THE UNIVERSITYW

High Performance Computing
- Parallel Computers and
Networks

Prof Matt Probert

http://www-users.york.ac.uk/~mijp1

Overview

Parallel on a chip?

Shared vs. distributed memory
Latency & bandwidth
Topology

Beowulf

Parallel Execution

 Many modern CPUs have some intrinsically
parallel features on a single chip.

« Superscalar
— Multiple functional units within a single CPU
— Most modern CPUs have at least two floating-
point functional units.
— Hence theoretical peak speed of Viking (on 1 core
of Intel Xeon Gold 6138 CPU)
3.7 GHz x 2 FP units x 2 threads = 14.8 GFLOPS

SMT Parallel Execution

« Many chips support simultaneous multi-
threading (SMT) — called "hyperthreading” by
Intel
— Each thread shows up as a separate CPU

to the operating system.

— Each thread has its own registers, but
threads share functional units — see
hardware lecture

— Benefit (or lack thereof) is dependent on
the code — see lectures on parallel
compilers and OpenMP.

Multi-Core Parallel Execution

* Many chips are now “multi-core”
— 2/4/6/... distinct CPUs on a chip, each with its

own registers and functional units.

— Standard in modern AMD and Intel chips.

— Exynos 8890 is 8-core (as in my smartphone)
[Apple iIPhone 11 has A13 Bionic with 2 high-

performance cores + 4 energy-efficient cores]

— True parallel processing on a single chip.

SIMD

« A useful terminology is SIMD (Single Instruction Multiple

Data).

— Now present in commodity CPUs

— Driven by multimedia and games — not HPC

— AMD first with “3DNow!” in K6-2

— Intel followed with MMX (integer only - Pentium)

— then came SSE (Streaming SIMD Extensions) (single
precision floating point — Pentium 3)

— and SSE2 (double precision floating point — Pentium 4)

— and SSE3 (multiple ops per register — later P4s)

— and SSE4 (string processing - Core2)

— And AVX (“"Vector’ registers increased from 128 to 256
bits) and then AVX512 ...

Multi- Tasking is Not Parallel

* A single CPU (single core) can only perform one task

at a time but can give the illusion of concurrency

— With multiprogramming, the current task keeps running until it performs
an operation that requires waiting for an external event (e.g. reading
from a disk). Uncommon these days

— With real-time systems, some waiting time-critical tasks are guaranteed
to be given the CPU on an external interrupt.

— With co-operative time-sharing (e.g. early versions of MacOS and MS
Windows), the running task voluntarily relinquishes CPU — hence
vulnerable to bugs and badly-written software.

— With pre-emptive time-sharing (e.g. UNIX, Win9x, etc), the running task
knows nothing about multi-tasking, and it is the O/S which suspends the
task after given timeslice (typically 1-100 ms). Needs hardware support
from the CPU.

 Nowadays, multitasking usually means time-sharing
* CPU is not just running your code: OS + other users

Simple Multi-Processor Machine

« What if put 2 or more

CPU

CPU

CPU

CPU

distinct CPUs on a single

motherboard bus and share
other resources? Would this
be a useful design?

 Known as SMP (symmetric multi-processor,

or shared-memory processor)

» All CPUs equivalent (hence symmetric

architecture) and memory is shared by all

CPUs using a single system bus

SMP

« Common approach to make a dual-
processor machines.
« Cheap and simple to build
« Crazy?
— Memory is the bottleneck, not CPU speed
— Typical modern single-CPU computer
spends 75% or more of its time waiting

for memory, so sharing one memory bank
with multiple CPUs is daft?

SMP Advantages

Easy to program as all processors see same

memory, hence easy to exchange data!

— If one CPU writes result to main memory then all other
CPUs can see the result easily

So only have to divide up task so that each CPU
can operate simultaneously — which can be done
by an auto-parallelising compiler!

Or can get better performance by human
intervention, telling compiler what to do where,
using OpenMP directives. See later lectures.

But ...

SMP Dlsadvantages

» Most CPUs don't talk directly to
main memory but use caches instead

» Consider: CPU A reads a value from
memory, operates on it, writes it back into cache.
Then CPU B needs same memory location — does
it get it from memory or CPU A’s cache? Need to

maintain cache coherency!
— Can either abandon all caches or have much more
complex cache protocols e.g. snoopy cache

* Net result is less than 2x speedup for adding
second processor, and a scenario that does not
scale well — need to broadcast coherency traffic to
cache controllers

memory

IBM Power4 Example (2001)

L1 64 KB Instruction + 32 KB Data
*4-5 cycles latency

L2 1440KB Unified — Shared by 2
cores

L2 Cache L2 Cache

*14-20 cycles latency
.3 128MB per 8 core module (‘MCM")

*100 cycles latency

*Main Memory — 8 GB per MCM

L2 Cache L2 Cache

*350-400 cycles latency
4 MCMs per compute node (32 cores)

AMD Bulldozer (2011)

» Dedicated Shared at the » Shared at * DeSIQned for HPC and Servers

Components module level the chip level o EaCh module Contalns 2 CoreS
e up to 8 modules into 1 chip

* L1 4-way 16 KB Instruction per
core + 2-way 64 KB Data per

module
« 3 cycles latency

e L2 2MB — shared within a module

» 17 cycles latency
L3 16MB shared between all

vl modules
* 24 cycles latency

« Multi-threading + hyper-transport
» 4 arithmetic ops per clock per core

i

Int
Scheduler

g 3
:
i 8

Distributed Memory

« Why not give each CPU its

own memory and cache? e o —

— Adding more processors then =] — [T]
adds more local (not global) [mwn]] ey | [
memory and hence total 5 5
memory bandwidth scales
with number of processors! =

— Known as distributed memory
computer, or MPP (massively — j T
parallel computer) as it can e B uh
scale to 1000s of CPUs with [ev | ey [Lyaar
no cache coherency
problems!

— Can use multiple topologies

Making a Parallel Computer

How do we make a parallel computer - do we
just need network cards + cables?

Yes and No — you can build a simple PC
cluster using this approach but it will not be
any faster than a single PC

Need to add some software magic — either to
distribute different tasks to different
computers (e.g. SETI@home) or to divide up
a given task so that different computers work
together

Latency and Bandwidth

« Which is more important”? Latency or Bandwidth?
— Most computer users focus on bandwidth — simple folk
just quote bandwidth, e.g. 8 Mb broadband or Gigabit

Ethernet — but latency is also important
— Bandwidth measures how much information can be

transferred over a connection in a given period of time.
Latency is how long it takes for a response to return
from a request, i.e. to send a zero-size message

» |If you have a low-latency network then it is simple
to increase bandwidth by putting links in parallel

« But if you have high-latency then you are stuck
with it! No amount of data compression or
doubling-up of connections is going to help.

Latency and Bandwidth Example

'ypica
'ypica

'ypica

10 Gbit Ethernet latency ~ 0.3ms
ADSL latency ~ 10ms
dial-up modem latency ~ 100ms

How long would it take to send 10 characters over

56 kbs modem (10 chars = 80 bits)?

— Naive is 80 bits/57344 bits/sec = 1.4 ms
— Actual is 101.4 ms due to 100 ms latency

But sending 100 kB would take 8*100/56 + 0.1 =

14 .4 sec so the 0.1 sec latency is negligible

May be slower due to contention, software

protocol overheads, etc

Throughput

« S0 depending on your pattern of usage, latency

may be much more important than bandwidth:

— What matters most is the total time to get the job done,
l.e. the throughput. This depends on the size of the
message ...

— If size < (latency * bandwidth) then latency will
dominate

— Need large message size to get best performance

— Satellite comms has high bandwidth but poor latency due
to length of trip (typically 1-2 sec) hence OK for broadcast
TV but not for speech or Internet gaming ...

Topology

 Different ways of
connecting nodes in a
network (topologies) have Q 1T 1 1
different characteristics
and costs Ring (1D tors)
» |deally, network topology
should not be apparent to g
any users ...
» Earlier Ethernets used a
ring — very vulnerable if a

user unplugged their SN KRS d m

connection!

™y

P

o

nopnof

U U U

Evolution of topology

copper cables, small radix switches

Y

Butterfly

fiber, high-radix switches

Mesh

Dragonfly Slim Fly

Clos/Benes
1980’s 2000’3 ,.720,05

2008 2014

——

= e e = e

s

2007 2008
Random

Hypercube
Fat Trees

>0 % Trees %
#iﬁ .’Q’»

Flat Fly

£ 3, 2777
3
i,

il Al

o= o= on o o e e e e e -

Effect of Topology

« Bisectional : :
bandwidth is the _ S5I-3W | Diameter
bandwidth between | N9 2 N/2
two halves of 2D Grid |WN 2 VN
network — want it big |2D Torus |2 VN [N

* Diameter is the max. |Hypercube|N/2 log,N
number of hops from Tree 5 2 log,N
one node to another 2
— want it small Fat Tree N/2 2 |092N

« Slim Fly uses less Dragonfly [N/4 3-5
cables & routers than |S|im Fly N/4 2_4

Dragonfly so cheaper
& less power (*fly only for large N as in ARCHER-2)

MPP Programming

* Programming an MPP machine is more challenging

— Programmer must “think parallel”

— Each processor is working on same code but with its own
iIndependent memory and own local values of all variables

— Any inter-processor communication must be coded
explicitly

— Early MPP days — each vendor had its own way of doing
things with consequent loss of code portability

— First portable approach was PVM (Parallel Virtual
Machine, 1991), now superseded by MPI| (Message-
Passing Interface, 1994) — standard library (C and
FORTRAN bindings)

— We will do MPI programming later in the course.

Coding Example

» Imagine doing a dot-product between
two vectors, A and B, already set up:

SMP version MPP version

Nmax=10000/ncpu

lcalculate partial sum

Nmax=10000
. . my t=0.0
'Hope compiler can optimise —
StartNum = myRank*Nmax+1
'this loop OK
EndNum = StartNum+Nmax-1

t=0.0

do i=1,Nmax
t=t+A (1) *B (1)

end do

do i=StartNum, EndNum
my t=my t+A (i) *B(1)
end do
!condense all results
Call MPI AllReduce(my t, t,..)

Advanced SMP DeS|gns

« What if could make a - |
machine look like it was
shared memory but was -
actually distributed?

— Easier to program?
— Effect on performance?

« NUMA — non-uniform
memory access
« cc-NUMA — cache-coherent

NUMA — developed by SGI | |

— Abandoned early 2000s but ~ # nhodes gives 3 different
revived in 2009 with Altix Uy~ Memory access times — on-
up to 2048 cores &18 TFLOP/s N0de, nearest neighbour

— Bought by HPE in 2016 and and next-nearest neighbour
rebranded as FLEX

Modern Supercomputer Designs

* Hybrid MPP/SMP - “fat nodes”
« Multi-core processors

« Multiple processors/board = SMP = fat node
« Multiple boards/rack = MPP

« Multiple racks = clustered (constellation) MPP
— Another hierarchy of memory/communications
bottlenecks!

» (Good networking essential!
— HPCx phase | crippled by poor switch between racks
— had latency ~ 400 ps!

— Current ARCHERZ2 is bandwidth limited between
nodes with only 2 bi-directional NICs for 128 cores!

» Challenge to write code for 1000s of CPUs

Beowulf

« How about building a cheap supercomputer
from commodity components?

« "Beowulf” design

— Developed by Donald Becker in 1993 at NASA

— Join together lots of PCs with network and MPI
to make a distributed memory machine

— Developments in high-speed, low-latency
networking hardware (e.g. Mellanox or
InfiniPath) plus open-source software makes
this an attractive proposition

UoY Physics

In Dec 2001 the department bought Erik for £120k
— 64 Intel P4 Xeons, peak ~ 0.1 TFLOP/s
— 32 nodes with 2 GB RDRAM and 80 GB disk per node

— Use Myrinet-2000 interconnect
« fibre optic comms with latency ~ 6 ys and BW= 480 MB/s

In June 2008 we bought Edred for £100k
— 64 AMD Barcelona (quad-core), peak ~ 1.0 TFLOP/s
— 32 nodes with 16 GB DDR2 and 500 GB disk per node

— Use InfiniPath interconnect
« fibre optic comms with latency ~ 1 ys and BW= 1800 MB/s

In June 2010 we bought Jorvik for £5k for teaching
— 5 nodes AMD Phenom Il hex-core, peak ~0.17 TFLOP/s
— Gigabit Ethernet, 4 GB DDR3 and 200 GB disk per node

In Aug 2015 we bought Ebor for £40k for teaching
— 5 nodes Intel E5-2630, 8 core, peak ~ 12 TFLOP/s
— Intel Infiniband, 32 GB DDR4 and 80 GB SSD per node

100

90

80

70

Architecture - Systems Share

7

Single Prog

Constell

Cluster

Interconnect Family - Systems Share

100 -

Myrinet 1 (0. 19%)

Quadrics 0 (0%)

4

Fat Tree O (0%)

S0 SP Switch 0 (O%)

Custom Interconnect 43 (8.37%)

80

70

Others 49 (9.53%)

IRNMDENG IS5 N(Z5:7750)
60

Gigabit Ethemnet 263 (51.17%) I

50

2015

Further Reading

Chapter 4 of “Introduction to High Performance
Computing for Scientists and Engineers”, Georg
Hager and Gerhard Wellein, CRC (2011).

“Computer Architecture — A Quantitative Approach
(6t edition)", John L Hennessy and David A
Patterson, Morgan Kaufmann Pub. Inc. (2017).

nttp://www.ibm.com
nttp://www.hpe.com
Top500 supercomputer data http://www.top500.org

