DYNAMICAL SYSTEMS AND APPLICATIONS

These notes consist of some handouts for the course together with solutions to some of the
exercises. There are no guarantees as to correctness, so the calculations should be checked
carefully!

Texts. There are many but the course was based mainly on

S. H. Strogatz *** Nonlinear Dynamics and Chaos, Westview Press, 1994 (S7.38 STR).

with
G. F. Simmons, Differential equations with applications and historical notes, International Series
in Pure and Applied Mathematics. McGraw-Hill, 1972 (S7.38 SIM)

for background and differential equations.

ONE DIMENSIONAL SYSTEMS

The one dimensional system is given by the first order differential equation

. dz

b= = (@),
where f is a smooth real valued function of the real variable ¢ (time). The solution is called a
(one-dimensional) trajectory. We shall usually take the variable ¢ (or time) to start at ¢t = 0,
in which case the initial value zo = x(0) is the value of the trajectory z(t) when ¢ = 0. The
equilibrium points z* are the zeros of f, i.e., f~1(0). There are 3 types of equilibrium point,
stable (attracting), unstable (repelling), half-stable. The potential V(x) of the system at the

point z is defined by

Vz) =—- /m fu)du.
Thus 0
av

f@) = -0

and by the chain rule,

dV(z(t)) dV(z)dx(t) dV(x)
dt de dt dz

—f(@)f(z) = —f(z)* <0

for z # x*, thus the potential decreases along trajectories.

V(z(t) = (1)

Example Let & = a —z2, where a is a real parameter. Find the equilibrium points z* and obtain
the trajectories for a < 0, a = 0 and a > 0. Discuss the nature of the equilibrium points briefly.
Sketch the phase portraits and the bifurcation diagram. Find the potential V for the system.

Answer: Equilibrium points: f(z) = a — 22, f(z*) = 0 for 2* = +y/a € Riff a > 0. For a > 0,
0 is a stable (attracting) equilibrium point and a is an unstable (repelling) equilibrium point.
When a = 0, 0 is half-stable.

Trajectories:

. . i . dx
t=a—-2%ie, —=a—2%1i.e., = dt.

dt a— 12
When a < 0,
t= /w(t) d—u = — Ltan_1 Y r = ! (tam_1 Ltan
v a—U? V-a V=-al,, V-a V-a

where zg = 2(0), i.e.,
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Zo
z(t) = —v/—atan(v/—at) + zo.

Thus as t — 7/2, z(t) - —oc.
When a = 0,
d d 1 1
@ _ —z2i.e., _ dt, whence — — — =t, ¢ = o
dt 2 T 9 Tot+1
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and z — 0 (like ¢t 1) as t — oo.
When a > 0,
dz

E:

d d
a—z2ie., dt = T ad

a-z? (Va-z)(Va+a)

or for |zo| < v/a

1/”“( 1 1 ) Va+z

t=— + du = log Ry,

2 ) \Wa—u  Va+u va—zx
where Ry = (v/a — x0)/(v/a + xg), and z(t) — /a— as t — oco. For 2o > /a,

g = dr dx 1 dx dx
__»’62—&_(w—x/ﬁ)(x+\/5)_2\/5(iﬂ—\/5+w+\/5)’
so that
1 T dx dx 1 z
@ ([ s ) v
1 T —+a zo — va
= o (T )
whence

(@ —va) (@ +va) _ _aya
(z + Va) (zo — Va)
so when 2o > 0 and ¢t — 00, z(t) - /a+; when 2o > 0 and t - —1/z, z(t) - —oo.
zo < V/a
Stability for a > 0
f'(@*) = —22* 50 f'(,/a) = ~2y/a, f'(~y/a) = 2/a.
V(x) has local minimum and maximum at zeros —/a and 1/a of f respectively, corresponding
to stable and unstable equilibrium points respectively. When a = 0, equilibrium points coalesce
to give one half stable equilibrium point. The bifurcation diagram:

Potential:
T $3 wg
V(x):_/ (a—u2)dU+V(.fL'0):ax___i_az.o_i__
o 3 3

where ¢ is any point in R. For convenience can take zo = 0, so V(z) = ax — z3/3.

CLASSIFYING PLANAR LINEAR SYSTEMS

Second order ODE’s. The solution of the first order homogeneous differential equation (or
1-dimensional system) & = az, £(0) = zo was found by trying

z(t) = xoe, where 2(0) = 2.
The same method works for the second order homogeneous differential equation
at + bt +c=0. (1)
Substituting the trial function z(t) = zoe*t yields
aX’ +bX +c = 0.

If the roots are distinct, the two solutions Aj, Ay for the exponent are given by

_ —=b+Vb? —4ac Ny — —b—Vb% —4ac
N 2a P 2a '
Since sums and scalar multiples of solutions of (1) is also a solution, the general solution is

A1

z(t) = apeMt + age??,
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where the constants a;,as are determined by the two conditions on the solution, usually initial
values of z(t) (z(0) = zo) and &(t) (£(0) = vg). If the eigenvalues are complex, they occur as
conjugate pairs (since the coefficents on the LHS of (1) are real) and so are of the form

—b+iv-A —b—iv-A
M= VIS g = S
2a 2a
where A = b? — 4ac, the discriminant, whence the general solution is of the form
o(t) = ape=t/20iV/1Al/2a o o—bt/2ag—iy/[A]/2

= afe M2 cos (\/Zt/2a) + ahe /%2 gin (\/Zt/Qa) .

Planar linear systems. In the simple cases discussed earlier, the matrices were diagonal and

the solutions were of the form z(t) = zge*, y(t) = yoert. Of course the origin (0,0) is the only

equilibrium point as before. And as before the z- and y-axes play a special role and indeed are
invariant in the sense that the flow does not leave them and the flow in phase spase is organised
about them. By analogy in the general case, we seek vectors u (or directions) in the plane for

which solutions of
. a b T
x = Ax = (c d) (y) , x(0) = xq, (2)

x(t) = eMu (3)
(note that the initial value x(0) = u is not arbitrary). On trying (3), we get
%(t) = AeMu = eM Au.

Thus for (2) to hold, we need to find a u € R? and a scalar A such that

Au = A, e (A — Al)u = (a;A df/\) (Z) = (8) .

This is the familiar eigenvalue problem. The (non-zero) eigenvector of the matrix A exists if for
some (eigenvalue) A, the determinant (a — A)(d — A) — be of (A — A1) vanishes. Thus the desired
eigenvectors are the roots of the (characteristic) quadratic

AN —(a+dX+ad—be= X —tr A\ +det A = (A= \)(A = o) =0, (4)

take the simple form

say
—trd+ VA —trA—+vA
S
where the discriminant A = (tr A)?> — 4det A and

_ b _ b
w = )\1—61 » U2 = )\g—a ’

are the eigenvectors.

Discriminant A # 0.

(1) If A > 0, the eigenvectors are linearly independent (this is more than just not the
same, they are not parallel). In this case the general solution (linear combination of two
particular solutions) is

x(t) = creM? ()\ b a> + coett ()\ b a> = creMtuy + cpeMtuy
11— 2 —

and since the eigenvectors are linearly independent, ¢;,cs can chosen so that x(0) =
c1uy + couy = Xg. Thus the initial condition in (2) is solved as well. In fact a general
result on the existence and uniqueness of solutions gurantees that this is the only solution
with this initial value.

(2) If A <0, the eigenvalues are complex:

—trA+iy/|A —tr A —i/|A|
=TT VE = VI
2 2
and the real general solution is

x(t) = e Y2 cos(V/|Alt/2)uy + coel ™ Y2 sin(/|Alt/2)us.

A1



Thus the phase portrait is an expanding spiral when tr A < 0 (equilibrium point is
unstable) or contracting when tr A > 0 (stable) or a centre when tr A = 0 (neutral).

Discriminant A = (. The eigenvalues are equal, Ay = Ay = X say and the eigenvectors

ws(18) ne ()

are given by the solutions of the corresponding pair of linear homogeneous equations
(@a=Nu+bv = 0
cu+(d—-X) = 0

If there are 2 linearly independent eigenvectors, then b =¢ =0, a =d = A and

A0
A= (0 A) .
This can also be seen by observing that the general solution is
x(t) = eMxg = eM(cjuy + couy),

so that

() = Ax(t) = AeMxo = Ax(t) = (3 g) x(t).

If there is only one (non-zero) linearly independent eigenvector, then (b,c) # (0,0) and A is a
shear. If b # 0,¢ =0, then a = d = A and

A b
A= (0 Q .
Classification Diagram. The various kinds of behaviour of the trajectories near the equilib-

rium point in the Classification Diagram be captured in a very useful diagram (see Strogatz, p
137, Fig 5.2.8 or Simmons, ).



NONLINEAR SYSTEMS

We consider the general dynamical system
X = f(X), X(O) = Xo, (6)
where f is smooth'® in a domain D 2. Thus for each point x € R?, there is a vector x. This gives
a vector field on R2.

Theorem 1. Suppose f is a smooth function on a domain D. Let xg € D. Then there exists a
7 > 0 such that (6) has a unique solution x(t) fort € (—7,7).

Corollary 1. The phase space {x: x = f(x)} fills out R".
For any point x¢ € R™ can be an initial value.
Corollary 2. Trajectories do not intersect.
For otherwise trajectories x(t) (solutions) would not be unique.

Thus, although potentially very complicated, phase portraits (which are a picture of the vector
field) have ‘combed’ appearence, except at equilibrium points (‘crowns’). There are important
implications for n = 2, namely the Poincaré-Bendixson theorem, but for n > 3 much more
complex geometry can occur.

Equilibrium points and linearisation. There is an extraordinary variety of phase portraits,
even in the plane. In general it is unusual to be able to find trajectories for nonlinear systems
analytically and even when it is possible, they are often too complicated to analyse and they
give little insight. Luckily, for many nonlinear systems, the structure around equilibrium points
is the same as the linearised approximation. Thus we can determine the gqualitative behaviour
of the system from some of the properties of f. This approach has its limitations and classifies
up to homeomorphism?, from this point of view a coffee cup is equivalent to a doughnut.

Terminology. These different kinds of behaviour call for some terminology. Recall that x* is
an equilibrium (fixed) point of a system. We will only consider the vicinity of x*.

(1) If there exists a § > 0 such that lim;_, x(t) = x* 4 when [x(0) — x*|2 < §, then x*
is an attracting equilibrium point. Thus x(¢) can leave a neighbourhood of x* in the
short run but eventually (after time ¢g) stays within it.

Ezxamples: \1 < Ay < 0, X’s complex with strictly negative real part.

(2) If for each € > 0, there exists a § > 0 such that when |[x(0) — x*|2 < 4, |x(t) —x*|2 <&
for all t > 0, then x* is a Liapunov stable equilibrium point. Thus x(t) stays close to
x* for all positive time.

Examples: A; < 0, A2 = 0 (spine — non-attracting), node.
(3) If x* is both attracting and Liapunov stable, it is asymptotically stable.
Examples: A\; < A2 < 0, X's complex with strictly negative real part.
(4) If x* is neither attracting nor Liapunov stable, it is unstable.

Examples: A; < 0 < A3, A’s complex with strictly positive real part.

Main features.

(1) Equilibrium points x*. Satisfy f(x*) = 0 and correspond to equlibria.

(2) Closed orbits. Associated with centres and correspond to periodic solutions (there
exists 7 such that x(t +7) = x(¢) for all ¢). The phase portrait can be unstable, in sense
that can get either continuous family of closed orbits or an isolated closed orbit.

(3) Structure of trajectories influenced by nearby equilibrium points and closed orbits.

(4) Attracting (stable) and repelling (unstable) effects of equilibrium points and closed
orbits.

1The function f is smooth if it is sufficiently differentiable. Usually f will be taken to be C2, i.e., the n2
second order derivatives
9’f  o*f 9%f
are continuous.
2A domain D is an open connected set in R™.
3cts 1-1 onto maps with cts inverses
4Given & > 0, there exists a tg = to(¢) such that [x(t) — x*|2 < & for all £ > to.
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Linearisation near equilibrium points. The derivative f'(z*) played a key role in organising
the behaviour of the trajectories near an equilibrium point. The 2-dimensional theory goes in
an analogous way and we work in real variables so that we can use Taylor’s theorem®. Thus
instead of x = f(x), we consider

& = f(z,y)
v = g@y),
where f, g are smooth, x* = (z*,y*) is an equilibrium point, so that
[ y") = g(@",y") = 0.
Let (h, k) be a small perturbation of (z*,y*)) and write
z=z"+h, y=y*+k.

To investigate whether the perturbation grows or shrinks, we investigate h and k. First since
(z*,y*) is a constant vector and since f(z*,y*) =0,

h o= &=f@" +hy +k)

sty + 0+ LTI gy
_ - of(x*,y*)  ,0f(z*,y")
= f(z*,y")+h o +k 3y

+ O(h2, hk, k?)

of ,of 2 2
By + gy + O 1k k).

Similarly,

9% 9 2 >
§ =g, +hg+ O bk, k).

Collecting terms, the evolution of the perturbation (h, k) can be expressed in matrix form:

N _ (5 &) (h 2 12

- §))-oww
ox dy

Jh + O(|h[?).

The matrix J = J(f,x*) is the Jacobian of f = (f, g) at x* and is the ‘linear approximation’ of f
in the vicinity of x*. For small h, k, it is plausible that the error term O(h?, k?) can be ignored
and just the so-called linearised (and familiar) system for x = f(x)

/i of o1\ sy
k <a—i 5 ) \k

The validity of neglecting nonlinear terms. Providing the fixed point x* under consider-
ation is not close to one of the borderline cases in the Classification Diagram, the structure of
the linearised system is essentially the same as the original system. That is, a node, a saddle or
a spiral in the linearised system correspond respectively to a node, a saddle or a spiral in the
nonlinear system.

Centres lie on the z-axis (trA = 0) of the Classification Diagram and clearly, the structure
changes dramatically with a small perturbation of the trace. Similarly other such cases are
sensitive to small changes and the linearised system tells us only that the original nonlinear
system is not robust.

h

considered.

Examples. From Strogatz 6.3.1, 6.3.2.
(1)
()= (20
y —2y

(5) = (e )

5if f is C2, then f/ is C! and f'(a + h) = f'(a) + hf"(a) + O(h2).



Robust or structurally stable equilibrium points.
e Repellers (sources): each eigenvalue \ has positive real part (®A > 0).
e Attractors (sinks): each eigenvalue A has negative real part (A < 0).
e Saddles: eigenvalues real, non-zero and of opposite sign (A1 A2 < 0)

Real part of neither eigenvalue vanishes (equilibrium point hyperbolic); analogue of f'(z*) # 0.
This extends to higher dimensions and by the Hartman-Grobman theorem, the stability type
of a hyperbolic equilibrium point is preserved by the linearised form (i.e., they are topologically
equivalent — structures are homeomorphic, trajectories map to trajectories preserving direction).

Delicate or structurally unstable equilibrium points.

e Centres : each eigenvalue pure imaginary (0 # A € iR).
e Higher order and non-isolated equilibrium points: at least one eigenvalue vanishes.

At least one eigenvalue satisfies R\ = 0; analogue of f'(z*) = 0.

Lotka-Volterra equations (i): rabbits and foxes. [Simmons §39] Consider an idealised
isolated environment inhabited by rabbits and foxes, with a supply of grass that is always
adequate. The foxes reduce the numbers of rabbits until there are too few to support the foxes,
whose numbers then also drop. This allows the rabbit numbers to recover, in turning allowing
fox numbers to increase also. And so it goes. As a first approximation, in the absence of foxes,
the rate of increase & in the number 2 = x(t) (not necessarily in NI) of rabbits is proportional
to x (carrying capacity is infinite). On the other hand, because too many foxes will reduce the
number of rabbits, the number of foxes is modelled (crudely) by § = —cy, ¢ > 0 (no carrying
capacity term y?). A natural assumption is that the number of conclusive encounters of rabbits
with foxes is proportional to xy, where y is the number of foxes. This is assumed to have
a positive effect on fox numbers y, y = —cy + dzy, and a negative one for the rabbit, giving
% = z(a— by) for some positive constants a,b. Combining these we get that such a predator-prey
system can be modelled by

z = xz(a—by)
gy = y(—c+dx)
The equilibrium points are x* = (0,0) and x* = (¢/d, a/b). The Jacobian

_ (a—by —bx
J(z,y) = ( dy —c+ da:) )

Hence

J(0,0) = (0 _Oc) , eigenvalues a, —c of opposite sign, saddle, eigenvector’s ((1)) , ((1))

_be
J (E E) = (21 Od) : tr A =0,det A > 0, eigenvalues purely imaginary, centre

The numbers ¢/d, a/b are called equilibrium populations. The ‘linearised’ centre is made
up of a family of ellipses

(x—c/d)?®  (y—a/b) _
b2c + ad2 K.

Thus near the equilibrium populations, the two populations oscillate.
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Lotka-Volterra equations (ii): sheep and rabbits. [Strogatz §6.4] Sheep and rabbits com-
peting for same resource. Here we introduce the ideas of growth rate r, carrying capacity K and
the logistic equation. For an isolated population

P — _r
T =rr (1 K) .
Let x(t) =7 rabbits and y(t) =# sheep. We will take r = 3, rK = 1 for rabbits and and r = 2,
rK =1 for sheep. Then combining the two populations, the system is
z = z(3—x—2y)
v = y2-z-y).
This ‘toy’ model gives useful insights. The equilibrium points (where X = (0,0)) are x* =
(0,0),(0,2),(3,0),(1,1) and the Jacobian is

3—2x—2 -2z
e = (72w, )

J(0,0) = (g g) : eigenpairs (3, (1,0)); (2, (0,1)): unstable (repelling) node

J(0,2) = (_; _02> : eigenpairs: (—1, (1,—2)); (=2, (0,1)): stable (attracting) node

J(3,0) = (_0 _61) : eigenpairs (—1, (3,—1)); (=3, (1,0)): stable (attracting) node

J(1,1) = (j :f) . eigenpairs (—1 4+ V2, (v2,-1)); (-1 — V2, (V2,1)): saddle

Conservative systems. The motivating example is a unit mass particle at position z € R,
acted on by a force F'(x), where F is continuous and does not depend on ¢ or # (thus no friction
or damping). By Newton’s laws, the trajectory (motion) of the particle is given by the (2nd
order ordinary) differential equation

E(t) = F(x). (7)
For example, for the particle falling under gravity F'(z) = —g or at the end of a horizontal spring
F(z) = —\z (Hooke’s Law). The potential energy V' (z) of the system (7) at z is defined by

Vi) = - / Flu)du,

so that o
— = —F(x).
I (z)
(Note that since F is continuous, V' (z) always exists and involves an arbitrary constant.) Then
i
- dx
and so
i+ Wgmgar VI _ gy V4 (L )
dz ™ dr dt dt  dt \2 e

Hence the quantity ©2/2 + V does not change with time. The constant is called the energy of
the system (7) and is usually denoted by E:
-2
z
E=— g
2 +V

More formally, a conserved quantity of the system
x = f(x) (8)
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is a continuous real valued function E which is non-constant on open sets® which is neverthe-
less constant on trajectories (solutions) x(t) of the system (8)7. The system (8) is said to be
conservative if it possesses a conserved quantity. Thus the 1st order system

T =y

y = F(z)
derived from (7) will be conservative. The trajectories are level curves

{x(t) : E(x(t)) = E(x(0))}
of constant energy and are closed. Conservative systems are not the same as gradient systems.
A consequence A conservative system has no attracting or repelling points. For if there were
an equilibrium point x*, then for any point x in the basin of attraction of x*, E(x) = E(x*),

whence E(x) is constant on any open set in the basin, contradicting the requirement that E be
non-constant on open sets.

Example: Consider 2nd order, 1 dimensional system

oAV
- dx’
Convert to 2nd order 1 dimensional system
& =y
;- W
Y7 T
Let potential energy
v z?

Put E(0,0) = 0. What is E for some other orbits? For what values of E is the trajectory a
closed curve? [The phase portrait is a ‘crossed-eyed monster’.]

Trajectories that begin and end at the same (resp different) equilibrium points are called
homoclinic (resp. heteroclinic).

Curves in a phase portrait where either x = 0 or y = 0 are called Nullclines.
Recall that trajectories which meet at an equilibrium point fall into different types:

e stable manifolds
e unstable manifolds.

Just one type meets at a node, both types meet at a saddle.

Reversible systems. The pendulum described in cylindrical phase space and using time re-
versal symmetric energy surface. These systems contain closed orbits [Strogatz, §6.6].

Gradient systems. [Strogatz, p. 199] The smooth planar first order system

x = f(x) = (f(z,9),9(z,y))
is a gradient system if there exists a smooth scalar potential fuction V (x) (€ R) such that

. ov . oV
= f(x,y) = 50 ¥ =g(z,y) = ~ By

i.e., if
v oV
e vro (200,
oz’ Oy
The trajectories x(t) of a gradient system cross the equipotential (level) curves
L.={x:V(x)=c}
of V' orthogonally, except at equilibrium points. For the normal to L. is given by VV and the
tangent to the trajectory x(t) is given by x(t). Since for x not an equilibrium point, the non-zero
vector

ov oV

VV(x) = (%; 6_y

) =%

6an open set in the plane is a union of open discs

Tbeing non-constant on trajectories excludes the trivial solution x(t) = 0 for all ¢



the normal and tangent are parallel, whence L. and x(t) meet orthogonally.

Motivating example [Note that this is a 2nd order 3-dimensional system] The force of grav-
itational attraction on a planet of mass m by a sun of mass M is given (in polar coordinates)
by
. GM

f=-—3r
where G is the universal constant of gravitation and r = ||r||. The gravitational potential V' (r)
is given by

Vi) = - SM
(the potential when the planet is at oo is 0 and decreases as the planet approaches the sun).
Corollary 3. Closed orbits are impossible in a planar gradient system x = —VV.

Suppose there were a closed orbit C', with period T'. Then
[V{#)]e =V(x(T)) - V(x(0)) =0
(V(x) scalar function). But also

Tav T oVde 0Vdy T ,
V®)]e = i Edt_/o (a—majta—yE)dt—/o (VV - %) dt

T T
- —/ (x-;z)dt:—/ Ix|Pdt < 0
0 0

by continuity — a contradiction.
NB Do not confuse with the opposite conclusion for conservative systems.

Liapunov functions. Conservative systems have an energy E which is constant on trajectories.
This idea can be weakened to energy-like functions which decrease along trajectories (increasing
time) and which are called Liapunov functions L; this however prevents closed orbits. More
formally, suppose the system
x = f(x)

has an equilibrium point at x*. A real valued positive definite smooth function L(x) such
thatL(x*) = 0 and

(1) L(x) > 0 for all x # x*

(2) L <0 for all x # x*.
((2) implies that all trajectories flow ‘downhill’ to the minimum x* of V.) Then x* is globally
asymptotically stable: for all initial conditons x(0), x(t) — x* at ¢ — oo. In particular, the
system has no closed orbits as all trajectories move monotonically down the graph (surface) of
V(x) to minimum x*. (Jordan and Smith 1987).

No systematic procedure to construct Liapunov functions — trial and error.

Index Theory. The index of a closed (positively oriented) curve C' measures the ‘winding’ of
the vector field (x,f(x)) on C. First the angle the vector f(x) makes with the x-axis can be
measured by means of the formula

tang= Y _ 9 _ 9@y
dz & f(z,y)
providing f(x) # 0 for x on C. The number of times the vector f(x) = % on C turns around as
it describes the curve, starting at #(0) and finishing at 6(T'), is given by
1 1 1
%[0]0 = %(H(T) —6(0)) = %AQ € Z.

The curve C can transformed continuously by a sufficiently small amount to a new curve C’
without passing through any equilibrium points (since they are a closed set f~1(0)) and without
altering the vector field very much. Thus I¢ can be regarded as an integer valued, continuous
function of C. As such I¢ cannot change value in an open connected set and so is locally
constant. Thus, if the curve C is transformed continuously to a new C’ without passing through
any equilibrium points, then Io» = I¢.

Corollary 4. If C does not enclose an equilibrium point, then Ic = 0.
For the curve C can be shrunk to one, say X, which is so small that I, =0 = I.



Index of an equilibrium point. Let C be any closed curve enclosing just one isolated equi-
librium point x*. Then I¢ is the index of x* and is well defined (the same for any such curve
C). Thus we can define the index of an isolated equilibrium point x*:

I(x*) :=I¢.
Theorem 2. The index of
stable node +1
unstable saddle = <{ +1
saddle -1
Theorem 3. Suppose a closed curve C' encloses n isolated equilibrium points x5, ..., x}. Then
Io = I(z3) + - + I(z7,)
Proof. Consider the figure:
O

Lemma 1. The index of a closed orbit (trajectory) is +1

For f(x(t)) = x(t) is tangent to the curve (trajectory) x(t) and goes round just once.

Application Closed orbits are impossible in ‘two-competitor system’ model (rabbits v sheep).

Limit cycles. A closed orbit or trajectory associated with a centre x* is not isolated in the
sense that there is a continuum of closed orbits about x*. A limit cycle is an isolated closed
orbit.

Example [Strogatz, §7] The differential equation
F=r(1—7r2), =1
has solution for r(t) < 1 given by

r(t)?
1—r(t)?

On S1) i.e., forr =1, r(t) =1 for all ¢t.

Ry =¢€*, 6 =6,.



Poincaré-Bendixson theorem and order. This covers closed orbits, including limit cycles.
Theorem 4. Suppose

(1) Q is a closed bounded region

(2) the system x = £(x) is smooth in an open set containing (,
(3) Q contains no equilibrium points,

(4) there is a trajectory x(t) which does not leave Q for all t > 0.

Then the trajectory is either a closed orbit or it spirals towards one ast — oo, so that 2 always
contains a closed orbit.

This is one of the fundamental results in dynamical systems and shows that even though there
more variety in the plane than in the real line, the plane is still pretty limited. A trajectory
confined to a closed bounded region with no equilibrium points is either a loop or approached
a loop. In dimensions of three or greater, the theorm no longer applies and the behaviour
of trajectories can be extaordinary complicated, with trajectories wandering around for ever
without ever eventually settling down. Extreme sensitivity to initial conditions and fractal sets
make their appearance and with it, chaos.

BIFURCATION

The boundaries between the regions in the Classification Diagram are associated with the
vanishing of higher order terms (or degeneracy) in the (multivariate) Taylor’s series expansion
for the function f(x). The degeneracy (or vanishing of det’s or eigenvectors) of higher terms
corresponds to the coalescence of local minima or maxima and so to the disappearance of stability
or instability.

Saddle-Node Bifurcation. To make this clear, first consider the one-dimensional case where
the function f(z) = f,(z) = f(a,z) = a — 22 has a parameter a which affects the character of
the equilibrium points (zeros of f,):

t=a—122

A bifurcation occurs at a = 0, where f'(0) = f”(0) = 0. The stable and unstable equilibrium
points in the vector field (phase line) shown in (a) (a < 0) coalesce at a = 0 to give a half-stable
point which disappears for a > 0. This can be represented in a bifurcation diagram.

Fold bifurcation: a = +/z*

Bifurcation diagrams
{(z,0): f(z,a) =0} = f71(0)
will be curves (in 2 dimensions) and not graphs in general.

Ex. Calculate time spent in a neighbourhood of the origin for a > 0.
This behaviour occurs when in the Taylor’s series

£@) = £ + £+ 1002 4 0)

for f at 0, f/(0) = 0, f"”(0) # 0. Thus a fold bifurcation will occur when a ‘parabolic’ part of
the graph of f(z,a) in the z,4 plane cuts the z-axis. The formula

r =+vax*



will hold approximately in the vicinity of z*. In general the variables might not be simple but
the logarithmic form

1
loga = 3 loga™ +C
is sometimes more convenient.

Pitchfork Bifurcation. There are two types:

Supercritical. Normal form

3

i=ax—2° = z(a — %)

Supercritical pitchfork bifurcation diagram

Subecritical. Normal form
i =ax + 2°

Subcritical pitchfork bifurcation diagram

Dimensionless equations. It is often convenient to remove dimensions from equations. Use
dimensional analysis

Imperfect Bifurcations and Catastrophes. Most real systems don’t exhibit perfect symme-
try and including imperfections can have an important influence on the nature of the solutions.
For example, introduce an imperfection parameter h into the normal form for the Supercritical
pitchfork bifurcation, as follows

i =h+ax— 25 9)

The roots of the cubic depend on the discriminant A of the coefficients:

4 <0 3real roots
A=h— 2—7(13 =0 2 real roots
>0 1 real root

Bifurcation diagram: semi-cubical parabola given by 33h% — 22a® = 0



The root information is encoded in the Riemann-Hugoniot surface:

Riemann-Hugoniot surface associated with roots of (9)

Two dimensional saddle node and pitchfork bifurcations. The eigenvectors are real.
The two dimensional saddle node bifurcation is given by the (decoupled) system

t=a—2z% §=—v.

Supercritical pitchfork:

t=ar—z3, §y=—y

The bifurcation diagrams essentially correspond to the one-dimensional case and the bifurcations
are associated with an eigenvalue vanishing [Strogatz, §8.1].

The Hopf bifurcation. The eigenvalues A1, Ay of the Jacobian J(x*) are the roots of a real
quadratic, given by

_ —b+ivV-A \ _ —b—iv/-A
- T 5. N2 = 5. >

A
! 2a 2a

and are either both real or complex conjugates (A\; = A2). The dependence of the eigenvalues
on the parameters are the key to bifurcation. For a stable equilibrium point, the eigenvalues the
real parts of the A1, A2 must be negative. For stability to be lost as the parameters vary, one
of the eigenvalues must cross into the positive half plane. When the eigenvalues are real (and
negative), they must pass through the origin and hence vanish for some value of the parameters.
The cases when this happens are the saddle node and pitchfork bifurcations.

When the eigenvalues are complex conjugates, they can acquire positive real part without
passing through the origin.



FEigenvalue trajectories

An idealised example To illustrate this consider the supercritical bifurcation exhibited by
the simple 3-parameter system (in polar co-ordinates, the natural choice for centres)

Fo= ar—rd

6 = w+br?,

where a controls the stability of the equilibrium point at 0, w is constant angular velocity
component and b governs the angular velocity in terms of . When a < 0, there is a stable spiral
at 0 (with sense depending on sign of w). When a = 0, 0 is a (weakly) stable spiral (r(t) — 0
like ='/2). When a > 0, there is an unstable spiral at 0 with a stable limit cycle at r = /a.

To analyse the behaviour of the eigenvalues through the bifurcation, switch to cartesian co-
ordinates

& = (a— (@ +y"))z — (w+b(=* + %)y = bz —wy + 0(z*,1°)
7 = (a— (@ +y))y+ (w+b@? + )z = wz +ay + 0>, y®)

(best for computing Jacobians) with Jacobian

J(0,0) = (Z _a°">

has eigenvalues A = a+iw. These have negative real part when a < 0, zero real part when a =0
and positive real part when a > 0, i.e., the eigenvalues cross the imaginary axis as a increases
from negative to positive values.

For a more general supercritical situation, when the eigenvalue A = A(a) = RA(a) + S\ (a),
and critical value is A (a.), radius of limit cycle for parameter a not too much greater that a.
is approximately v/a — a., frequency of cycle is SA(a) = SA(a.) + O(a — a.).

Subcritical Hopf bifurcation Consider the system

R e

= w+b?

Because of the sign change, in the bifurcation, trajectories are forced away from the origin.
For a < 0, there is an attracting (stable) limit cycle, a stable equilibrium point at origin and
between them a repelling (unstable) limit cycle. At a = 0, the unstable cycle swallows the
origin, resulting in an unstable equilibrium point. For a > 0, there is one stable limit cycle, so
that trajectories move awy from the origin. On reversing the process, hysteresis occurs.

Finally, there is a degenerate Hopf bifurcation, e.g., the damped pendulum with differential
equation & + az + sinz = 0.

Distinguishing between the different kinds of Hopf bifurcation can be tricky when the Hessian
H(z,y) of f(x) = (f(2,y),9(z,y)), given by

([ 0%f/ox* O*f]0xdy
H(z,y) = (62g/axay 82g/6y2 ) ’

is not invertible (det H = 0). but computers can be used in practice.



Quasiperiodicity The natural configuration space for systems of the form
6 = f1(61,62)
02 f2(61,02),

where fi, fo are periodic (27) in both arguments is the torus T := S! x S! which can be
represented as the unit square [0, 1]? with opposite sides identified.

The discrete and continuous. Notation: for any = € R, the integer part [z] is the greatest
integer at most z (the graph looks like a staircase); the fractional part {z} := x —[z]. The graph
is 1-periodic; there should be no confusion with the singleton set {z}. The name is, however,
unfortunate since the fractional part can be irrational and non-integer would be better.

Lemma 2.
finite if teQ

{{nz}:ne€Z} is { infinite if ¢ ¢ Q

Kronecker’s theorem The one-dimensional case:

Theorem 5. The set S = {{nz}: n € N} is dense in [0,1], i.e.,
S = {{nz}:n e N} =[0,1].

Proof. Since the set S(z) = {{nz}: n € N} is infinite and bounded (lies in [0, 1]), S(x) has a limit
point ! (Bolzano-Weierstrass theorem), i.e., there is a subsequence of points {nz} converging to
I. Hence given any & > 0, there are infinitely many pairs of points P,, = {nz}, Py, = {(n+r)z}
with
{nz} —{(n +r)z}| = {ra}| <e.

Now take any point P, = {mz} and add the vector {(n + r)x} — {nz} of length less than e.
Then the fractional part of the resulting point is {(m +r)z} and lies in S(z). Adding the vector
(which has length less than €) to {z} successively we get a chain of intervals of equal length less
than e with end points in S(z) and which cover [0,1]. Hence each point in [0,1] is at most &
from a point in S(z). O

Dirichlet’s theorem shows that € can be taken to be 1/n and { = 0 or 1. In the quantitative
form of Kronecker’s theorem, ¢ = 1/n and [ can be any point in [0, 1]. The higher dimensional
case. This comes in two versions: first, the discrete, proved much as above.

Theorem 6. Suppose 01,0s,...,0;,1 are linearly independent and (ay,az,...,a) € [0,1]F.
Then for any e, N > 0, there exist integers n > N and p1,p2 such that

‘max {[nf; —p; — a4} <e,

J=1,...k

i.e.,

S@) = {{n(:,...,05)}: n €N} = [0,1]".

And in an equivalent continuous or gquasiperiodic flow version (note the weaker hypothesis
and weaker conclusion):

Theorem 7. Suppose 01,...,0), are linearly independent. Then for any (ay,...,a4) € [0,1]F
and any €, T > 0, there exist a real t > T and py,...,pr € Z such that

max {[td; —p; —aj|} <e
J=1,...,k

1.€.,

{{t(6:,...,0)}: t € R} =[0,1]".



il

Note that if these theorems hold for (a1, ...,ax) with (81,...,6;) and for (B1,...,8k) with
(61,...,60k), then it holds for (a1 + B1,...,ax + Bi) with (61,...,6%), since when pa — a and
ga — (3 are nearly integers, so is (p + ¢)6 — (a + ). Also can take 0 < §; < 1 by relabelling the
variables suitably. We’ll sketch why Theorem 6 implies Theorem 7.

If 64,...,0;,0; are linearly independent, then so are
61 Or—1 1
5 e

Hence by the k — 1-dimensional case of Theorem 6 with N = T, there exist integers n > N,
Pi,-..,Pk—1 € Z such that
e

_max 1{\t0j -pj—aj|}<e

=1,...,k—

’I"La]‘
O —Dbj—ay

max
j=1,....k—1

Letting t =n/60r > n > T we get

and |t0y —n — 0] = 0 < &, the result for aq,...,a,-1,0. To deal with the case 0,...,0, a,
consider the linearly independent set

12O
5 g,
and apply Theorem 6 to get
né?j

E_pj_aj

b<e

For details, see Hardy and Wright, An Introduction to the Theory of Numbers, Chapter 23.

max
7=2,...,k

take t = n/6, and p; — n.

The oscillator [Strogatz, §4.3, §8.6] The oscillator governed by the DE
6 = w — asin a,
where a > 0 and w > 0, has equilibrium points 6* for a > w, given by the two solutions of
sing* = <.
a
The equilibrium points are stable for —acos8* < 0, i.e., cos#* > 0 and unstable for cos8* < 0.
Can be used for the coupled oscillator

01 = w + Kisin(fy —6;)
6y = wo+ Ko sin(f; — 602)
by putting ¢ = ; — 05, the phase difference, w = w; — w2, K = K; + K> and considering
ézél—ézzw—Ksingo.

MERRY WINTER SOLSTICE AND A HAPPY XMAS



