given by split_rank.

• Can also create arbitary sub-groupings using
MPI_Comm_create but a bit more complex.

Virtual Topologies
• Sometimes useful to simplify coding and/or

communications by defining a virtual topology.
– Especially when mapping grid data onto processors

with appropriate boundary conditions
– Provides a way of mapping virtual ranks to actual ranks

of processes
– MPI_Cart_create(old_comm, ndims, dims,
periods, reorder, comm_cart, ierror)

– Where ndims is number of dimensions in comm_cart,
dims is number of processes in each dimension,
periods is a logical array for PBCs and reorder is
.FALSE. if data already on processors (so ranks
remain as in old_comm) , otherwise .TRUE. may
reassign ranks if better for faster communications.

– NB MPI numbers dimensions from 0 to ndim-1 …

Example Virtual Topology

Virtual topology with PBCs in only 1 direction. Must use
comm_cart in other MPI calls to benefit from new mappings

Cartesian Mapping
• To benefit from virtual topology can use

Cartesian mapping functions to convert grid
coordinates into processor ranks :
– MPI_Cart_rank(cart_comm, coords, rank,
ierror)

• And v.v. :
– MPI_Cart_coords(cart_comm, rank,
maxdims, coords, ierror)

• where maxdims is length of coords array that is returned
– MPI_Cart_shift(cart_comm, direction,
disp, rank_source, rank_dest, ierror)

• Returns correct ranks corresponding to virtual shift in
direction (0 to ndims-1) of disp process
coordinates. Returns rank_source as where the
calling process should receive a message from, and
rank_dest as to where the message should be sent.

MPI Derived Types
• Might want to send several items data of same type

but non-contiguous in memory (e.g. array slice) or
contiguous data of mixed type (e.g. C struct or
F90 type).
– Can either use lots of small messages or create new MPI

derived type and save on latency and number of MPI calls.
• Need to construct the new MPI type using

combination of existing types with calls to
MPI_Type_vector(…) and/or
MPI_Type_struct(…), then register it with the
system using MPI_Type_commit(new_type) after
which it can be used multiple times before being
released with MPI_Type_free(new_type)

Creating a Vector Type
• MPI_Type_vector (count,
block_length, stride, old_type,
new_type, ierror)

• E.g. count=2, stride=5, block_length=3:

Creating a Structure Type
• MPI_Type_struct(count, blocklengths,

displacements, types, new_type, ierror)
• e.g. struct{int a; double b[2]} foo has count=2
• blocklengths[0]=1; displacements[0]=0;

types[0]=MPI_INT
• blocklengths[1]=3; displacements[1]=&foo.b-&foo;

types[1]=MPI_DOUBLE
• Issues with padding and alignment of mixed types in MPIv1.

Fixed with MPI_Type_create_struct in MPIv2

MPI debugging
• Can use gdb on each MPI instance …

– Launch code using mpiexec NOT mpirun
– Then logon to relevant node and launch gdb

with --pid option or the attach command
– See http://www.sci.utah.edu/~tfogal/academic/Fogal-

ParallelDebugging.pdf for more GNU details
• Also similar with Intel idb …

– http://www.jaist.ac.jp/iscenter-
new/mpc/altix/altixdata/opt/intel/idb/10.0.026/doc/idb_ma
nual/lin/idb_starting_parallel_debugging_session.htm

– (and/or Google for the Intel idb manual)

http://www.jaist.ac.jp/iscenter-new/mpc/altix/altixdata/opt/intel/idb/10.0.026/doc/idb_manual/lin/idb_starting_parallel_debugging_session.htm

MPI profiling
• MPI profiling using gprof …

– Need to tell gprof to add pid to each process
gmon.out file so all are unique:

export GMON_OUT_PREFIX=gmon.out-

– Then compile MPI code & run as usual
– Then combine the different gmon.out files
gprof -s a.out gmon.out-*

– Then use gmon.sum to generate an overall profile
gprof a.out gmon.sum

• Use mpiP to profile the MPI comms so
combined with gprof can do comms:calc ratio

MPI v2
• 1st v2 in 1996 but final MPI 1.3 in 2008!
• Added features for parallel I/O

– Requires specialized hardware support
– Can have multiple processes write to different

parts of same file at same time
• Dynamic process management

– MPI can now spawn new MPI processes
• And remote memory access (RMA)

– Can now do 1-sided “get” and “put” data
– Faster but requires hardware support

What happened to MPI v2?

• MPI v2 was not a great success as many
of its features required specialized
hardware support
– Hence not widely available
– Hence not very portable
– Hence not very popular

• And not many programmers needed the
extra features so stayed with MPI v1

MPI v3

• Launched in 2012 (v3.1 in 2015)
– Extends the 1-sided RMA functions
– Adds support for shared memory

programming (e.g. OpenMP within a node) so
can now do hybrid parallelism

– Adds support for non-blocking collective
comms

– Adds F2008 bindings
• MUCH more useful and portable …

– See Advanced HPC lectures for more!

Further Reading
• Chapter 9 of “Introduction to High Performance

Computing for Scientists and Engineers”, Georg
Hager and Gerhard Wellein, CRC Press (2011).

• EPCC course notes at
http://www.epcc.ed.ac.uk/education-training/

• MPI forum https://www.mpi-forum.org
• MPI homepage

http://www.mcs.anl.gov/research/projects/mpi
including MPI standards, examples and more.

• mpiP from LLNL at http://mpip.sourceforge.net/

http://mpip.sourceforge.net/

