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Abstract—A model for intrinsic artificial development is in-
troduced in this paper. The proposed model features a novel
mechanism where growth emerges, rather than being triggered
by a single action. Different types of cell signalling ensure that
breaking symmetries is rather the norm than an exception, and
gene activity is regulated on two layers: first, by the proteins that
are produced by the gene regulatory network (GRN). Second,
through structural feedback by second messenger molecules,
which are not directly produced through gene expression, but
are produced by sensor proteins, which take the cell’s structure
into account. The latter feedback mechanism is a novel approach,
intended to enable adaptivity and environment coupling in real-
world applications. The model is implemented in hardware, and
is designed to run autonomously in resource limited embedded
systems. Initial experiments are carried out to measure long-
term stability, dynamics, adaptivity and scalability of the new
approach. Furthermore the ability of the GRN to produce
patterns of different symmetries is examined.

I. INTRODUCTION

Since the invention of the field effect transistor in 1971,
which rendered the first microprocessor possible, the complex-
ity of electronic circuits has grown exponentially in terms of
number of transistors and gates. This is the reason why it has
become possible to build larger and larger electronic systems
that comprise a great number of modules, which are complex
themselves, and still operate in a correct and reliable fashion.
However, the design of such increasingly large systems, which
become less and less understandable by one designer alone,
demands more and more sophisticated, automated design tools
to master their complexity and hierarchies.

Given the complexity of such systems, automated electronic
circuits and systems design has always been a challenging
target application for evolutionary computation (EC). Unfor-
tunately, unlike designed systems, the size and complexity of
successfully evolved circuits has not grown to the same extent.
To date, the largest circuits evolved from scratch are the prime
number predictor (400 multiplexers) published in [24] and
the 6-bit multiplier (186 gates) in [22]. The complexity of a
circuit is assessed by expressing the number of its components
in terms of the number of primitive gates (AND, NAND,
OR, NOR), one multiplexer is thereby counted as four gates.
Examples where the building blocks used a high degree of
domain knowledge were discarded, e.g. when XORs are used
in evolving parity.
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Previous research within the field makes it evident that com-
petitive and scalable solutions can only be achieved by parti-
tioning a given task or when indirect or generative genotype
to phenotype mappings are applied. Multiple chromosomes
are introduced to account for multiple outputs in cartesian
genetic programming (CGP) in [25]. Other approaches are
(automatically) defined functions in genetic programming and
building blocks [12], [25], incremental evolution [22] and
decomposition of the task [21]. Generative genotype to pheno-
type mappings are used, for instance, in lindenmayer systems
[9], [10], [16] and cellular automata [19].

This work is based on yet another approach to indirect
mappings, which is based on the principles of natural devel-
opment [26]. Examples for this are random boolean networks
(RBNs) and artificial genetic regulatory networks (GRNs) [2],
[4], [6]. Developmetal systems usually feature regulatory and
structuring proteins, which are produced by a set of genes, and
in turn regulate which genes are expressed (actually produce
proteins) in a dynamic fashion. Natural development forms
patterns and shapes, where different regions (groups of cells)
work together and specialise in required tasks to maintain
and operate the whole organism. This process features–to
a certain extent–many properties that are desirable to build
complex artificial systems: scalability, robustness, adaptivity
and self-repair. Not to mention the fact that description of
complex structures and functionality is stored in a highly
sophisticated and compressed manner within the genes. Thus,
various research has been done to mimic these properties of
nature in order to achieve the same properties in artificial
(electronic) systems [1], [3], [7], [13], [17], [18], [20].

Although only relatively small numbers of cells are used
and the organisms are usually matured for less than 50
developmental steps, the reported results show that artificial
developmental systems have the potential to scale, self-repair
and adapt. Thus, the work that has been undertaken encourages
further investigation into how we can adapt the mechanisms of
natural development to solve engineering problems. Numerous
models of development have been implemented and are more
or less successfully applied to different design problems. So
far these models have been proven to be most successful in
solving pattern formation tasks [3], [9], [10], [16], [18], [20].
However, it is neither yet clear which mechanisms of natural
development should be included in artificial systems, nor is it
obvious which ones can be left out without losing too much
of development’s potential.

A new artificial developmental system is introduced in this
paper. In this case, the fundamental design goal is that the



Fig. 1. The genes in a DNA sequence are activated when a sufficient amount
of protein is produced by the GRN, which then causes transcription of the
respective gene. In the example shown in the figure, the activity of the GRN
results in the correct transcription factors (the promoter proteins) that bind to
the sites of a gene sequence. This initiates the production of another protein,
which can then affect the cell functionality using further information that
is encoded in the gene. The produced protein also provides feedback to the
GRN, which regulates the transcription of further genes, hence, dynamic gene
regulation is achieved. Note that when any inhibitory condition is met, the
gene is not expressed.

system has to be able to run efficiently in hardware whilst
keeping it as close as possible to its biological inspiration.
The developmental model is introduced in this paper and the
decisions that have been made about which mechanisms from
biology to adapt (and how) are discussed. As the ability to
form and control patterns has been used to investigate the
behaviour of development [3], [5], [9]–[11], [16], [20], [26]
they are also ultimately chosen to demonstrate the behaviour
of development in this paper. The floorplan of every elec-
tronic circuit is a pattern. However, in this work the long
term behaviour of development is investigated for the first
time; as one of our aims is to keep development running in
the background to control and maintain the operation of a
distributed, autonomous hardware system.

Basic pattern formation experiments with 2x2 cells are
undertaken in order to measure long-term stability, dynamics
and scalability of the proposed artificial developmental system.
Furthermore, the ability of GRN to produce different patterns
of different symmetries on a 6x6 cell tissue is investigated.
Experiments are carried out intrinsically on the reconfigurable
integrated system array (RISA) [8].

II. MODEL FOR INTRINSIC DEVELOPMENT

The main design considerations for the presented model for
artificial development in hardware are: first, the fact that it
actually runs in hardware, which imposes simplifications and
the choice of suitable data types (boolean, integers). Second,
to keep the selected mechanisms as close as possible to their
biological counterparts within the boundaries of hardware.
Third, as the structural genes will configure hardware re-
sources in a useful fashion, regulatory feedback from these
structures is desired. Fourth, a mechanism for interaction with
the environment is proposed in order to achieve adaptivity.

A. Representation and Gene Regulation

The core of the proposed developmental model is repre-
sented by a GRN, as shown in figure 1. Genes are implemented
as binary strings and they interact through proteins. The binary
string that encodes the genes is also referred to as (artificial)
deoxyribonucleic acid (DNA) and is evolved using a standard

TABLE I
THE DNA IS EVOLVED USING AN EVOLUTIONARY STRATEGY (ES) WITH

THE PARAMETERS THAT ARE SHOWN IN THE TABLE.

EA parameter Value

population size 7
no. of parents 2
evolutionary strategy 2+5
mutation rate adaptive, co-evolved (0.5 . . . 10%)
maximum generations 5000

Fig. 2. An example gene formed of 32 bits is shown in the figure above.
The first 16 bits are reserved for the preconditional part, which specifies the
rules to activate the gene. There are eight proteins defined in this figure; the
first four being structuring, Plasmodesmata (tunnelling), sensor and structuring
proteins. The last four are second messenger molecules, which are not directly
created by the GRN, but are produced by the sensor protein as a result of an
interaction with the current cell structure. Each protein’s required presence or
absence is specified by a 2 bit number, that encodes 1 excitatory, 1 inhibitory
and 2 don’t care states. In the case of a don’t care event, the presence or
absence of a protein has no effect on the transcription of the particular gene.
The second 16 bits of the gene are reserved for the postconditional part, which
provides the ID of the protein produced as a 2 bit number, as only the proteins
can be directly produced. The last 14 bits in the gene encode the action of
the protein produced, i.e. if it’s not a regulatory protein (further explained in
table II). If it is a regulatory protein, the last 14 bits will be treated as junk.

evolutionary strategy (ES) (table I) with a relatively small
population size, in order to fit it into the hardware. The EA
parameters are based on values that are widely used in the field
of evolvable hardware. The major difference to biology is that
in this case genes are all of the same length and lined up to
form the DNA, hence, are defined by their respective positions
or addresses within the DNA. Natural genes however, are
defined by certain upstream and downstream gene sequences
(binding sites) that accept proteins to bind and transcribe their
genetic code. The binding sites in natural DNA therefore allow
for smooth binding, i.e. the probability that certain proteins
(transcription factors) bind to the DNA is given by how well
the binding sites of the protein matches the one of the DNA.
There are examples of artificial GRNs where smooth binding is
included [5], [11]. However, in the case of embedded hardware
systems, the inclusion of this feature is extremely expensive in
terms of memory requirement and computation effort. Thus,
a hardware friendly, rule based model similar to the one
introduced in [7] is chosen to implement gene regulation.
The structure of one gene and the way in which protein
concentration influences gene expression or suppression is
described in figure 2.

In principle the system can work with an arbitrary number
of proteins. However, currently the system is working with
eight proteins: four primary proteins and four second mes-
senger molecules. Gene regulation is described in figure 2. A
description of the proteins and their roles is given in table II.
Having four messenger molecules accounts for the fact that



TABLE II
THE CURRENT GRN WORKS WITH FOUR PRIMARY PROTEINS AND FOUR

SECOND MESSENGERS. PRIMARY PROTEINS ARE DIRECTLY PRODUCED BY
THE GRN, WHEREAS SECOND MESSENGER MOLECULES ARE ONLY

PRODUCED AS A RESULT OF A ’MEASUREMENT’ THAT IS PERFORMED BY
THE PRIMARY SENSOR PROTEIN. THEIR ROLES IN DEVELOPMENT ARE

DESCRIBED IN THE TABLE. PLEASE NOTE THAT ALL PROTEINS AND
MESSENGER MOLECULES TAKE PART IN GENE REGULATION, IN ADDITION

TO THEIR SPECIAL PURPOSE.

Protein/ Molecule Role (apart from gene regulation)

Plasmodesma (pri-
mary)

Plasmodesma proteins provide a mechanism to form
Plasmodesmata [15] in order to share their proteins
with neighbour cells, and they initiate growth.

Structuring
(primary)

Structuring proteins alter the part of the bit-string of
the configurable target platform that is owned by the
respective cell, based on the data that is encoded in
the postconditional part of the gene. 6 out of the 14
postconditional bits determine an address within the 64
bit structure of the cell, two bits determine how many
bits are written to the structure and up to four bits
represent the actual data that is written to the structure.
This way, the whole structure is built as a result of
multiple structuring genes expressed.

Sensoring
(primary)

Sensoring proteins provide a means to react to changes
in the cell state. Secondary proteins (second messen-
gers [26]) are produced, based on current cell function
and possible rules that can be encoded in the genes.

Other (primary) An additional regulatory protein that can be directly
produced by the GRN.

Messenger
(secondary)

Messenger molecules are produced as a result of the
sensor protein being expressed and reacting according
to the current cell state.

the cells can take on four different states. Depending on the
cell state in each developmental step, the sensor protein can
produce one of the four secondary molecules.

One type of protein at a time is produced per gene ex-
pressed. Whenever a protein is required to inhibit or express
a gene, its level is decreased. In the presented experiments,
production rate is set to 3% (0.5% for the Plasmodesmata
protein) and consumption rate is set to 1.5% of the maximum
protein level. Only when the protein level is above 50% of
the maximum, the genes are taken into account to interpret
the rules.

B. Cell Communication and Growth

Wolpert [26] describes three different types of cell signalling
(communication): protein diffusion, direct contact of com-
plementary proteins on the cell’s surface, and gap junctions
(Plasmodesmata). Two different types of cell signalling are
realised in the proposed model. Protein diffusion has been
implemented in a similar way as it takes place in physical
systems, e.g. a drop of ink dissolving in water. Half of the cells
protein is thereby distributed amongst its nearest neighbours
in equal shares, i.e. each neighbour obtains 1

8 of the cell’s
protein. Protein levels are credited and debited after the GRN
has processed the next developmental step for all cells. Thus,
the GRN always works with the original protein levels and
the order of cell update should therefore not bias the course
of development.

CELL 1 CELL 2

CELL 3

New Cell

Physical Cell 
Structure

GRN Core

Cell In1

Cell In2

Cell In3

Cell Out

A complete 
Plasmodesma

Plasmodesma
Proteins

Sensors

Structuring
Proteins

A
n incom

plete
P

lasm
odesm

a

Fig. 3. In a multi-cellular environment using the four basic protein types
a cell is able to: interact with its environment, multiply, structure itself, and
form a complex multicellular organism. The basic functions of some proteins
are demonstrated in this figure. Only cell 1 is drawn completely, certain
components are omitted in other cells. In the example above, cells 1 and
2 both have active Plasmodesmata proteins, which cause the formation of a
channel on both cells towards the other, creating a Plasmodesmata to allow
free movement of proteins from one cell to other. Cells 1 and 2 both also
have active Plasmodesmata proteins on their southern sides. Cell 1’s southern
neighbour is a dead cell, so the active Plasmodesmata protein initiates a growth
process in that direction. However, cell 2’s southern neighbour is an alive cell
with no Plasmodesmata protein, thus cell 2 forms an unconnected channel
on it’s southern wall. The direction in which the Plasmodesmata proteins are
active, is encoded in the postcondition of the gene, hence, there is one species
of Plasmodesmata protein with four different behaviours. The four sensors
drawn monitor the outside activity on four sides of each cell and produce
different messenger molecules with changing environment. The structuring
proteins are produced by the GRN to change the physical structure of the
cell, which is connected to the physical inputs and outputs of the cell.

Diffusion is a signalling mechanism that helps maintaining
symmetries within the system. The second cell signalling
mechanism is an implementation of Plasmodesmata in plants
(protein tunnels) [15]. The GRN produces a Plasmodesmata
protein for one of the four directions N,S,E,W. If the neighbour
cell is alive and produces the complementary Plasmodesmata
protein, a tunnel will be established between the two cells
with the effect that all proteins are equally shared between
those cells, as depicted in figure 3. This tunnel is active as
long as the necessary Plasmodesmata proteins are produced.
Complementary to diffusion, the tunnelling mechanism should
enable the GRN to break symmetries within the system, due
to the fact that tunnels do not necessarily occur on all four
sides of the cell at the same time.

Cell growth is achieved using the Plasmodesmata proteins.
If the neighbour cell, which is targeted by the tunnel, is an
empty or dead cell, it will be flagged to become alive for
the next developmental step (see figure 3). Cell death is not
implemented at the current stage.

Note that the cells are arranged in a toroidal fashion, i.e. the
cell tissue appears to be ’infinite’ for diffusion and tunnelling.
It remains to be seen in future experiments, whether this is
beneficial or not. Another approach to avoid boundaries is to
provide a sufficiently large tissue where organisms never reach
the border. However, apart from being infeasible in hardware,
this potentially does not solve the boundary problem in cases
where development is not stopped after a few steps.



C. Creating Functional Structures

As the GRN is intended to eventually create an executing
physical system, it has to be able to configure the underly-
ing hardware substrate. This is achieved by the structuring
proteins. When expressed, these proteins use the encoded
action of the gene (see figure 2) to produce a chunk of
the configuration bit string for the cell’s structure, i.e. its
programmable hardware substrate shown in figure 4. Both the
connectivity and the logic function of the cells are created by
the GRN. For the experiments in this paper, the cells structure
comprises two 4-bit look-up tables (LUTs) with attached flip-
flops. The 2 bits in the flip-flops represent the result computed
from the structural cell inputs applied to the LUTs. These
two bits are used for both defining the cell state at each
developmental step and as a computational output of the cell.
This output is available to the four nearest neighbours of the
cell. Thus, the cell states depend on the cell states in the
neighbourhood and are in turn dependent on the cell states
of their neighbours.

Currently, there are two unused function units per cell as
illustrated in figure 4. The reason for this is that the RISA
routing resources do not allow the use of all four function
units in the same fashion as described above. Otherwise a 4-
bit cell state would be possible. However, there are sufficient
routing resources available to use the spare logic to build a
LUT array, which could then perform additional computation.
It would, for instance, be possible to implement an adder
circuit as described in [7] under the condition that the GRN
could produce a cell pattern, which could then be mapped to
a suitable set of building blocks.

D. Structural Feedback

Key features that are expected from development are self-
repair and adaptivity. Due to this, it is crucial that gene
regulation can be affected by structural change or damage
to enable the GRN to react. In the proposed system this is
achieved by introducing sensor proteins that read the cell state
and produce second messenger molecules according to rules,
which can either be canonical—i.e. four cell states, four sec-
ond messengers—or encoded in the gene action. The presented
experiments are carried out using four second messengers; one
dedicated second messenger molecule is produced for each cell
state.

As in biological cells, the second messenger molecules
cannot be directly produced by the GRN but play a significant
role in gene regulation [26].

E. Environmental Coupling

Being able to adapt to a changing environment, or changing
inputs, requires a mechanism that is able to detect these
changes and translate them into signals that, again, affect gene
regulation. This ability comes for free in this case, due to
the way in which a change in the cell state results in the
production of different second messengers, which then affect
gene regulation. Thus, the same mechanism, which enables
structural feedback, also provides environmental coupling: the

Fig. 4. Left: One RISA cluster is shown with the connections to its nearest
neighbours. Each cluster represents one cell, resulting in 6x6 cells per chip.
Each cluster features four function units that contain a 4-bit LUT, a 3-bit MUX
and a flip-flop respectively. Two clusters are used as the cell’s structure in the
presented experiments. The results stored in the flip-flops define the two bit
cell state at each developmental step. Remaining logic is used to implement a
monitoring mechanism for the inner cells of the array. Right: the LUT of each
function unit can take it’s inputs from all four nearest neighbours and the cell
state is provided as output to all four neighbours. The 16 configuration bits
of the LUT and the 16 configuration bits of the switch box are configured
by the GRN. As two of the function units are used per cell, this results in
a total of 64 configuration bits per cell and 1518 configuration bits for a 36
cells organism.

routing structure of the outer cells of the organism connects
to the environment via external inputs, as there are no more
neighbour cells to take input from. This means that the
structure of the outer cells, which computes the cell state, will
possibly provide different results for different input conditions.
As soon as the cell state changes, the structural feedback
mechanism described in section II-D comes into action and
affects gene regulation.

III. DEVELOPMENTAL HARDWARE SETUP

The hardware setup used for these experiment comprises
the reconfigurable integrated system array (RISA) chip and a
Xilinx Spartan3E FPGA. RISA is a reconfigurable digital de-
vice, which was designed as a platform for intrinsic hardware
evolution and development at the Department of Electronics,
University of York. One RISA chip provides both a pro-
grammable microcontroller and configurable logic, which are
inspired by the main constituents of biological cells, namely
the nucleus and the cell body. Main features, which make
RISA particularly suitable for (unconstrained) evolutionary
and developmental experiments (examples in [14]), are the
partial reconfigurability of the FPGA and the fact that it is
designed in a way that it cannot be destroyed by random bit
strings. A detailed description of the RISA architecture can
be found in [8]. One of the future aims is to run development
on the embedded processor, although it is implemented in the
Spartan3E FPGA at the current stage of experiments.

A. Architecture for Development

The FPGA fabric of the RISA chip consists of 6x6 clusters,
which are hardwired as described in [8]. Each cluster com-
prises four functional units, which provide essentially a 16 bit
LUT, a 3 bit MUX and a flip-flop. In addition configurable



routing is available to route the external inputs and outputs
of the cluster to the function units. Originally, one RISA chip
was intended to represent one artificial cell, but as results from
research in the field suggest to rather use a greater number of
smaller simple cells, one RISA cluster is defined as one cell
in this paper. As a consequence, the embedded processor will
have to control 36 smaller, simpler cells, instead of one big,
complex one.

B. Cell State and Cell Structure

In principle the developmental system can be used to
configure all available resources on RISA. However, half of the
resources—two function units, featuring one LUT, MUX and
flip-flop each—are used for the experiments in this paper. The
logic resources of the cells are allocated as shown in figure 4.
The logic is configured in a way that the inputs of the LUTs
can be taken from the nearest neighbours. The resulting output
is then stored in the flip-flops and in turn made available to
the neighbouring cells. At each developmental step, the current
state of a cell is defined by the two bits that are stored in the
flip-flops, hence, four cell states are possible.

IV. MEASURING PROPERTIES OF DEVELOPMENT

Measuring the properties of a developmental system is not
a trivial task. Unlike evolution with direct genotype to phe-
notype mappings, the transient component that is introduced
by carrying out a number of developmental steps makes it
much more difficult to define suitable fitness functions and
assessments. Another transient component has to be taken into
account when the developed organism carries out any kind
of time dependent computation. Thus, any issues related to
the evolution of the GRN itself aside, the time complexity of
a developmental system aimed at creating hardware systems
is at least two dimensional and the two dimensions are not
separable.

In most of the research that is done into artificial develop-
ment, the organisms are usually grown for 7 . . . 30 develop-
mental steps. After that, development is stopped. Furthermore,
there are only a few examples, where fitness at different stages
of development is taken into account [18], [23]. This leads
to several questions: first, how many developmental steps are
actually necessary and at which step shall we demand a certain
behaviour? Second, what would happen, if development was
run for 50 steps, or even forever? Will it be stable in the long
run? Are bistable solutions possible? Lastly, how scalable and
robust are even basic solutions?

Experiments with a relatively small organism (2x2 cells)
are conducted in order to obtain answers to these questions
and to be able to calibrate and improve the proposed system
for future experiments. The task is in all cases to find and
manipulate patterns of 2-bit cell states. The examples shown
are typical results of at least 10 independent runs. The DNA is
always represented by 50 genes and eight proteins are used, as
described in section II. Fitness calculation is straight forward
in all experiments and equals the number of living cells plus
the number of cells in the correct states.

Fig. 5. Typical results for the following measured properties of the proposed
development model are shown: A: long-term stability, B: dynamic behaviour,
E: scalability. The examples shown are discussed in the text.

A. Long-term Stability

Ideally, long-term stability means that the organism grows
into a desired shape or function and from a certain point
remains stable forever, or at least for the longest time that
is feasible to measure. Thus, the task is to generate the cell
state pattern shown in figure 5-A after 5 developmental steps
and then remain stable up to step 50. Fitness is accumulated
after step 5. Successful solutions are then developed for 1000
developmental steps in order to investigate whether GRN has
actually achieved stability.

In all experiments the pattern was found in less than 200
generations of evolution and before developmental step 6. In



most cases, the organism remained stable up to step 50, but
in general only a few steps later the pattern changed into
something different. In one case, the organism managed to
remain stable up to step 138 and then started changing.

Thus, it is to a certain extent possible to generate stable
patterns, when this property is considered in the fitness eval-
uation. However, in a complex dynamic system there is no
guarantee beyond a certain point unless it is deterministic and
fully understood. Determinism is guaranteed in the hardware
system used as long as there is no random environmental input,
but it is hard to prove that an evolved GRN will produce an
indefinitely stable organism.

As long as we are aware of this, this is not necessarily a
problem for a practical application: it just has to be considered
that it will be necessary to keep developmental processes
within boundaries, in which they are guaranteed to be stable.

B. Dynamics

The proposed developmental system features structural
feedback mechanisms, described in section II-D. Therefore
it should not only be able to maintain a stable state, but
also to alternate, for instance, between two different states.
Hence the task is to generate an alternating pattern, as depicted
in figure 5-B(left). Pattern 1 has to be achieved after 10
developmental steps, then turn into pattern 2, then 3, then
2 and then back to 1 (following the arrows) and so on. This
oscillation is required to be maintained up to step 30. Fitness
is accumulated after step 10. Successful solutions are then
run for 1000 developmental steps in order to observe further
behaviour.

In only one out of ten runs a solution was found. The
most likely reasons for the low success rate are the fact that
this might be an even more challenging task than achieving
stability, and that the maximum number of generations of 5000
is probably too low.

However, it is interesting to observe that in the case of
the successful run the correct patterns kept alternating up to
developmental step 35. After that the patterns changed into the
ones shown in figure 5-B(right), but kept alternating with each
developmental step up to 1000. Only nine times between step
35 and 1000 did the pattern not change for one oscillation.

Although it seems to be harder to achieve an oscillating
behaviour, it appears to be more stable when development
is run for a longer time. From the perspective of gene
regulation this makes sense, since it is possibly easier for the
GRN to exploit feedback to regulate protein production and
consumption, than to completely shut down any activity and
(structural) changes after a certain number of developmental
steps.

C. Scalability

GRNs represent compressed, adaptive building instructions
for large systems. Therefore, they should be suitable to be
evolved on small problems, which they are then able to solve
on a larger scale when merely provided with more resources.
Therefore, experiments are undertaken where a GRN creates

a 2x2 pattern using four cells. This GRN is then given all 6x6
available cells and it is observed whether the pattern repeats
itself, i.e. whether some kind of scalability has been achieved.

In all experiments the target pattern has to be found after
10 developmental steps. When the evolved GRNs are run on
the 6x6 cell tissue, 100 developmental steps are carried out.
Almost all runs are successful in finding the 2x2 target pattern,
but in general the patterns do not scale well. Examples are
shown in figure 5-E. Example E1: the simple checkerboard
pattern does scale across the whole organism, but does not
remain stable in the long run. Example E2: the advanced
checkerboard pattern does scale, but in an unexpected way.
It features some kind of scalability when extended in the x
direction, but not when extended in the y direction or when
grown across the whole tissue (6x6 cells).

In the experiments undertaken, scalability is expected to be
achieved as the cell tissue is implemented as a toroid: cell
signalling and growth take place in a toroidal fashion, hence,
there are no boundaries and the pattern appears ’infinite’ to
the GRN. Unfortunately, the hardware platform used imposes
slight differences in the connectivity of the inner cells and the
border cells, which breaks the symmetry.

D. Initial Position of the Zygote

The initial position of the zygote should make no difference
in the appearance of the final organism. In the case of a pattern,
it might be expected that it is shifted in accordance with the
relative new position of the zygote, but not to look entirely
different. This property could not yet be tested, due to the
inhomogeneous cell tissue available (sections IV-C and III).
However, simple patterns like the checkerboard pattern and
the more complex checkerboard pattern (figure 5-E) can be
successfully obtained independent of the initial position of
the zygote, when the GRN is re-evolved for different starting
positions. In all experiments, the organism is initially grown
from one single zygote located in the middle of the organism
(6x6 cells) or at the upper left (2x2 cells) of the tissue.

V. PATTERNS, FLOORPLANS AND CIRCUITS

A valid way to achieve scalable circuits is through pattern
generation in combination with predefined building blocks and
routing schemes of the structural part of the cells. Examples
can be found in [7], [20]. In this respect the ability to
evolve patterns is valuable for practical circuit applications.
Furthermore, published research results suggest that pattern
formation tasks are suitable to be tackled with GRNs [5], [23].

A. Patterns

Comparing this work more closely with others, the ability
of the proposed model to generate a set of different patterns
with different symmetries is investigated. The selected patterns
are shown in figure 6 and are inspired by patterns that
are used in related papers [5], [20], [23]. The set contains
patterns of different symmetries and periodicity. If the GRN
is able to generate these different types of patterns, it will
be shown that it is actually making use of all available cell



Fig. 6. The performance of the proposed developmental model is tested
on the generation of the shown patterns. Classification of these patterns is
done according to [5]. Similar or same kinds of patterns are widely used to
test the performance of GRNs [18], [23]. It is also illustrated that the GRN
can produce layouts that can be different for each run, but are satisfying the
same set of design rules. The task is to find layouts of components with three
terminals.

signalling mechanisms (different symmetries), can operate in
an unbiased fashion and features some kind of modularity
(periodic patterns). Fitness calculation is straight forward in
all cases and the score equals the number of living cells plus
the number of cells in the correct states.

As can be seen from figure 6, the GRN produces perfect
matches to all mosaic patterns and almost all border patterns
and patch patterns. It is observed that in those two patterns,
where it comes only close to the solution, symmetry breaks are
present (figure 6-B-middle and figure 6-C-right). Despite the
fact that the GRN was able to handle these symmetry breaks
to a certain extent, a perfect match is not achieved within
500,000 generations and 10 developmental steps.

B. Layouts

The idea of a layout aims at more practical applications: if
the cell states represent different building blocks that can only
be interconnected in accordance with design rules, the task for
the GRN would be to create valid circuit layout. This task is
also interesting insofar, that there is not necessarily only one
single solution. This could be an advantage when alternatives
have to be found in the case of faulty components.

In this example, each cell represents a component with
three terminals, as shown in figure 6-D. The orientation of the
component is defined by the cell states. Unlike in the case of
the patterns, where predefined cell states have to be matched,
the fitness of the layouts is calculated according to how well
they satisfy the set of design rules listed in figure 6-D-left.

As can be seen from figure 6-D, different runs of evolution
and development result in different layouts that satisfy the
design rules. It is observed that the layouts found are featuring
both a high degree of symmetry and modularity as well as
symmetry breaks. The layout in figure 6-D-middle features
one flaw: one of the terminals is floating (greyed cell). This
represents a local optimum, since adjusting this cell would
initiate a sequence of cell state changes.

C. Simple Circuits

The example given in this section is intended to give an
illustration of how a simple pattern could be mapped to a
circuit in a real system, rather than to claim the achievement
of a robust, scalable, automatic circuit generator by means of
development. Using a pattern as a circuit layout instead of di-
rectly creating a circuit is a quite simple idea, but its simplicity
might make it more feasible for practical applications.

As described in section II-C, only half of the RISA cell’s
hardware resources are used to determine the cell state and
feedback to the GRN. The other half, i.e. two LUTs and two
multiplexers (MUXes), could be interconnected in a predefined
fashion as suggested in [7]. Evolution of circuits on the RISA
platform would then also become a pattern formation problem,
which has been shown to be more successfully found by GRNs
than both structure and routing. A simple scalable pattern as
shown in figure 5-E2(x-scaled) could then describe a logic
circuit template on a more abstract layer.

VI. DISCUSSION

A novel model for intrinsic artificial development is intro-
duced in this paper. It is shown that the proposed develop-
mental system exhibits basic desired properties of artificial
developmental systems, namely long-term stability, dynamic
behaviour and scalability. It is observed that even organisms,
which appear to be stable for a long time, can still change at
a later stage. This implies that practical applications will have
to be designed in a way to cope with long-term behaviour
of development, e.g. by stopping development or restarting
it. The model presented is able to produce stable dynamic
behaviour in the form of an oscillating pattern. The results
suggest that due to the dynamic, self-regulatory nature of
GRNs, it might generally be easier to achieve long-term stable



oscillations than infinitely static states. Stable oscillations
could also be advantageous to maintain the ability to react
to environmental changes, as the GRN is not in a shut-down
state. Basic scalability could be observed in the case of simple
(small) patterns. In due course, a larger hardware system
will be available and enable the investigation of larger, more
complex patterns.

Furthermore, it is possible to grow organisms that form
perfect matches to patterns of different symmetries and pe-
riodicity: mosaic patterns, border patterns and patch patterns.
Only in cases where symmetries are broken do the developed
patterns feature flaws. It is shown that the GRN is able to
develop circuit layouts based on a set of rules, rather than
predefined target patterns. As there is not only one possible
solution, different runs result in different layouts that satisfy
the design rules. It is observed that the layouts found are
featuring both a high degree of symmetry and modularity as
well as symmetry breaks. The results for the layouts suggest
that the GRN might be able to develop alternative layouts in
the case of faulty cells. Thus, the capability of the system to
recover from faults and perturbations will be investigated in
future experiments.

Both presented cell signalling mechanisms (Plasmodesmata,
diffusion), emergent growth as well as structural feedback
(sensor proteins) are necessary to achieve the patterns and
layouts shown. Hence, these features of the developmental
model are successfully used by the GRN in the presented
experiments.

For the first time, a developmental approach of this kind has
been investigated when run for more than 30-50 developmental
steps. However, our future aim is to always keep development
running in hardware, since stopping it at a certain stage would
require additional mechanisms to control development. The
results from this paper will be used to refine and calibrate the
introduced intrinsic developmental model. Further experiments
will examine scalability and environment coupling, and the
behaviour of the system when going through different devel-
opmental stages will be investigated. The latter is the case
in biological systems and might even be crucial to achieve
scalability.
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