Steps in the Exact Kohn-Sham Potential of **Ensemble Density Functional Theory for Excited** States and Their Relation to the Derivative Discontinuity

¹Max-Planck-Institute für Mikrostrukturphysik, Halle (Saale), Germany, ²Department of Physics, University of York, Heslington, York, UK, ³Laboratorium für Physikalische Chemie, ETH Zürich, Zürich, Switzerland, ⁴Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

NAKGH NEETING 2010 **LOS ANGELES MARCH 5-9**

MAX-PLANCK-GESELLSCHAFT

Matt Hodgson¹, Eli Kraisler¹, Mike Entwistle², Axel Schild³ and E. K. U. Gross^{1,4}

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988) E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988) E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988)

The electron density of an *excited* system of *N* interacting electrons is modelled using an auxiliary system of non-interacting electrons:

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)
E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988)
E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988)

The electron density of an excited system of N interacting electrons is modelled using an auxiliary system of non-interacting electrons:

Kohn-Sham equations:

$$-\frac{1}{2}\nabla^2 + v_{\rm s}\bigg)\phi_i(r) = \varepsilon_i\phi_i(r)$$

The electron density of an *excited* system of N interacting electrons is modelled using an auxiliary system of non-interacting electrons:

Kohn-Sham equations:

Electron density: $n(r) = \delta |\phi_{N}|$

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988) E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988) E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988)

$$\left(-\frac{1}{2}\nabla^2 + v_{\rm s}\right)\phi_i(r) = \varepsilon_i\phi_i(r)$$
$$\phi_{N+1}(r)|^2 + (1-\delta)|\phi_N(r)|^2 + \sum_{i=1}^{N-1}|\phi_i(r)|^2$$

The electron density of an *excited* system of N interacting electrons is modelled using an auxiliary system of non-interacting electrons:

Kohn-Sham equations:

Electron density: $n(r) = \delta |\phi_{N}|$

The accuracy of the density relies on the approximation to the exchange-correlation part of v_{s} .

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988)

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A **37**, 2821 (1988)

$$\left(-\frac{1}{2}\nabla^{2} + v_{s}\right)\phi_{i}(r) = \varepsilon_{i}\phi_{i}(r)$$
$$\phi_{N+1}(r)|^{2} + (1-\delta)|\phi_{N}(r)|^{2} + \sum_{i=1}^{N-1}|\phi_{i}(r)|^{2}$$

The iDEA code

The iDEA code

Model simple 1D systems consisting of a few electrons

Choose any external potential we like

Model simple 1D systems consisting of a few electrons

Choose any external potential we like

- 1. Calculate the exact ground-state and first excited-state electron density
- 2. The electron density is a linear combination of these two densities:

$$n(r) = (1 - \delta) \cdot n_0(r) + \delta \cdot n_1(r)$$

3. Next reverse-engineer the exact Kohn-Sham potential

Derivative discontinuity of an atom

Derivative discontinuity of an atom

 $n(x) = (1 - \delta)n_0(x) + \delta n_1(x)$ $0 < \delta << 1$

Ground-state 1D molecule

Ground-state 1D molecule

 $\Delta_{L \to R}^{\rm CT} = I_L - A_R + \eta_L^{\rm ho} - \eta_R^{\rm lu}$

 $\Delta_{L \to R}^{CT} = I_L - A_R + \eta_L^{\text{ho}} - \eta_R^{\text{lu}}$

Derivative discontinuity of Atom R:

$$\Delta_R = I_R - A_R + \varepsilon_R^{\rm ho}$$

 $P_R^{\rm ho} - \varepsilon_R^{\rm lu} = I_R - A_R + \eta_R^{\rm ho} - \eta_R^{\rm lu}$

Derivative discontinuity of Atom R:

$$\Delta_R = I_R - A_R + \varepsilon_R^{\rm ho}$$

$$S = S_1 + S_2 = \Delta_R - \Delta$$

 $\Delta_{L \to R}^{CT} = I_L - A_R + \eta_L^{\text{ho}} - \eta_R^{\text{lu}}$

$\Gamma_R^{\text{io}} - \varepsilon_R^{\text{lu}} = I_R - A_R + \eta_R^{\text{ho}} - \eta_R^{\text{lu}}$

 $\Delta_{L \to R}^{\rm CT} = I_R - I_L + \eta_R^{\rm ho} - \eta_L^{\rm ho}$

Conclusions

- 1. Ensemble density functional theory can be used to model charge transfer
- the 'charge-transfer derivative discontinuity'
- interatomic step which determines the distribution of charge in the molecule

2. Upon charge transfer two plateaus form around the atoms of a diatomic molecule – one corresponds to the derivative discontinuity of the acceptor and the other corresponds to

3. The steps which correspond to the two derivative discontinuities add together to make the

Conclusions

- 1. Ensemble density functional theory can be used to model charge transfer
- the 'charge-transfer derivative discontinuity'
- interatomic step which determines the distribution of charge in the molecule

Publication: M. J. P. Hodgson et al., J. Phys. Chem. Lett., 2017, 8 (24), pp 5974–5980 Email: mhodgson@mpi-halle.mpg.de Website: http://www-users.york.ac.uk/~mjph501/index.html

2. Upon charge transfer two plateaus form around the atoms of a diatomic molecule – one corresponds to the derivative discontinuity of the acceptor and the other corresponds to

3. The steps which correspond to the two derivative discontinuities add together to make the

Thanks for listening!

