Post DFT Methods

Stewart Clark
University of Durham



Outline

DFT and XC definition
Hartree-Fock and exact exchange
-Hybrid Functionals

DFT+U

GW




XC: definition 1

Many body Hamiltonian many body wavefunction

H'" 2|r R,| 22|r—r| 2E

1#] l;é]

DFT Hamiltonian — single particle Wavefunction

Zn(r)dr n(r)
H"_ Ef|R-r| 2f|r e E|R "R ()]

By definition: these both produce the same electron density



XC: Definition 2

Within DFT we can write the exact XC interaction as

E _[n]= %ffn(r) e (17) drdr’

r=r!

This would be excellent if only we knew what n . was!
This relation defines the XC energy.

It 1s simply the Coulomb interaction between an electron an r and the value
of its XC hole n_(r,r’) atr’.



The zoo of XC Methods

B3LYP WDA

SDA
WC  Meta-GGA %

EXX

PW91 PBEO
. . OEP 1 MP4
Semi-Empirical HF

LDA RPBE

PBE MP2 CC



Some properties of E, .

« However we fit the XC contribution, there are some
properties that should hold: if we scale the density

n(x,y,2) = Un(lx, Iy, Iz)

Then, for example
lim

E [n]>-%

| — o0

E [n]>IE [n];l>1
E (n,Vn) — E:**[n);Vn —0
...and many more. However we fit E, ., we don’t want to break what

we know is correct. There are many GGA’s that don’t obey known
rules.



So what's the problem?

E,=-A+I=|E(N+1)-E(N)|-|E(N)-E(N-1)]

/e add

Large errors in: ——
e LDA LUMO (CB min)
* GGA

* Hartree-Fock
Particle number discontinuity

/: remove

HOMO (VB max)



Single particle theories

* Density functional theory

i A+ VO )+ V() + V(r) |9, (r) = Eg,(r)
2m,

* Hartree Fock theory

_ hz X Vion(r)+ Vel(r) ¢n(r).- J‘Vx(l‘,l"wn(r')dj;r‘: En¢n(r)

2m,

* Green function based methods such as GW (RPA)

/ i’ A+ Vion(l')+ Vel(l') g,(r)+ [2 “(r,r',0 )¢n(r')d3r'dﬂ) = Ef,(r)
2m, .




Correlation

L. Hedin, Phys. Rev. 139, A796 (1965)

correlation
electron

screened interaction!/

W? NIrrV//
S=GW (RPA) I




Non-local XC Functionals

Exact XC expression involves an integration over the XC
hole n,(r,r" ) surrounding an electron:

E . [n]= %ffn(r) e (57) drdr'

=1

Where the XC hole is determined from the pair
correlation function:

n(r,r')=n(r)g,(r,r)-1]
Subject to the condition that n, . contains one

electron
fnxc (r,r")dr'=-1
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Non-local KS Equation

_%vﬂqﬁi[r] + () i(r) +f'ir’VNL[1‘71")¢-i(f’) = &ipi(r),

* Note: Integral over all space adds to
complexity of problem

» Calculations much more expensive than
local methods
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What is exchange?

* The exchange symmetry in quantum
mechanics refers to the invariance of a
quantum system when two identical

particles ex- change positions.

* For electronic systems, this symmetry
leads to Pauli’'s exclusion principle that
makes necessary the use of
antisymmetric, or fermionic, wave
functions. 2



Some notation
H=T+ Ven + Vee , HV =FEWV

H: Hamiltonian of interacting system of N electrons.
V: gs of H.
E: gs energy of H.

¢®: Slater determinant.

Hy =T+ Ven+V , Hy ®y = By by

Hy: Hamiltonian of N electrons in local potential, V =V (r;).
$y, Ey: gs and energy of Hy .

V2
-+ Ven(r) + V(r)| ¢,(r) =€, ¢,(r)



3 different exchanges!

Py Minimises :

Ve.ogpp minimises :

Vi g minimises :

(®|H|®) — E >0

(¢V|H|¢V> —FE>0

(V|Hy|V) — Ey >0
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HF Exchange

 Exchange energy is defined as
* * 1
EX = —ffl/ii (’”1)1/%, (’”z)r—?/fi(’”z)% (lﬁ)d’ﬁdrz

12
» Hartree-Fock energy is

E, . =KE, . +LEE, ,+EN,+FE,

Correlation energy is defined as the difference between the
exact energy and the Hartree-Fock energy

15
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Calculated Bandgap (eV)

KS-HF versus KS-LDA

Experimental Bandgap (eV)
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HF and LDA bandgaps
from

Hollins Clark Refson NIG
PRB 85, 235126 (2012).
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Hybrids

 LDA/GGA band gap is too small
 HF band gap is too large
* Mix them up:

E = aEHF — aEXlocal + EXClocal
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Common Hybrids

PBEh (previously PBEO)

RPBEO _ lEHF n §EI’BE | EPBE
LC 4 £ 4 £ C

HSE

ESSE(B — %ESF'SR(M) + %E)I(DBE.SR(M 1 E)I?BE.LR(IH)

| ric(ur rf (pr
_. N @ c(pr) +e1 (pur)

I r I



A Non-local Functional

eBased on Hartree-Fock

eNon-local correlation included via screening term

The potential is:
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Plane wave representation

ENL = 7y v Gul@ealG)ejq(@ + Glleg(G + &)
ikjq GG'G” lqg — k+ G"|? + k2 1

* Note:
— Double sum over bands
— Double sum over k-points
— Triple sum over plane waves (aargghh!)

*Fortunately there’s a clever FFT method that reduced this to
N, log(N,) N2 N

20



Why bother with this expense?
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k-Point Path
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Some more gaps

0 SiO2
MO ~Za1203
5 ZnS *
SrTiO3 . Sn02

GaN

ZnSe 1203
2
1 GGA
05— T
0.5 1 2 5 10

Experimental band gap (eV)
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Functionals with Hubbard U
DFT+U

What this 1s not:
A general method to get the band gap correct for any material

What this 1is:
Fixes a very specific problem that LDA/GGA can get wrong in
highly correlated materials

Castep Workshop: Frankfurt 2012



DFT+U

Standard band theory: in a periodic potential a periodic
potential leads to a periodic density

The electronic structure conforms to the same symmetry as
the crystal

[ V(@)=V(+L) = n(r):n(r+L)}
(appears to be a sensible conclusion!)

If the material has an odd number of electrons per unit cell
then 1t has to be a metal (highest band will be half filled,
implying it must cut the Fermi level, 1.e. metallic)

Castep Workshop: Frankfurt 2012



DFT+U

Materials such as CoO and Ni1O have an odd number of electrons
per crystallographic unit cell but are insulators

Consider

| (Ni2*0%),»Ni*O>+Ni*0? |
so that N1 atoms in neighbouring cells have different charges

This happens and opens a band gap (unit cell of electronic
structure 1s twice the size of crystallographic cell)

LDA/GGA does not get this correct

‘Highly-correlated’ interaction between electrons in Ni atoms
missing in LDA/GGA

Castep Workshop: Frankfurt 2012



DFT+U

We have (slightly simplified here) a new interaction:

N

where £, 1s an additional empirical interaction that mimics the
interaction of the ‘highly-correlated’ d electrons

This interaction is fully specified by a U parameter in units of
energy. Typical value 1s 4-5 eV,

Warning: this method is regularly mis-used (and results published)

Castep Workshop: Frankfurt 2012



DFT+U Castep Input

%BLOCK LATTICE_CART
1.768531594289455
-0.884265797144727
-0.884265797144727

XENDBLOCK LATTICE_CART

%BLOCK POSITIONS_FRAC
0 -1.2500000000000000
0 -0.7499999399939998
Fe -0.0000000000000000
Fe -0.4999999999999399
HENDBLOCK POSITIONS_FRAC

kpoints_mp_grid 7 7 7

¥block bs_kpoint_path

oo ®
®Sunoewun
OO ®
e Wn
®0 O
osune®

0.0 0.0 0.
¥endblock bs_kpoint_path

¥block hubbard_u
Fe d:5.90
%endblock hubbard_u

0. 5.002162732258916
1.531593288050062 5.002162732258916
-1.531593288050061 5.002162732258916

0.7499999999999998  0.749999993999399%6
1.2500000000000000 -0.74999399939993%6
0.0000000000000000 ©.0000000000000000 Spin=-5
-0.4999999999999999  1.5000000000000000 spin=>5

task : BandStructure
xc_functional : PBE
spin_polarized : true
opt_strategy : speed
cutoff_energy : 1000 eV
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Band Structures

GGA GGA+U
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GW via Sternheimer equation

1st order variation in wavefunction determined through:

(H-e, = AU, o= (1 - P Vg 0

Self-consistent solution of these equations allows determination
of screened Coulomb interaction, W

Algorithm: 1) Initialise W as bare Coulomb interaction v
2) Calculate variation in wave functions
3) Determine induced charge density
4) Determine induced screening potential
)

5) Determine W
29



GW via Sternheimer equation

Similarly, Green’s function may be determined through (non-
self-consistent) solution of

. 4+ A ~
(- &GP = — 8.

where

(r) ,,(l)
GMr.r'iw) = Ew" ¥

w—e,
Gr.r':w)=GAr.r' o)+ GNr.r': o).

GN(r.r'";0) =2mi Y, o —e )P (D), ('),

30



GW via Sternheimer equation

Self-energy may then be computed as
S(r.or'iw)=2r.r':m) + 2X(r.r’).
where
o
“C 1 ’ ( ! ’ y ’ ’
24(r.r'ie)=— do'G(r,r';o+ o' )[Wr.r',o')
FATEN —@¢
—v(r,r’)] |
and

2°r,r')=— 2 Y (r)yg (rHov(r.r’).

e

31



Plane wave implementation

In plane waves, we can write

: : Hk
(Hk+q — &,k * w)Auy, k[q.G.0] = — (1- [)L\?)Al’:q.(;.w]llz ks

2

* o
2 uz'kA“('k[q.(;.u]'

Anpg G.wl= N, <
- UKo

Wee(@:0) =[8cer + Anpgc.w(G')Je(q + G').
Algorithm as before

Must repeat calculation for each [q, G, w] (q is a Bloch wave
vector)

32



Plane wave implementation

Recall that

Wee Qo) =vlq + (i)e(_;'(;,(q:w).
In long wave (q = 0) limit, wings of inverse dielectric matrix
diverge
Similarly, long wave limit of Coulomb potential diverges

) 1-cosR|q+G|_, Jncate Coulomb
Weelq:w) =4me” o lqiw).
GG l(l+('| (l+(;/ GG

Introduce sy
interaction

33



Plane wave implementation

For Green’s functions we have:

(I:Ik - w*)gi'\k_(;,w]((; ') =—d¢ar-

2 ca(G) =271 2 8w - e )u(G)uy(G).

Solve for each [k, G, w]

Self-energy determined in real space (FFT G, W to real space for
integration).

FFT self-energy back to reciprocal space for evaluation of matrix
elements
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