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Outline 

•  DFT and XC definition 
•  Hartree-Fock and exact exchange 
•  Hybrid Functionals 
•  DFT+U 
•  GW 
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XC: definition 1 
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Many body Hamiltonian – many body wavefunction 

DFT Hamiltonian – single particle wavefunction 

By definition: these both produce the same electron density
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XC: Definition 2 
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This would be excellent if only we knew what nxc was!

This relation defines the XC energy.

It is simply the Coulomb interaction between an electron an r and the value 
of its XC hole nxc(r,r’) at r’.

Within DFT we can write the exact XC interaction as



5 

The zoo of XC Methods 
LDA

Semi-Empirical

RPBE

WC

WDA

CI
PW91

PBE

EXX
sX

CC

B3LYP

PBE0

Meta-GGA

HF
MP2

MP4

SDA

OEP
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Some properties of Exc 
•  However we fit the XC contribution, there are some 

properties that should hold: if we scale the density 

),,(),,( 3 lzlylxnlzyxnl =

€ 

lim
l→∞

E xc[nl ] > −∞

Exc[nl ] > lExc[n];l >1
Exc
GGA (n,∇n)→ Exc

LDA[n];∇n→ 0

Then, for example

…and many more. However we fit Exc, we don’t want to break what 
we know is correct. There are many GGA’s that don’t obey known 
rules.



So what’s the problem? 
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Eg = −A+ I = E N +1( )−E N( )"# $%− E N( )−E N −1( )"# $%

Large errors in:
•  LDA
•  GGA
•  Hartree-Fock
Particle number discontinuity



Single particle theories 

8 



Correlation 

9 
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Non-local XC Functionals 
Exact XC expression involves an integration over the XC 

hole nxc(r,r’) surrounding an electron: 
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Where the XC hole is determined from the pair 
correlation function: 

]1)',()['()',( −= rrgrnrrn xcxc

Subject to the condition that nxc contains one 
electron 

1')',( −=∫ drrrnxc
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Non-local KS Equation 

•  Note: Integral over all space adds to 
complexity of problem 

•  Calculations much more expensive than 
local methods 



What is exchange? 

•  The exchange symmetry in quantum 
mechanics refers to the invariance of a 
quantum system when two identical 
particles ex- change positions.  

•  For electronic systems, this symmetry 
leads to Pauli’s exclusion principle that 
makes necessary the use of 
antisymmetric, or fermionic, wave 
functions.  12 



Some notation 
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3 different exchanges! 
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HF Exchange 

•  Exchange energy is defined as  
EX = − ψi

* r1( )ψ j
*∫∫ r2( ) 1

r12
ψi r2( )ψ j r1( )dr1dr2

•   Hartree-Fock energy is 

€ 

EHF = KEHF + EEHF + ENHF + EX

Correlation energy is defined as the difference between the 
exact energy and the Hartree-Fock energy
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KS-HF versus KS-LDA 



Hybrids 

•  LDA/GGA band gap is too small 
•  HF band gap is too large 
•  Mix them up: 
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E =αEHF −αEXlocal
+E

XClocal



Common Hybrids 
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A Non-local Functional 

• Based on Hartree-Fock

• Non-local correlation included via screening term

The potential is:
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Plane wave representation 

•  Note: 
– Double sum over bands 
– Double sum over k-points 
– Triple sum over plane waves (aargghh!) 

• Fortunately there’s a clever FFT method that reduced this to
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Why bother with this expense? 



Some more gaps 
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Functionals with Hubbard U 

Castep Workshop: Frankfurt 2012 

DFT+U
What this is not:
A general method to get the band gap correct for any material

What this is:
Fixes a very specific problem that LDA/GGA can get wrong in 
highly correlated materials



DFT+U 

Castep Workshop: Frankfurt 2012 

Standard  band  theory:  in  a  periodic  potential  a  periodic 
potential leads to a periodic density

The electronic structure conforms to the same symmetry as 
the crystal

V(r)=V(r+L) è n(r)=n(r+L)
(appears to be a sensible conclusion!)

If the material has an odd number of electrons per unit cell 
then it  has to be a metal  (highest  band will  be half  filled, 
implying it must cut the Fermi level, i.e. metallic)



DFT+U 

Castep Workshop: Frankfurt 2012 

Materials such as CoO and NiO have an odd number of electrons 
per crystallographic unit cell but are insulators

Consider
(Ni2+O2-)2èNi3+O2-+Ni+O2-

so that Ni atoms in neighbouring cells have different charges

This happens and opens a band gap (unit cell of electronic 
structure is twice the size of crystallographic cell)

LDA/GGA does not get this correct

‘Highly-correlated’ interaction between electrons in Ni atoms 
missing in LDA/GGA



DFT+U 

Castep Workshop: Frankfurt 2012 

€ 

ELDA+U n r( )[ ] = ELDA n r( )[ ] + EU nm
Iσ{ }[ ]

We have (slightly simplified here) a new interaction:

where EU is an additional empirical interaction that mimics the 
interaction of the ‘highly-correlated’ d electrons

This interaction is fully specified by a U parameter in units of 
energy. Typical value is 4-5 eV.

Warning: this method is regularly mis-used (and results published)



DFT+U Castep Input 
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Band Structures 
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GW via Sternheimer equation
•  1st order variation in wavefunction determined through: 

•  Self-consistent solution of these equations allows determination 
of screened Coulomb interaction, W 

•  Algorithm:      1) Initialise W as bare Coulomb interaction v 
•                              2) Calculate variation in wave functions 
•                              3) Determine induced charge density  
•                              4) Determine induced screening potential 
•                              5) Determine W 
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GW via Sternheimer equation
•  Similarly, Green’s function may be determined through (non-

self-consistent) solution of 

•  where   

30 



GW via Sternheimer equation
•  Self-energy may then be computed as 

•  where 

•  and  
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Plane wave implementation
•  In plane waves, we can write 

•  Algorithm as before 
•  Must repeat calculation for each [q, G, ω] (q is a Bloch wave 

vector)  
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Plane wave implementation
•  Recall that 

•  In long wave (q = 0) limit, wings of inverse dielectric matrix 
diverge 

•  Similarly, long wave limit of Coulomb potential diverges 

•  Introduce symmetrised dielectric matrix and truncate Coulomb 
interaction 
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Plane wave implementation
•  For Green’s functions we have: 

•  Solve for each [k, G, ω] 

•  Self-energy determined in real space (FFT G, W to real space for 
integration). 

•  FFT self-energy back to reciprocal space for evaluation of matrix 
elements 
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