
Task Decomposition and Evolvability
in Intrinsic Evolvable Hardware

Tüze Kuyucu, Martin A. Trefzer, Julian F. Miller and Andy M. Tyrrell

Abstract— Many researchers have encountered the problem
that the evolution of electronic circuits becomes exponentially
more difficult when problems with an increasing number of
outputs are tackled. Although this is an issue in both intrinsic
and extrinsic evolution experiments, overcoming this problem
is particularly challenging in the case of evolvable hardware,
where logic and routing resources are constrained according to
the given architecture. Consequently, the success of experiments
also depends on how the inputs and outputs are interfaced to
the evolvable hardware. Various approaches have been made to
solve the multiple output problem: partitioning the task with
respect to the input or output space, incremental evolution of
sub-tasks or resource allocation. However, in most cases, the
proposed methods can only be applied in the case of extrinsic
evolution. In this paper, we have accordingly, focused on scaling
problem of increasing numbers of outputs when logic circuits
are intrinsically evolved. We raise a number of questions: how
big is the performance drop when increasing the number of
outputs? Can the resources of evolvable hardware be struc-
tured in a suitable way to overcome the complexity imposed
by multiple outputs, without including knowledge about the
problem domain? Can available resources in hardware still be
efficiently used when pre-structured? In order to answer these
questions, different structural implementations are investigated.
We have looked at these issues in solving three problems: 4-bit
parity, 2-bit adder and 2-bit multiplier.

I. INTRODUCTION

One of the aims of evolvable hardware is to facilitate
and automate the design process for increasingly complex
applications. In order to achieve this, it becomes necessary
to divide the task into smaller ones, which are easier and
faster to evolve, and offer the possibility of reuse in different
contexts. However, it is a highly non-trivial task to provide
algorithms that are able to automatically decompose a given
complex problem into smaller sub-tasks. This is particularly
the case when no previous knowledge of the problem domain
is available. Furthermore, another important factor, which
is often unknown in the case of evolvable hardware, is the
knowledge about the architecture of the evolvable hardware
itself. Even when this knowledge is available and can thus be
included in the search algorithm, it is still a complex task—
and not always possible—to effectively access and make use
of the given resources. Thus, there is a great demand for
algorithms that autonomously break down complex tasks by
automatically determining building blocks and are able to
reuse them. Furthermore, the operation principles of these

Tüze Kuyucu, Martin A. Trefzer, Julian F. Miller and Andy M.
Tyrrell are with the Department of Electronics, Intelligent Systems
Group, University of York. {tk519, mt540, jfm7, amt}@ohm.york.ac.uk,
http://www.elec.york.ac.uk/research/intSys/bioInsp/evo.html.

This work is part of a project that is funded by EPSRC - EP/E028381/1.

algorithms should be based on sufficiently general principles
in order to be able to apply them not only to different prob-
lems, but also implement them with different representations
and on different platforms.

There are numerous approaches in evolvable hardware
where automatic decomposition of complex tasks are tackled;
there are examples where automatically defined functions
(ADFs) [6] and module acquisition, for instance in embedded
cartesian genetic programming (ECGP) [17], are automat-
ically achieved in genetic programming. There are some
examples of ECGP where multiple chromosomes are utilised,
to divide the given task with respect to its outputs. Each
chromosome thereby represents an independent cartesian
genetic program (CGP), which is required to solve the task
for only one of the outputs. Approaches where complex tasks
are automatically partitioned by evolving modules, which
satisfy subsets of the demanded functionality can be found
in [3], [4], [10], [12]. In the case of [4] the obtained modules
are merged and optimised in terms of redundancy in a second
stage (incremental evolution) of the evolutionary algorithm
(EA). It is reported that, apart from increasing the level of
achievable complexity, ECGP and incremental evolution also
speed up the evolution process. Other approaches employ
multi-objective optimisation in order to be able to evolve
complex circuits, particularly ones with high input/output
(IO) count [13], [20], or use genomes with variable length
to account for hierarchical designs [21].

Various published results state that evolving electronic
circuits will become exponentially more difficult as the input
and output count increases [11], [15], [19].

We have to look closely at the results obtained from extrin-
sic hardware evolution experiments in order to successfully
derive methods that will perform well in smaller systems.
Even though there are elaborate techniques in software from
which we can learn a lot, they are often rendered useless
in the case of an embedded systems. Although, one of the
aims of intrinsic evolution is to speedup runtime, the lack
of flexibility and computing power prevent the use of these
highly advanced techniques that work well in the case of
extrinsic evolution. Thus, with the new developments in
extrinsic evolution, the successful relative performance of
intrinsic evolution has been left behind. However, the major
advantage of hardware evolution is still its intrinsic realism:
solutions that are found by evolution are proven to work
in a physical implementation and environment. As stated
in [9], there will always be problems when taking a result
from simulation into the real world. Therefore it is important
that further methods for improving intrinsic evolutionary



techniques are investigated.
In this paper we examine the scalability issue of logic

circuits with multiple outputs. A method to structure hard-
ware substrates is proposed in this paper in order to achieve
successful evolution of circuits with multiple outputs, and
to gain insight into the evolvability of different hardware
topologies. The presented methods are particularly suitable
for—but not restricted to—the RISA evolvable hardware
platform, which is used to perform the experiments shown.
In fact, the techniques developed are aimed at improving the
performance of any multiple-output hardware system. The
experiments undertaken tackle 4-bit parity, 2-bit adder and 2-
bit multiplier, as these functions represent non-trivial circuits
with increasing numbers of outputs.

II. COMPLEXITY AND EVOLVABILITY OF
EVOLUTIONARY HARDWARE

Since the early days of evolutionary hardware it has been a
major aim to increase the evolvability of the representations
used and find solutions to more complex problems. As a
consequence of this, there is a great number of publications
that address these topics. Within the area of evolution-
ary computation, hence also in evolvable hardware, there
are numerous definitions and opinions of evolvability and
complexity. In the case of complexity this paper refers to
multiple-output electronic circuits, rather than complexity in
the sense of large distributed systems. However, the definition
of evolvability requires a more detailed discussion, which is
provided in section II-C.

A. Accessibility of Available Resources in Hardware

As stated in [19] evolution does not search for circuits, but
for the behaviour of circuits, due to the fact that fitness func-
tions describe the desired functional outcome (behaviour)
of the sought circuit, rather than providing information on
how to use gates and switch boxes to achieve the solution.
Therefore, it is not surprising that EAs are not capable of
automatically partitioning a given task or accessing provided
hardware resources efficiently in the case of designed archi-
tectures; unless additional methods are applied to take these
issues into account [4], [17], [18]. Therefore, the pathways
available to evolutionary search on a provided hardware
is usually not predictable, and thus, form a challenge to
design hardware that can provide the optimal search space
for evolution in the design of circuits.

Further investigations considering the accessibility of func-
tional hardware resources and IO are conducted in [11], [14].
It is found that, in the case of arranging functional blocks
on a Cartesian grid, the success rate and performance of
evolution is extensively dependent on the width and length
of the array: rectangular layouts where the width to length
ratio is large, i.e. extremely narrow or extremely shallow,
are shown to be disadvantageous for the evolution of logic
circuits.

Feasibility of both partitioning and arranging resources
in evolvable hardware determines the accessibility of these
resources through the EA. Hence, for the design of evolvable

hardware, it has to be considered that functional resources
can be accessed in more than one way in order to in-
crease their accessibility. In section II-C we discuss how
the functionality-to-connectivity ratio also affects evolvabil-
ity (which is a result of the accessibility of the resources
provided).

B. Increased Complexity due to Multiple Outputs

It is found by various researchers that the success rate
of evolution drastically decreases when the IO count of
the targeted application is increased [11], [17]. As it was
stated in [19], evolution does not know about structure and
possible partitioning of the evolution substrate, because the
fitness function is defining a circuit behaviour, rather than
design principles. Therefore, when multiple output circuits
are aimed to be evolved, evolution would struggle more than
it would with single-output circuits due to its inability to
partition the hardware substrate.

In extrinsic evolution, ways around the increased complex-
ity due to multiple outputs have been via circuit partitioning
that either directly target outputs [17] or use mechanisms that
automatically partition the circuits [4], [18].

C. Evolvability of Hardware Architectures

The definition of evolvability in the case of evolvable
hardware is not straight forward: the most concise definition
of evolvability is probably given in [5], where it is stated
that “Evolvability is an organism’s capacity to generate
heritable phenotypic variation”, i.e. if the number of viable
and sufficiently fit phenotypes that can be developed from
the same genome is high, it will feature a high level of
evolvability. In the case of hardware evolution/this paper,
the term ’evolvability’ is also used in order to refer to
the capability of a given hardware architecture to produce
an output that changes smoothly when configuration bits
are flipped. This behaviour should be more suitable for
optimising and evolutionary algorithms. As this is usually
not the case for digital hardware, architectures that allow for
more gradual improvements during evolution are considered
to feature a higher ’evolvability’.

Previous work in literature that address evolvability of
hardware suggest that neutrality in the genotype leads to
a high level of evolvability. This is due to its property
of providing stability against deleterious mutations and its
ability to allow a sampling of the search space that helps
avoid local optima (neutral search) [2], [16]. However, neu-
trality may also cause the search space to grow much faster
on larger problems, which may considerably slow down
the intrinsic evolution process. Other approaches state that
evolvability can be increased, in the sense of improving
the performance of the evolution process, by using adaptive
representations [8] or evolving independent subsystems [18].

In the case of intrinsic hardware evolution on embedded
systems, technical limitations of the phenotype most often do
not allow for providing a great amount of neutrality. Indeed,
the aim is rather to efficiently and effectively make use of the



available resources. Therefore, the idea of neutrality can not
be used as effectively in hardware to increase evolvability.

This leads to the following question: what should a hard-
ware architecture with a high degree of evolvability look like
and what should be the optimal functionality-to-connectivity
ratio? One could argue that this might depend entirely on the
size of the search space and the tackled problem, however,
in [7] it is stated that an increasingly large search space (i.e.
when providing more routing) is not necessarily an issue
as long as the solution space grows to a similar extent.
This suggests that the navigability of the fitness landscape
is ultimately more important than its overall size. It is also
found that it will be extremely difficult to evolve correct
designs, if there are insufficient routing options to allow the
functional blocks to find many routing alternatives to other
functional blocks.

Due to the fact that in intrinsic evolution there is always
a trade-off to be made between providing a great amount of
resources and manufacturability [9], the conclusion would be
to generally keep the amount of functional blocks lower than
the routing resources in order to achieve high evolvability.
However, the functionality-to-connectivity ratio might often
not be optimal in available platforms, including the one used
in this paper.

III. SETUP FOR INTRINSIC HARDWARE EVOLUTION

The results in this paper are obtained with an embedded
digital hardware system setup for intrinsic evolution. It
comprises the reconfigurable integrated system array (RISA)
chip and a Xilinx Spartan3E FPGA. The RISA chip is a
reconfigurable digital device, which was designed at the
Department of Electronics, University of York, and it is
the evolution platform. The Spartan3E FPGA provides the
framework to run the evolutionary algorithm (EA) and to
interface RISA.

A. RISA Hardware Platform

One RISA chip provides both a programmable microcon-
troller and a configurable logic substrate, which are inspired
by the main constituents of biological cells, namely the nu-
cleus and the cell body. The custom designed microcontroller
on RISA is called a simple networked application processor
(SNAP). Inspired from the nucleus, SNAP can store and
process configuration data and is able to reconfigure logic at
runtime, i.e. without interfering with the circuit configuration
that is currently in operation. SNAP is a reduced instruction
set computer (RISC) and its instruction set is tailored to meet
the needs of evolutionary computation (EC). Furthermore, it
provides communication interfaces to other RISA modules,
as well as to the outside world.

The configurable logic is designed in a similar fashion
to field programmable gate arrays (FPGAs). In this paper,
FPGA will refer to RISA’s FPGA fabric unless indicated
otherwise. As can be seen from figure 1, the FPGA consists
of an array of 6×6 clusters, surrounded by input/output (IO)
cells. The IO cells provide a total of 12 IOs at each side of
the RISA module (each cell providing 2 IOs), which can be

Fig. 1. The FPGA substrate of RISA consists of an array of 36 functional
clusters surrounded by input/output (IO) blocks. Each cluster and IO
block can be configured individually, providing partial reconfiguration. The
clusters contain four function units, each offering a rich variety of routing
and logic configuration options. Although all four function units can be
connected with one another, they are given a primary orientation (north,
south, east, west) in which a greater number of connections are possible.

independently configured as either an input or an output of
the FPGA.

Each cluster provides four functional units that can either
be configured as 16 bit look-up table (LUT), shift register
or random access memory (RAM). This operation mode
can be changed by the evolutionary algorithm at runtime,
without having to reset the registers that are used for realizing
the LUT, shift register or RAM. These functional units, the
available routing resources and the possibility of creating
feedback loops offer a rich variety of configuration options
to the EA.

RISA is designed in a way that it cannot be destroyed
by random bit strings. This feature is not generally present
in current commercial FPGAs: the synthesis tools of the
manufacturers either constrain the access to the bit-string, in
order to protect the device, or it is actually possible to destroy
it. Furthermore, it is possible to partially reconfigure RISA
on cluster level. This considerably accelerates hardware
evolution, since only those parts of the bit-string, which have
actually been changed by the EA, need to be reloaded into
the device, instead of reconfiguring the entire device. A more
detailed description of RISA can be found in [1].

B. Evolutionary Algorithm & Genotype

Evolutionary strategy (ES) is used as the evolutionary
algorithm for the experiments that are undertaken. The muta-
tion rate is adaptive and encoded in the genome; prior to the
mutation operation, the current mutation rate is increased,
decreased, or kept by a normally distributed random number
between −1 . . . 1, with σ = 0.02. The lower limit for the
mutation rate is zero and the upper limit is 5%. Subsequently,
mutation is carried out probabilistically with the new muta-
tion rate. A variable, co-evolved mutation rate is chosen, as



TABLE I
THE EVOLUTIONARY STRATEGY PARAMETERS FOR THE EXPERIMENTS

PRESENTED IN THIS PAPER.

Parameter Value
parent size 2
population size 7
generation limit 10,000
adaptive mutation rate 0. . . 5%, σ=0.02
number of runs 20
genome size 36×128=4608 bits

it provides a means to maintain exploration and exploitation
capabilities throughout the course of evolution. This should
be advantageous in the case of intrinsic evolution on the
bit-string, where a rugged fitness landscape is present and
neutral search is limited. Evolution is stopped when either
the solution is found, or the maximum generation of 10,000 is
reached. A total of 20 independent evolution runs are carried
out for all experiments. Settings for the EA are summarised
in table I.

The genotype used is constrained in a way that the logic
of the clusters is separated into the four cardinal directions of
RISA, as shown in figure 1. It consists of 128 configuration
bits per cluster, resulting in a total of 36 × 128 = 4608
configuration bits to configure the RISA FPGA. Hence,
according to the four-fold architecture of RISA, the logic
and routing of each direction—north, south, west and east—
require 4608÷ 4 = 1152 configuration bits respectively.

IV. STRUCTURING EVOLVABLE HARDWARE PLATFORMS
TO FACILITATE EVOLUTION

As discussed in section II, it is a challenging task (which
might also be limited due to technical and financial reasons)
to design a hardware platform which is particularly suited
for evolution experiments. Desired features of a hardware
platform designed for evolution experiments are: first, a large
amount of functional resources, and an even larger amount
of configurable routing to make the functional resources
accessible to the EA (section II-A). However, at the same
time the search space should not become too large, as the
EA is carried out on an embedded system with limited
memory. Second, the connectivity and arrangement of the
functional blocks is important. Generally, the logic resources
in hardware are not fully connected, but are constrained with
respect to a given configurable routing scheme. Therefore,
the success of experiments can depend on how the inputs and
outputs are interfaced to the evolvable hardware (section II-
C). Third, when tackling circuits with multiple outputs, the
task of automatically partitioning the hardware resources and
the problem structure in order to achieve multiple outputs
imposes an additional level of complexity on the evolutionary
search.

Since the aim of this paper is to improve intrinsic evolution
of electronic circuits on the RISA platform, two methods that
aim to increase the platform’s evolvability are introduced:
in the first approach available resources are re-shaped in
order to make them more accessible to the EA, whereas

in the second case, available resources are partitioned in a
fashion that particularly suits—but is not restricted to—the
RISA evolvable hardware platform. The performance of both
approaches is tested on the evolution of multiple-output logic
circuits.

A. Increasing the Accessibility of Resources

To investigate whether evolution would benefit from a
larger number of logic blocks when constructing circuits on
hardware, or whether it would suffer from the bigger search
space, RISA’s directional function units are constrained and
connected in a serial fashion in order to form a long chain
of logic blocks. The intention is thereby to find out whether
a hardware substrate would be more evolvable if it would
feature a large number of logic components with constrained
connectivity, or not.

In order to obtain a longer chain of components, RISA is
forced to work in a single directional fashion, i.e. the con-
nectivity between the different function units is constrained
to be always in their primary direction. When this is the
case, RISA provides 6×6 function units when looking from
each of the cardinal directions (N,S,W,E) respectively. By
feeding the outputs of the RISA chip back into the chip, it
is possible to link these resources together in order to form
a chain of 24× 6 function units. An illustration of how this
is implemented is given in figure 2.

Experiments are done comparing the effect of serialisa-
tion, chaining the function units of RISA together to form a
larger array of function units, with the non-serialised case—
which is referred to as the “classic” case in this paper—
where only a single directional set of function units are used
(i.e. the size of the available function units are 6 × 6). The
experiments are presented in section V.

B. Breaking down Task Complexity by Hardware Decompo-
sition

In order to investigate the effects of output decomposition
in hardware, but break down the given task in a way that does
not require specific knowledge about it, a way to decompose
the RISA hardware platform is proposed that suits the given
architecture. The proposed method is not strictly restricted
to RISA as the principles are generally valid. Due to the
four-fold architecture of the RISA chip, the four directions
are used as independent logic blocks. In principle the rout-
ing configuration options allow the interconnection of four
function units within each cluster. However, in this case, the
genome is designed in a way that the four function units are
kept separate and can only connect to the function units of
the same kind of the neighbouring clusters.

The aim is to use the four separate blocks of circuitry
obtained in RISA to evolve a multiple output circuit by
partitioning it with respect to its outputs. Inputs would be
applied to all four circuits obtained, and each circuit would
then be expected to evolve one of the outputs, rather than all
of them, see figure 3.

Using this decomposition method, the performance and
the success rate of evolution in constructing multiple output



Fig. 2. The resources of RISA in all four directions are connected in serial in order to provide evolution with a long chain of logic blocks. To achieve
this the inputs of the circuit is applied to the ports A of the western I/O blocks to go through the eastward function units of the available clusters, then the
outputs from the ports B of the eastern I/O blocks are connected to the ports A of the northern I/O blocks, and etc. Looping the inputs and outputs around
the chip, all of the available I/Os and FUs are utilized. The final circuit output is then retrieved from the ports B of the Northern I/O blocks. Another
option of serialising the four directions would be, for instance, to feed the outputs (B) from the North and the South into the inputs (A,B) on the West.
However, due to the limited number of I/Os on each side, the East direction could not be used in the latter case. Despite the second setup example is
possibly beneficial for certain problems, the one that is depicted above is chosen, because it allows to use the entire available logic of RISA and all I/Os.

Fig. 3. To partition the problem outputs, the four directional function units of each cluster are constrained again to direct the flow of the circuit, and then
all inputs are applied from all four directions using the ports A of the I/O blocks. The outputs are then divided to four and each output chunk is retreived
from a different direction of the chip (using ports B of the I/O blocks).

circuits is shown to improve by the experiments presented in
section V.

V. RESULTS FOR PARITY, FULLADDER AND MULTIPLIER

Various experiments are carried out in order to determine
the effects of; evolving circuits with multiple outputs in
hardware, and the amount of resources evolution is forced

to use. The problems examined in the experiments are, 4-bit
even parity, 2-bit full adder, and 2-bit multiplier. Results are
shown in table II.

In order to investigate the effects of multiple outputs on
the performance of evolution, experiments are carried out
where only a single output of a multiple output circuit is
evolved. Subsequently, the number of outputs is increased



TABLE II
RESULTS OBTAINED FROM 20 INDEPENDENT RUNS FOR 4-BIT PARITY, 2-BIT FULL ADDER AND 2-BIT MULTIPLIER ARE SHOWN. ALL EXPERIMENTS

ARE CARRIED OUT WITH THREE DIFFERENT SETUPS, NAMELY classic, serialised AND parallelised. DIFFERENT SERIES OF EXPERIMENTS ARE

PERFORMED WITH AN INCREASING NUMBER OF OUTPUTS, IN ORDER TO ILLUSTRATE THE INCREASING LEVEL OF DIFFICULTY OF THE RESPECTIVE

TASK. FOR INSTANCE, THE RUNS WHERE THE TASK IS TO EVOLVE A MULTIPLIER WITH ONLY ONE OUTPUT, THREE OF ITS OUTPUTS WERE NOT

CONSIDERED IN THE FITNESS FUNCTION.

logic circuit hardware setup outputs successes avg. best fitness avg. no. generations
4-bit parity classic 1 20 0 126± 123

serial (4x) 1 20 0 154± 142

2-bit full adder

classic
1 19 2.0 1214± 1709
2 8 9.5± 5.0 5156± 2086
3 3 3.6± 2.3 3536± 1534

serial (4x)
1 2 23.0± 13.4 5276± 3116
2 0 42.0± 25.1 N/A
3 0 47.0± 24.6 N/A

parallel 2 20 0 4903± 2816
3 20 0 6491.5± 3115.3

2-bit multiplier

classic

1 20 0 140± 86
2 19 9.0 2578± 1595
3 16 6.3± 2.8 3892± 3133
4 10 7.5± 6.3 5420± 2999

serial (4x)

1 1 37.0± 20.2 5017
2 2 54.1± 19.0 4546± 470
3 1 71.9± 46.2 4076
4 0 152.0 N/A

parallel 2 20 0 1991± 1895
3 20 0 2672± 1756
4 19 29 3266± 2126

in a series of following experiments until all outputs of the
desired circuit are included in the experiment. Not surpris-
ingly, by doing so the evolutionary performance degrades
for the classic case as the number of outputs evolved are
increased. On the other hand, the experiments for the serial
case, where a larger number of function units are chained
together to form a 4 times larger chain of logic for the
evolutionary experiments, perform poorly. This suggests that
evolutionary performance on hardware does not benefit from
merely linking an excessive number of circuit components
together, without implementing a routing scheme that guar-
antees sufficient interconnectivity at the same time. Due to
the restricted routing that is often present in hardware, the
latter cannot always be achieved [15], [19]. Partitioning the
RISA chip in order to provide 4 different circuits to evolve,
keeps the evolutionary performance stable when the number
of outputs is increased.

This suggests that, partitioning the outputs of the circuit
evolved on hardware can make the evolution of circuits with
multiple outputs more effective. On the other hand, providing
excessively large amount of components for evolution on
hardware can have a negative effect on the performance
of evolution. Furthermore, with a significantly increasing
number of components, the accessibility of the functional
blocks must be maximised with a suitable routing scheme.

However, the routing could only be changed in a restricted
fashion for the experiments shown.

VI. CONCLUSIONS

Two methods of reshaping a hardware substrate in order to
improve the evolution of circuits with multiple outputs have
been introduced: in the first case, the structure of the available
resources has been changed in a serial fashion with the inten-
tion to facilitate the accessibility of the functional blocks; and
to provide a greater number of options to the EA (serialised
configuration). In the second case, the architecture at hand
is divided into four parallel subcircuits, in order to break
down the increasing level of complexity that comes with
multiple output problems (parallelised configuration). These
approaches have been compared with the straightforward way
of using the substrate (classic case) on the evolution of 4-bit
parity, 2-bit fulladder and 2-bit multiplier.

The results from the series of experiments with the classic
configuration, where the difficulty of the task was succes-
sively increased by demanding more and more outputs to be
correctly evolved, show that it is the case for all problems
that the success rate of evolution significantly decreases.
It is observed that not only does the success rate drop,
but the required average number of generations to find
solutions increases at the same time. Please note that the



more important number is the success rate; the standard
deviations define rather boundaries for best/worst cases, due
to the skewed nature of the fitness distributions.

It was hoped that evolvability of the substrate would be
increased by making resources more accessible and providing
more configuration options to the EA via serialisation, how-
ever, the results show that this has not been achieved. In fact
it seems that the task has become even harder, as the success
rate is almost always equal to zero. This suggests that it is
not always beneficial when designing an evolvable hardware
platform to just line up a great amount of logic resources.
It is shown in [7], that a large amount of logic components
may help extrinsic evolution in designing electronic circuits.
However, this is not generally the case for hardware, as the
presented results suggest. Providing hardware to work with a
larger number of circuit components seems to make it harder
for evolution to find solutions in this case. This might be
because of the relatively limited connectivity available in
hardware.

It is observed that, unlike serialisation, the parallelised
configuration provided a major improvement and in almost
all cases yielded a success rate of 100% for all problems
at the highest level of difficulty, i.e. when all outputs are
evolved. This is particularly satisfactory, since the evolution
of circuits with multiple outputs is also a major problem in
extrinsic evolution. By output partitioning it was shown that
the evolution of the desired circuit becomes much easier,
even without complex approaches that are only feasible in
simulation. To conclude, it has been shown that partition-
ing hardware resources is a useful way of achieving both:
solutions to complex multiple-output circuits and speeding-
up evolution. The results also suggest that the techniques
presented should improve the performance of any multiple-
output hardware system.

Although it would be interesting, we did not consider the
increase in complexity in the case of increasing number of
inputs, as presented in [11]. In our case of intrinsic evolution
we observed in preliminary experiments that an increase
in number of outputs caused a more severe decrease in
performance of evolution than the input count. However, high
input count is a problem in the case of intrinsic evolution
as well, since the number of IOs is limited. Therefore, a
possible direction for future work could be to employ a
MUX array to compress a large number of inputs—in a
similar fashion as it is done in [10]—before applying them
to the evolvable sub-system. A further improvement in the
case of the parallelised architecture could be to use multi-
chromosome genomes, where each chromosome represents
only parts of the hardware configuration that are responsible
for the same output, similar to [17].

REFERENCES

[1] A. Greensted and A. Tyrrell, “RISA: A hardware platform for evolu-
tionary design,” in Proceedings of 2007 IEEE Workshop on Evolvable
and Adaptive Hardware, April 2007.

[2] I. Harvey and A. Thompson, “Through the labyrinth evolution finds
a way: A silicon ridge,” in Proc. 1st Int.Conf.on Evolvable Systems
(ICES‘96), ser. LNCS, vol. 1259. Springer-Verlag, 1997, pp. 406–422.

[3] J.-H. Hong and S.-B. Cho, “Meh: modular evolvable hardware for
designing complex circuits,” in Proceedings of the IEEE Congress
on Evolutionary Computation, CEC 2003, 8 - 12 December 2003,
Canberra, Australia. IEEE, 2003, pp. 92–99.

[4] T. Kalganova, “Bidirectional incremental evolution in extrinsic evolv-
able hardware,” in Proc. of the 2nd NASA/DoD Workshop on Evolvable
Hardware. IEEE Computer Society, 2000, pp. 65–74.

[5] M. Kirschner and J. Gerhart, “Evolvability.” Proc Natl Acad Sci U S
A, vol. 95, no. 15, pp. 8420–8427, July 1998.

[6] J. R. Koza, Genetic programming II: automatic discovery of reusable
programs. Cambridge, MA, USA: MIT Press, 1994.

[7] J. F. Miller and P. Thomson, “Aspects of digital evolution: Evolvability
and architecture,” in PPSN V: Proceedings of the 5th International
Conference on Parallel Problem Solving from Nature, A. Eiben,
T. Baeck, M. Schoenauer, and H.-P. Schwefel, Eds. London, UK:
Springer-Verlag, Heidelberg, 1998, pp. 927–936.

[8] J. Reisinger and R. Miikkulainen, “Acquiring evolvability through
adaptive representations,” in GECCO ’07: Proceedings of the 9th
annual conference on Genetic and evolutionary computation. New
York, NY, USA: ACM Press, 2007, pp. 1045–1052.

[9] A. Stoica, R. Zebulum, X. Guo, D. Keymeulen, I. Ferguson, and
V. Duong, “Taking evolutionary circuit design from experimentation to
implementation: Some useful techniques and a silicon demonstration,”
IEEE Proc.-Comp. Digit. Tech., vol. 151, no. 4, pp. 295–300, 2004.

[10] E. Stomeo and T. Kalganova, “Improving ehw performance intro-
ducing a new decomposition strategy,” in Proceedings of the 2004
IEEE Conference on Cybernetics and Intelligent Systems, Singapore,
December 2004.

[11] E. Stomeo, T. Kalganova, and C. Lambert, “Analysis of genotype size
for an evolvable hardware system.” in IEC (Prague), C. Ardil, Ed.
Enformatika, anakkale, Turkey, 2005, pp. 74–79. [Online]. Available:
http://dblp.uni-trier.de/db/conf/wec/iec2005prague.html#StomeoKL05

[12] J. Torresen, “Evolving multiplier circuits by training set and training
vector partitioning,” in ICES, 2003, pp. 228–237.

[13] M. Trefzer, J. Langeheine, J. Schemmel, and K. Meier, “Operational
Amplifiers: An Example for Multi-Objective Optimization on an
Analog Evolvable Hardware Platform,” in Evolvable Systems: From
Biology to Hardware, Sixth International Conference, ICES 2005, ser.
LNCS, J. M. Moreno, J. Madrenas, and J. Cosp, Eds., no. 3637.
Sitges, Spain: Springer-Verlag, September 2005, pp. 86–97.

[14] M. A. Trefzer, T. Kuyucu, A. J. Greensted, J. F. Miller, and A. M.
Tyrrell, “The input pattern order problem: Evolution of combina-
torial and sequential circuits in hardware,” in Proceedings of the
International Conference on Evolvable Systems (ICES 2008), Prague,
September 2008.

[15] V. K. Vassilev and J. F. Miller, “Scalability problems of digital circuit
evolution: Evolvability and efficient designs,” in EH ’00: Proceedings
of the 2nd NASA/DoD workshop on Evolvable Hardware. Washington,
DC, USA: IEEE Computer Society, 2000, p. 55.

[16] V. Vassilev and J. Miller, “The advantages of landscape neutrality in
digital circuit evolution,” in Proceedings of the 3rd International Con-
ference on Evolvable Systems: From Biology to Hardware. Springer,
2000, pp. 252–26.

[17] J. A. Walker, J. F. Miller, and R. Cavill, “A multi-chromosome
approach to standard and embedded cartesian genetic programming,”
in GECCO ’06: Proceedings of the 8th annual conference on Genetic
and evolutionary computation. New York, NY, USA: ACM, 2006,
pp. 903–910.

[18] R. A. Watson and J. B. Pollack, “Modular interdependency in complex
dynamical systems,” Artificial Life 11, no. 4, pp. 445–457, 2005.

[19] X. Yao and T. Higuchi, “Promises and challenges of evolvable hard-
ware,” in IEEE Transactions on Systems, Man and Cybernetics, Part
C, vol. 29, February 1999, pp. 87–97.

[20] R. S. Zebulum, M. A. Pacheco, and M. Vellasco, “A multi-objective
optimisation methodology applied to the synthesis of low-power
operational amplifiers,” in Proceedings of the XIII International
Conference in Microelectronics and Packaging, I. J. Cheuri and C. A.
dos Reis Filho, Eds., vol. 1, Curitiba, Brazil, 1998, pp. 264–271.
[Online]. Available: citeseer.ist.psu.edu/zebulum98multiobjective.html

[21] R. S. Zebulum, M. A. P. Pacheco, and M. Vellasco, “Variable Length
Representation in Evolutionary Electronics,” Evolutionary Computa-
tion Journal, vol. 8, no. 1, pp. 93–120, 2000.


