
High Performance Computing
- Parallel Computers and

Networks

Prof Matt Probert
http://www-users.york.ac.uk/~mijp1

Overview

• Parallel on a chip?

• Shared vs. distributed memory

• Latency & bandwidth

• Topology

• Beowulf

Parallel Execution

• Many modern CPUs have some intrinsically
parallel features on a single chip.

• Superscalar
– Multiple functional units within a single CPU
– Most modern CPUs have at least two floating-

point functional units.
– Hence theoretical peak speed of Viking (on 1 core

of Intel Xeon Gold 6138 CPU)
3.7 GHz x 2 FP units x 2 threads = 14.8 GFLOPS

SMT Parallel Execution

• Many chips support simultaneous multi-
threading (SMT) – called “hyperthreading” by
Intel
– Each thread shows up as a separate CPU

to the operating system.
– Each thread has its own registers, but

threads share functional units – see
hardware lecture

– Benefit (or lack thereof) is dependent on
the code – see lectures on parallel
compilers and OpenMP.

Multi-Core Parallel Execution
• Many chips are now “multi-core”
– 2/4/6/... distinct CPUs on a chip, each with its

own registers and functional units.

– Standard in modern AMD and Intel chips.

– Exynos 8890 is 8-core (as in my smartphone)
[Apple iPhone 11 has A13 Bionic with 2 high-
performance cores + 4 energy-efficient cores]

– True parallel processing on a single chip.

SIMD
• A useful terminology is SIMD (Single Instruction Multiple

Data).
– Now present in commodity CPUs
– Driven by multimedia and games – not HPC
– AMD first with “3DNow!” in K6-2
– Intel followed with MMX (integer only - Pentium)
– then came SSE (Streaming SIMD Extensions) (single

precision floating point – Pentium 3)
– and SSE2 (double precision floating point – Pentium 4)
– and SSE3 (multiple ops per register – later P4s)
– and SSE4 (string processing - Core2)
– …
– And AVX (‘Vector’ registers increased from 128 to 256

bits) and then AVX512 …

Multi-Tasking is Not Parallel
• A single CPU (single core) can only perform one task

at a time but can give the illusion of concurrency
– With multiprogramming, the current task keeps running until it performs

an operation that requires waiting for an external event (e.g. reading
from a disk). Uncommon these days

– With real-time systems, some waiting time-critical tasks are guaranteed
to be given the CPU on an external interrupt.

– With co-operative time-sharing (e.g. early versions of MacOS and MS
Windows), the running task voluntarily relinquishes CPU – hence
vulnerable to bugs and badly-written software.

– With pre-emptive time-sharing (e.g. UNIX, Win9x, etc), the running task
knows nothing about multi-tasking, and it is the O/S which suspends the
task after given timeslice (typically 1-100 ms). Needs hardware support
from the CPU.

• Nowadays, multitasking usually means time-sharing
• CPU is not just running your code: OS + other users

Simple Multi-Processor Machine
• What if put 2 or more

distinct CPUs on a single
motherboard bus and share
other resources? Would this
be a useful design?

• Known as SMP (symmetric multi-processor,
or shared-memory processor)

• All CPUs equivalent (hence symmetric
architecture) and memory is shared by all
CPUs using a single system bus

SMP

• Common approach to make a dual-
processor machines.

• Cheap and simple to build
• Crazy?
– Memory is the bottleneck, not CPU speed
– Typical modern single-CPU computer

spends 75% or more of its time waiting
for memory, so sharing one memory bank
with multiple CPUs is daft?

SMP Advantages

• Easy to program as all processors see same
memory, hence easy to exchange data!
– If one CPU writes result to main memory then all other

CPUs can see the result easily
• So only have to divide up task so that each CPU

can operate simultaneously – which can be done
by an auto-parallelising compiler!

• Or can get better performance by human
intervention, telling compiler what to do where,
using OpenMP directives. See later lectures.

• But …

SMP Disadvantages
• Most CPUs don’t talk directly to

main memory but use caches instead.
• Consider: CPU A reads a value from

memory, operates on it, writes it back into cache.
Then CPU B needs same memory location – does
it get it from memory or CPU A’s cache? Need to
maintain cache coherency!
– Can either abandon all caches or have much more

complex cache protocols e.g. snoopy cache
• Net result is less than 2x speedup for adding

second processor, and a scenario that does not
scale well – need to broadcast coherency traffic to
cache controllers

IBM Power4 Example (2001)
•L1 64 KB Instruction + 32 KB Data

•4-5 cycles latency

•L2 1440KB Unified – Shared by 2
cores

•14-20 cycles latency

•L3 128MB per 8 core module (‘MCM’)

•100 cycles latency

•Main Memory – 8 GB per MCM

•350-400 cycles latency

•4 MCMs per compute node (32 cores)

AMD Bulldozer (2011)
• Designed for HPC and servers
• Each module contains 2 cores

• up to 8 modules into 1 chip
• L1 4-way 16 KB Instruction per
core + 2-way 64 KB Data per
module

• 3 cycles latency
• L2 2MB – shared within a module

• 17 cycles latency
• L3 16MB shared between all
modules

• 24 cycles latency
• Multi-threading + hyper-transport
• 4 arithmetic ops per clock per core

Distributed Memory
• Why not give each CPU its

own memory and cache?
– Adding more processors then

adds more local (not global)
memory and hence total
memory bandwidth scales
with number of processors!

– Known as distributed memory
computer, or MPP (massively
parallel computer) as it can
scale to 1000s of CPUs with
no cache coherency
problems!

– Can use multiple topologies

Making a Parallel Computer

• How do we make a parallel computer - do we
just need network cards + cables?

• Yes and No – you can build a simple PC
cluster using this approach but it will not be
any faster than a single PC

• Need to add some software magic – either to
distribute different tasks to different
computers (e.g. SETI@home) or to divide up
a given task so that different computers work
together

Latency and Bandwidth
• Which is more important? Latency or Bandwidth?
– Most computer users focus on bandwidth – simple folk

just quote bandwidth, e.g. 8 Mb broadband or Gigabit
Ethernet – but latency is also important

– Bandwidth measures how much information can be
transferred over a connection in a given period of time.
Latency is how long it takes for a response to return
from a request, i.e. to send a zero-size message

• If you have a low-latency network then it is simple
to increase bandwidth by putting links in parallel

• But if you have high-latency then you are stuck
with it! No amount of data compression or
doubling-up of connections is going to help.

Latency and Bandwidth Example

• Typical 10 Gbit Ethernet latency ~ 0.3ms
• Typical ADSL latency ~ 10ms
• Typical dial-up modem latency ~ 100ms
• How long would it take to send 10 characters over

56 kbs modem (10 chars = 80 bits)?
– Naïve is 80 bits/57344 bits/sec = 1.4 ms
– Actual is 101.4 ms due to 100 ms latency

• But sending 100 kB would take 8*100/56 + 0.1 =
14.4 sec so the 0.1 sec latency is negligible

• May be slower due to contention, software
protocol overheads, etc

Throughput

• So depending on your pattern of usage, latency
may be much more important than bandwidth:
– What matters most is the total time to get the job done,

i.e. the throughput. This depends on the size of the
message …

– If size < (latency * bandwidth) then latency will
dominate

– Need large message size to get best performance
– Satellite comms has high bandwidth but poor latency due

to length of trip (typically 1-2 sec) hence OK for broadcast
TV but not for speech or Internet gaming …

Topology
• Different ways of

connecting nodes in a
network (topologies) have
different characteristics
and costs

• Ideally, network topology
should not be apparent to
any users …

• Earlier Ethernets used a
ring – very vulnerable if a
user unplugged their
connection!

Evolution of topology
spcl.inf.ethz.ch

@spcl_eth

A BRIEF HISTORY OF NETWORK TOPOLOGIES

Mesh

Torus

Butterfly

Clos/Benes

Kautz

Dragonfly Slim Fly

Hypercube

Trees

Fat Trees Flat Fly Random

1980’s 2000’s ~2005

copper cables, small radix switches fiber, high-radix switches

2007

2008

2008

2014

????

Effect of Topology
• Bisectional

bandwidth is the
bandwidth between
two halves of
network – want it big

• Diameter is the max.
number of hops from
one node to another
– want it small

• Slim Fly uses less
cables & routers than
Dragonfly so cheaper
& less power

2 - 4N/4Slim Fly
3 - 5N/4Dragonfly
2 log2NN/2Fat Tree
2 log2N2Tree
log2NN/2Hypercube
√N2 √N2D Torus
2 √N√N2D Grid
N/22Ring
DiameterBi-BW

(*fly only for large N as in ARCHER-2)

MPP Programming
• Programming an MPP machine is more challenging
– Programmer must “think parallel”
– Each processor is working on same code but with its own

independent memory and own local values of all variables
– Any inter-processor communication must be coded

explicitly
– Early MPP days – each vendor had its own way of doing

things with consequent loss of code portability
– First portable approach was PVM (Parallel Virtual

Machine, 1991), now superseded by MPI (Message-
Passing Interface, 1994) – standard library (C and
FORTRAN bindings)

– We will do MPI programming later in the course.

Coding Example
• Imagine doing a dot-product between

two vectors, A and B, already set up:
SMP version MPP version

Nmax=10000
!Hope compiler can optimise
!this loop OK
t=0.0
do i=1,Nmax

t=t+A(i)*B(i)
end do

Nmax=10000/ncpu
!calculate partial sum
my_t=0.0
StartNum = myRank*Nmax+1
EndNum = StartNum+Nmax-1

do i=StartNum,EndNum
my_t=my_t+A(i)*B(i)

end do
!condense all results
Call MPI_AllReduce(my_t,t,…)

Advanced SMP Designs
• What if could make a

machine look like it was
shared memory but was
actually distributed?
– Easier to program?
– Effect on performance?

• NUMA – non-uniform
memory access

• cc-NUMA – cache-coherent
NUMA – developed by SGI
– Abandoned early 2000s but

revived in 2009 with Altix UV
up to 2048 cores &18 TFLOP/s

– Bought by HPE in 2016 and
rebranded as FLEX

4 nodes gives 3 different
memory access times – on-
node, nearest neighbour
and next-nearest neighbour

Modern Supercomputer Designs
• Hybrid MPP/SMP – “fat nodes”
• Multi-core processors
• Multiple processors/board = SMP = fat node
• Multiple boards/rack = MPP
• Multiple racks = clustered (constellation) MPP
– Another hierarchy of memory/communications

bottlenecks!
• Good networking essential!
– HPCx phase I crippled by poor switch between racks

– had latency ~ 400 μs!
– Current ARCHER2 is bandwidth limited between

nodes with only 2 bi-directional NICs for 128 cores!
• Challenge to write code for 1000s of CPUs

Beowulf
• How about building a cheap supercomputer

from commodity components?
• “Beowulf” design
– Developed by Donald Becker in 1993 at NASA
– Join together lots of PCs with network and MPI

to make a distributed memory machine
– Developments in high-speed, low-latency

networking hardware (e.g. Mellanox or
InfiniPath) plus open-source software makes
this an attractive proposition

UoY Physics
• In Dec 2001 the department bought Erik for £120k
– 64 Intel P4 Xeons, peak ~ 0.1 TFLOP/s
– 32 nodes with 2 GB RDRAM and 80 GB disk per node
– Use Myrinet-2000 interconnect

• fibre optic comms with latency ~ 6 μs and BW= 480 MB/s
• In June 2008 we bought Edred for £100k
– 64 AMD Barcelona (quad-core), peak ~ 1.0 TFLOP/s
– 32 nodes with 16 GB DDR2 and 500 GB disk per node
– Use InfiniPath interconnect

• fibre optic comms with latency ~ 1 μs and BW= 1800 MB/s
• In June 2010 we bought Jorvik for £5k for teaching
– 5 nodes AMD Phenom II hex-core, peak ~ 0.17 TFLOP/s
– Gigabit Ethernet, 4 GB DDR3 and 200 GB disk per node

• In Aug 2015 we bought Ebor for £40k for teaching
– 5 nodes Intel E5-2630, 8 core, peak ~ 12 TFLOP/s
– Intel Infiniband, 32 GB DDR4 and 80 GB SSD per node

Further Reading
• Chapter 4 of “Introduction to High Performance

Computing for Scientists and Engineers”, Georg
Hager and Gerhard Wellein, CRC (2011).

• “Computer Architecture – A Quantitative Approach
(6th edition)", John L Hennessy and David A
Patterson, Morgan Kaufmann Pub. Inc. (2017).

• http://www.ibm.com
• http://www.hpe.com
• Top500 supercomputer data http://www.top500.org

