
Fitness Functions for the Unconstrained Evolution of
Digital Circuits

Tüze Kuyucu, Martin Trefzer, Andrew Greensted, Julian Miller and Andy Tyrrell

Abstract— This work is part of a project that aims to
develop and operate integrated evolvable hardware systems
using unconstrained evolution. Experiments are carried out on
an evolvable hardware platform featuring both combinatorial
and registered logic as well as sequential feedback loops. In
order to be able to accurately assess the transient output of
the system and at the same time speed up evolution, new
fitness evaluation methods are introduced. These bitwise and
hierarchical fitness evaluation methods are adapted and further
developed specifically for hardware implementation. It is shown
that the newly developed approaches are particularly powerful
in coping with two important issues: computational ambiguities,
which generally occur when evaluating binary strings, and
transient effects resulting from measuring hardware output.
On two combinatorial problems it is shown that the new fitness
functions improve the performance of evolution and allow
stable solutions to be found more reliably. The experiments
are carried out with a recently developed hardware platform
called reconfigurable integrated system array (RISA).

I. INTRODUCTION

The range of tasks, to which evolutionary computation
is successfully applied, is constantly becoming broader and
evolutionary systems are becoming more complex and com-
putationally intensive. It is inevitable that this rise in com-
plexity will increase, in order to build more generic and
smarter applications. However, these systems depend on great
computational power, which can only be provided by large
parallel computing systems. Approaches that are particularly
computationally expensive are, for instance, genetic program-
ming (GP) [14], [15], [17], [18], [20], where the growth of
the variable length genotype is not limited, and those, where
complex genotype-phenotype mapping or fitness evaluation
is implemented. [7], [19] are examples where the latter two
problems are addressed.

If an evolvable device is desired, which can be operated
in the field as part of an autonomous system, the previously
mentioned approaches will no longer be suitable. Some
of them will even be impossible to include in a system
that is bound to limited resources and has to cope with
unknown environments. As a consequence of this, it be-
comes equally important to develop powerful and evolvable
integrated systems, i.e. systems on a chip, which contain
all the constituents of an evolutionary system—hardware
and software—and therefore enable adaptivity to previously

Tüze Kuyucu, Martin Trefzer, Andrew Greensted, Julian Miller and Andy
Tyrrell are with the Department of Electronics, Intelligent Systems Group,
University of York. {tk519, mt540, ajg112, jfm7, amt}@ohm.york.ac.uk,
http://www.bioinspired.com.

The authors would like to thank James Walker for his contributions on
the HIFF fitness evaluation method.

This work is part of a project that is funded by EPSRC - EP/E028381/1.

unknown environments, fault tolerance and autonomous be-
haviour. In order to achieve this, it is necessary to develop
efficient and resource saving architectures and algorithms,
which are suitable to be integrated in hardware and are at
the same time sufficiently powerful in solving complex tasks.
As yet, there are only a few examples where the entire
evolvable system has been realized as system on a chip,
e.g. [5], [6], [10], [16]. In most cases, the presence of a
high-level controller, carrying out the evolutionary algorithm
(EA) and managing the population is required.

This work is part of a project that aims to develop and
operate this kind of evolvable and developmental system.
In order to achieve this, an important task will be the
development of efficient algorithms, which are suitable to
be integrated in systems on a chip. Therefore, as a first
step, generic fitness evaluation methods have been adapted
and developed with consideration for implementing them
in hardware. Two novel fitness functions have been imple-
mented: the first one, which is particularly suitable to address
transient effects resulting from measuring real hardware is
an extension to the traditional bitwise fitness calculation
(hamming-distance), and is referred to as the bitwise modi-
fied for hardware (BMH) method. The second custom fitness
evaluation method that has been developed is inspired by
the HIFF method, described in [22]. It is based on sampling
the bit string by evaluating blocks of bits of variable size
and is therefore referred to as hierarchical bit-string sampling
(HBS).

The main focus of this paper is on finding efficient
fitness evaluation methods, which allow for accurately as-
sessing transient effects of real hardware systems that include
feedback. As yet, to the authors’ knowledge, feedback is
most often not included in the evolution of digital circuits,
although it should yield interesting results. In this case, the
term feedback refers to circuits that feature the ability to
oscillate rather than being merely finite sequential circuits:
examples for this can be found in [12], [21]. Hence, feedback
is enabled in the experiments presented in this paper, and,
as a consequence of this, the additional challenge to the EA
is to find a static solution in a transient dynamic system.
If a suitable fitness evaluation method is found, which is
able to accurately assess and control transient effects, it will
be suitable for both the evolution of static and dynamic
circuits. Due to the considerably high complexity of these
kinds of systems, the XOR is chosen as a relatively basic,
but representative task. The performance of all four fitness
functions, namely bitwise, BMH, HIFF and HBS, is pre-
sented. Additionally, a 4 bit parity generator is evolved to

FPGA

uC

RISAOrganism

Cell

Nucleus
(with DNA)

RISA
Cell

Organism

Cell

Nucleus

DNA

Biological

RISA

RISA Cell

uC
Configuration

Bitstreams

Electronic

Fig. 1. The structure of the RISA cell is inspired by biological cells. The
microcontroller operates as a centre for cell operations, controlling the cell
functionality implemented in the FPGA fabric. FPGA fabric configuration
bit streams may be stored and manipulated in the microcontroller [3], [4]

show that the presented approaches work equally well on
another problem.

All experiments are carried out on the custom made
RISA evolvable hardware platform [3], [4], which has been
developed for biologically inspired experiments with digital
hardware. As yet, the assistance of a Xilinx Spartan 3 FPGA
is required for hosting the EA, however, the EA is planned
to be moved to the customised microprocessor on RISA in
the future.

II. RISA HARDWARE EVOLUTION PLATFORM

The reconfigurable integrated system array (RISA) is a
reconfigurable digital device, which was designed as a plat-
form for intrinsic hardware evolution and development at the
Department of Electronics, University of York [3], [4].

One RISA chip provides both a programmable micro-
controller and a configurable logic substrate, which are
inspired by the main constituents of biological cells, namely
the nucleus and the cell body, as shown in figure 1. The
custom designed microcontroller on RISA is called a simple
networked application processor (SNAP). Inspired from the
nucleus, SNAP stores and processes configuration data and is
able to (re-)configure logic at runtime, i.e. without interfering
with the currently running circuit configuration. SNAP is a
reduced instruction set computer (RISC) and its instruction
set is tailored to meet the needs of evolutionary computation
(EC). Furthermore, it provides communication interfaces to
other RISA modules, as well as to the outside world.

The configurable logic is designed in a similar fashion
to field programmable gate arrays (FPGAs). In this paper,
FPGA will refer to RISA’s FPGA fabric unless indicated
otherwise. As can be seen from figure 2, the FPGA consists
of an array of 6 × 6 functional clusters, surrounded by
input/output (IO) cells. The IO cells provide a total of 12
IOs at each side of the RISA module (each cell providing

Cluster

5,34,33,32,31,30,3

5,44,43,42,41,40,4

5,54,53,52,51,50,5

5,24,23,22,21,20,2

5,14,13,12,11,10,1

5,04,03,02,01,00,0W0

W1

W2

W3

W4

W5

E0

E1

E2

E3

E4

E5

S5S4S3S2S1S0

N5N4N3N2N1N0

IO Block

Function

Unit

Cluster

Fig. 2. The FPGA substrate of RISA consists of an array of 36 functional
clusters surrounded by input/output (IO) blocks. The configuration chain for
the clusters and the IO blocks are connected serially, but each cluster and
IO block can be configured individually, providing partial (re-)configuration.
Each cluster offers a rich variety of configuration options: 152 bits are
required to configure the logic and 320 bits are required to configure the
routing of one cluster, resulting in a total of 16992 bits for the whole 36
cluster configuration bit-string. Each cluster features four flexible functional
units that can either be configured as 16 bit look-up table, shift register or
RAM as well as according routing resources.

2 IOs), which can be independently configured as either an
input or an output of the FPGA. Like a biological cell’s body,
the FPGA fabric carries out the tasks of the respective RISA
module. Additionally, configurable logic of different RISA
modules can be directly interconnected, in order to build
larger circuits or, in terms of biology, larger organisms.

Each cluster provides four mutable functional units that
can either be configured as 16 bit look-up table (LUT),
shift register or random access memory (RAM). Thereby,
the term ’mutable functional unit’ refers to the fact that
the operation mode can be changed by the evolutionary
algorithm at runtime, without having to reset the registers
that are used for realizing the LUT, shift register or RAM.
These functional units, the available routing resources and the
possibility of creating feedback loops offers a rich variety of
configuration options to the EA.

In addition, the FPGA offers features that make it particu-
larly suitable for evolution experiments: first, it is designed in
a way that it cannot be destroyed by random bit strings. As a
consequence, as concluded in [11], unconstrained evolution
can take place. The latter feature is not generally present
in current commercial FPGAs: the synthesis tools of the
manufacturers either constrain the access to the bit-string, in
order to protect the device, or it is actually possible to destroy
it. Second, the configuration of clusters can be changed
independently from each other, hence, the logic offers partial
reconfiguration. This can considerably accelerate hardware
evolution [10], since only those parts of the bit-string, which
have actually been changed by the EA, need to be reloaded
into the device, instead of reconfiguring the entire device.

Further information about RISA can be found in [3], [4].

III. FITNESS MEASURES

0110 0110
1010 0001

Bitwise

BMH

HIFF

HBS

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001 1010 0001

0110 0110

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001

5 x 1 = 5
5 x 1 = 5

3 x 2 = 6

2 x 4 = 8

total penalty = 19

3 x 8 = 24

total penalty = 31

1 x 2 = 2

5 x 1 = 5

1 x 2 = 2

1 x 2 = 2

0 x 2 = 0

0 x 2 = 0 1 x 2 = 2

1 x 2 = 2

1 x 2 = 2

1 x 2 = 2

total penalty = 12

total penalty = 5

Generation N Generation N
 tt₁₁ t₂ t₂

Generation N Generation N
 tt₁₁ t₂ t₂

Generation N Generation N
 tt₁₁ t₂ t₂

Generation N Generation N
 tt₁₁ t₂ t₂ Generation N Generation N

 tt₁₁ t₂ t₂

Fig. 3. Example fitness calculation for all four approaches are shown;
first line of the two sets of outputs is always the desired output (XOR in
this case), and the second line is the actual outputs from generation N.
Bitwise: Only a single iteration is needed to calculate the fitness value,
and it involves bit by bit comparison, for every wrong bit the fitness is
increased by 1 (there are 5 in this case). BMH: For calculating the fitness
using this method, 3 checks are done in a single iteration on the output,
the first one is the same with the bitwise fitness calculation, the second
check involves a bit variety check (the penalty is the difference between the
number of ’1’s and number of ’0’s in single sets of outputs, 2 in this case),
the third check looks for a change in two different sets of outputs for the
same input (transient behaviour [3 in this case]), and penalises each change
by the number of output bits tested (8 in this case). HIFF: For HIFF 3
iterations are needed to calculate the fitness value: the first iteration is same
with bitwise, the second iteration compares bits in sets of two and penalises
each non-matching set by 2 (in this case there are 3 non-matching sets),
and in the third iteration the bits are compared in the sets of 4 (a complete
set of outputs), and each non-matching set is penalised by 4. HBS: In the
example above only a binary block size of 2 bits is used, so only 1 iteration
is needed. The only difference from HIFF block size 2 is that the binary
block is moved every bit rather than every 2 bits. For the last output bit the
binary block wraps around to the first output bit in the generation.

The goal is to find efficient fitness evaluation methods,
which allow for accurate assessment of transient effects of
hardware systems that include feedback, and to speed up the

evolutionary process at the same time. In order to achieve
this, two new fitness functions are developed and are applied
to the evolution of digital circuits on the RISA hardware.
In addition, two existing methods have been implemented
and tested on RISA. Before discussing their behaviour in
section IV and comparing their performance in section V, the
fitness methods are introduced. Examples of how the fitness
is calculated in each case are given in figure 3.

A. Bitwise Fitness Calculation

The bitwise fitness calculation is a straight forward mea-
sure for assessing bit strings. It is simply calculated as the
hamming distance between the measured output and the
desired output. Thus, every false bit is penalised with one
fitness point (or every correct bit is awarded one fitness
point).

B. Bitwise Fitness Modified for Hardware (BMH)

BMH fitness evaluation method is specifically developed
for combinatorial hardware evolution on unconstrained hard-
ware where feedback loops are allowed. It is built around the
simple bitwise comparison between measured and desired
outputs, but it also undertakes a parity check and a transient
faults check: thus, the complete logic input pattern has to
be iterated through the solution at least twice for every
evaluation.

To overcome the problem of being deceived by intermit-
tent solutions, the BMH fitness evaluation method penalises
transient behaviour by comparing the outputs of a given
input combination at two different time steps for a change in
the corresponding outputs: i.e. on the same circuit evolved,
for test case XN if the output of input A at time tn is
different to its output at time tn+1, the fitness is penalised
by an appropriate value. This is a simple yet effective way
of directing evolution away from the solutions that provide
intermittent results.

Other common problems that occur in digital hardware
include unconnected terminals and stuck-at gates [13]. In
the case of stuck-at gates, their output is always either ’0’
or ’1’, independent of their actual input and their logic
function. Therefore, for certain test patterns, the output of
the circuit is no longer correlated to it’s input. During the
course of evolution experiments it is likely for the output to
be stuck at one value. In bitwise fitness calculation, a stuck-
at output often gives a 50% success in the fitness value, thus
trapping evolution in local optima. To overcome this problem
BMH fitness evaluation method awards bit variance via parity
check to push evolution away from the solution region where
outputs are all ’0’s or all ’1’s and push it towards better
solutions.

C. Hierarchical If-And-Only-If (HIFF)

The hierarchical if-and-only-if fitness calculation (HIFF)
used for the experiments in this paper has been proposed for
hierarchical if-and-only-if problems in [22]. It extends the
bitwise fitness calculation (hamming distance) by introducing
additional steps of fitness calculation, where blocks of bits

of increasing size are compared, and the penalty is increased
proportionally to the block size of the respective step. As a
consequence of this, larger schema within the bit-string are
recognised, and accordingly penalised (or rewarded) and are
therefore preserved in case they match the desired output.

An example of how to calculate the HIFF fitness for a
resulting bit string is shown in figure 3. As can be seen
from table I and figure 4, the HIFF approach is able to
resolve one major ambiguity of bitwise fitness calculation: it
is possible to assign a finer grained fitness value range, due
to the fact that bits are additionally evaluated with respect to
their context and larger schema. Therefore, it becomes more
unlikely to get stuck in local optima, especially those caused
by trivial solutions like 0000.

D. Hierarchical Bit-string Sampling (HBS)

In order to benefit from the context sensitivity of the
HIFF method and at the same time further increase the
granularity of the fitness value range, a hierarchical bit-string
sampling (HBS) method is proposed. Rather than dividing
the bit string into disjunct blocks of increasing size, the bit
string is evaluated by sampling it with overlapping windows
(blocks) of increasing size and adding the resulting penalties.
As depicted in figure 4, the HBS method provides a finer
granularity. It is also suggested that the increased context
sensitivity—predecessive and successive bits are now taken
into account—provides further benefit to the EA.

Nevertheless, with both HIFF and HBS approaches, it is
still not possible to explicitly penalise different results for the
same input, even in the case of a randomised input pattern.
However, randomising the input is mandatory when measur-
ing real hardware, in order to prevent the EA from exploiting
previous states of the substrate. The latter feature is only
provided by the BMH approach, described in section III-
B, which has been tailored especially for unconstrained
hardware evolution experiments.

IV. AMBIGUOUS FITNESS ASSIGNMENT

When evaluating the fitness of binary strings that result
from measuring digital circuits, ambiguities in the fitness
measure have to be considered. Depending on the task and
the objective function, it will not be clear on which solution
to promote, if the fitness values calculated from different
output bit-strings are the same. This is particularly true when
the fitness is given as the hamming distance between desired
and measured output. As can be seen from table I, where
bitwise fitness represents hamming distance, four different
outputs (X0, X1, X3 and X4) result in the same fitness value,
although, X0 is considered to be a better solution than X1,
due to the fact that the presence of an unconnected output
could easily lead to measuring X1 and therefore to a lower
probability for evolution to improve the candidate circuits.
The consequence of this can be either getting stuck in a
local optimum or, even worse, misleading the EA towards
worse solutions.

Furthermore, in the case of measuring circuits with feed-
back on hardware, transient effects and possible oscillations

Fig. 4. Resulting fitness values for all approaches and all 256 possible logic
input vectors for t0 and t1 (refer to table I)are calculated and plotted. In all
cases, the values are sorted in ascending order of fitness providing a better
overview over the fitness landscape. Ambiguities in the fitness measures
become visible in regions where the fitness remains constant for a wide
range of different input patterns. In these cases, the EA is not able to decide
which solution to promote.

have to be considered as well. These effects cause further
ambiguities in the fitness assignment, thus misleading the
EA. For instance, in the case of oscillations and unknown
on-set times, the same input can produce different outputs
when measured at different points in time; as a consequence,
good solutions cannot easily be recognised.

Therefore, suitable fitness measures are developed in this
work, which inherently take the above mentioned ambiguities
and transient effects into account. In order to save resources,
which is important when dealing with hardware, it is also
desirable that the actual fitness calculation is not too compu-
tationally expensive. In the following, the behaviour of the
four different fitness measures, introduced in section III, will
be compared.

A. Implications of Transient Effects in Hardware

Hardware evolution has various consequences that are
not addressed in software evolution. In particular, intrinsic
hardware evolution demonstrates various types of behaviour
that are not recognised by using simple fitness evaluations.
Transient effects are one of these examples for behaviour that
is encountered in hardware [9], [21] and which is addressed
in this paper.

To get the most out of intrinsic hardware evolution, and
evolve complex and novel systems, an evolvable platform
capable of implementing complex behaviours and an uncon-
strained evolutionary approach is required [21]. However,
most of the time unconstrained intrinsic hardware evolution
exhibits unusual circuits that can not be evaluated fully by
using simple fitness functions that award/penalise a circuit by
making bitwise comparisons on the evolved circuit’s current
and desired outputs. This is due to the transient effects in the
hardware, exploited by the unconstrained evolution. When

TABLE I
AMBIGUITIES IN FITNESS ASSIGNMENT FOR AN XOR ARE SHOWN IN THE TABLE. THE GOAL IS TO MINIMISE THE FITNESS. THERE ARE TWO INPUTS,

NAMELY A:0011 AND B:0101. THE DESIRED OUTPUT IS THE RESULT OF AN XOR:0110. THREE DIFFERENT FITNESS MEASURES, WHICH ARE

DESCRIBED IN SECTIONS III-B, III-C ARE COMPARED. THE VALUES IN THE PARENTHESES USED FOR FITNESS CALCULATION REFER TO; FOR BMH:
BITWISE, PARITY, TRANSIENT FAULT PENALTY, FOR HIFF: BINARY BLOCK SIZES 1,2,4, AND FOR HBS: BINARY BLOCK SIZES 1,2,4.

case measuring at fitness

t0 t1 bitwise BMH HIFF HBS

A XOR B 0110 0110 0 0 (0+0+0) 0 (0+0+0) 0 (0+0+0)

X0 0101 0101 4 4 (4+0+0) 16 (4+4+8) 48 (4+12+32)

X1 0000 0000 4 8 (4+4+0) 20 (4+8+8) 50 (4+14+32)

X2 0101 0111 3 12 (3+1+8) 15 (3+4+8) 45 (3+10+32)

X3 0101 1111 4 22 (4+2+16) 18 (4+6+8) 48 (4+12+32)

X4 0101 1010 4 36 (4+0+32) 16 (4+4+8) 42 (4+10+28)

unconstrained, evolution may explore any solution that is
available on the medium, and may sometimes find solutions
that are only transient [9], which may trick evolution in
to believing that it has found the correct solution. To be
able to guide evolution towards more robust and meaningful
solutions without constraining its evolvability, an effective
yet computationally feasible fitness evaluation method is
required. Also, for on-chip intrinsic hardware evolution, the
fitness calculations need to be computationally inexpensive.

B. Computational Ambiguities in Fitness Assignment

Even when only considering the computation of fitness for
a measured binary string, a great number of ambiguities can
mislead the evolutionary optimisation process, as can be seen
from the examples listed in table I. In the case of hardware,
it is necessary to perform multiple subsequent measurements
(indicated as t0 and t1), due to possible feedback loops and
oscillations. Four different fitness measures are compared for
a set of examples of possible solutions to evolve an XOR
gate. It can be seen that the bitwise fitness assignment is not
able to distinguish among the four different examples shown.
Despite these solutions are not considered as equally good,
the decision on which one to promote can only be based on
random selection in the latter case. BMH, HIFF and the HBS
approaches provide finer grained fitness measures, however,
note that the distribution of the fitness values is different in
each case.

Depending on the chosen measure, the fitness ranking is
ambiguous and task dependent. Since the fitness landscape is
not known before actually performing sufficient evolutionary
runs, it is not always clear which solution is better. Consider
for example solution X0 or X1 from table I, which cannot
be distinguished by the bitwise fitness measure. However,
X0 should be considered as better than X1, due to the fact
that X1 most likely corresponds to the trivial solution of
an unconnected output. BMH, HIFF and the HBS methods
overcome this ambiguity and assign better (lower) fitness
values to X0.

The respective rank of X1 and X2 is different for BMH
than for HIFF and HBS, due to the fact that in the case of
BMH, transient faults are additionally penalised, independent
of the actual position of the bit that causes the fault. There-
fore, despite the fact that X2 is featuring more correct bits
than X1, it obtains a worse fitness due to the extra penalty
for bit 3, which delivers different results for measurements
at different times.

The full consequence of using the different fitness mea-
sures can be seen in figure 4, where the fitness values for all
approaches and all possible results for t0 and t1 are plotted.

It can be seen from figure 4 that bitwise comparison
has the worst fitness landscape with lots of wide horizontal
steps, which is a challenging problem for evolution to tackle.
HIFF provides a better landscape than bitwise with smaller
steps, whereas BMH and HBS methods provide even better
sampling of the landscape with very small horizontal steps.

V. APPLICATION TO HARDWARE

As the main aim of this work is to introduce and adapt new
ways of calculating the fitness in order to improve hardware
evolution, we have undertaken experiments of evolving an
XOR gate on the RISA chip using the aforementioned
fitness methods. The goal is to compare their performance
when applied to unconstrained intrinsic hardware evolution.
Runtime and the ability of finding stable solutions of the
different approaches are therefore of particular interest, in
order to get an idea about their features and shortcomings.

Furthermore, the evolution of 4 bit parity on a constrained
RISA platform is tackled, in order to demonstrate that the
novel fitness methods are suitable for different hardware
evolution experiments and are not bound to only work for
XOR.

A. Setup

The hardware setup includes a PC, a RISA chip, and
a Spartan 3 FPGA with on-chip synthesised microblaze
microprocessor. For all experiments, a µ + λ evolutionary
strategy (ES) is used with two elitists and a population size

TABLE II
TRUTH TABLE USED AS INPUT TEST PATTERN FOR XOR EXPERIMENTS.

test case XOR A B
I 0 0 0
II 1 1 0
III 1 0 1
IV 0 1 1

of 7 (2+5). Mutation rate is always 2% and the maximum
number of generations is set to 5000. Crossover is not
applied.

The EA operates directly on the configuration bit-string for
RISA and evolution is completely free to use any resources
available (routing and logic) and connect them freely. In the
case of the XOR experiment, the 3 × 3 upper left RISA
clusters (see Figure 2) are used, which are connected to
predefined two inputs and one output of the chip. Due to
each cluster requires 152 bits to configure the logic and 320
bits to configure the routing, an area of 9 clusters corresponds
to a bit-string of length 4248 and a search space of size 24248,
which is huge. The experiments are initiated and monitored
through a serial port by a PC running a python script.

40 independent evolution runs are carried out using the
four fitness evaluation methods described in section III:
Bitwise, BMH, HIFF and HBS. For all experiments, an
array of 64 input vectors is used for the evaluation of each
candidate: for the first 32 entries, each test case I-IV (shown
in Figure II) is repeated for 8 times. The second half of
the input vector contains 8 times the full input pattern I-
IV, half of them in randomised order. Repeatedly testing
the same test case and randomising the full input pattern
makes it possible to measure transient effects like oscillations
and delayed changes of the output. Therefore, through this
method it is possible to detect and avoid intermittent results.

For the HIFF and HBS method, the block sizes used
for evaluating the output—which is 64 bit wide due to the
number of input test vectors—were 1, 2, 4, 8, 16 and 32 bits
per block respectively. In the case of HBS there was no wrap
around when the sampling window reached the end of the
bit-string, to conserve computational resources.

B. Unconstrained Evolution of an XOR

The experimental results of intrinsically evolving an XOR
gate on RISA turned out to be supportive of our statements
about the shortcomings of the Bitwise fitness calculation
method. The data obtained relies on 40 independent evolution
runs for each method and the results are listed in Table III.
As can be seen from the latter table, the type of fitness
calculation method has little effect on the average speed
of evolution, which is in each case ≈ 3.3 seconds per
generation. Thus the higher complexities of BMH, HBS
and HIFF fitness calculation methods do not appear to add
considerable overhead to the evolutionary process.

The results show that, bitwise fitness calculation method
had the lowest evolutionary success rate where it found
16 solutions out of 40 runs and only 10 of these were

TABLE III
EVOLUTIONARY RUN RESULTS ON EVOLVING AN XOR GATE. 40

EXPERIMENTS FOR EACH FITNESS CALCULATION METHOD HAS BEEN

RUN, AND THE RESULTS OF THESE RUNS HAVE BEEN ANALYSED AND

PUT TOGETHER IN THIS TABLE TO GIVE AN IDEA OF THE PERFORMANCE

AND DEPENDABILITY OF EACH METHOD. DISPLAYING: NUMBER OF

SOLUTIONS FOUND IN 40 RUNS (SOL FOUND), NUMBER OF SUCCESSFUL

SOLUTIONS FOUND (SUCCESS), AVERAGE NUMBER OF GENERATIONS

FOR EACH EXPERIMENT (AVG GENS), STANDARD DEVIATION OF

AVERAGE NUMBER OF GENERATIONS (STD DEV), AVERAGE RUN TIME

FOR EACH EXPERIMENT (AVG RT), RUN TIME PER GENERATION

(RT/GEN).

fitness results
Sol avg std avg RT RT/gen

found success gens dev (mins) (secs)

bitwise 16 10 3792 1684 206.03 3.26
BMH 34 26 2351 1720 127.65 3.26
HIFF 39 30 1600 1271 87 3.26
HBS 39 31 1364 1054 75.2 3.31

successful (i.e the other 6 were intermittent, and did not
provide stable XOR gates). Whereas BMH method found
34 solutions out of 40 runs with 8 unsuccessful solutions,
and HIFF and HBS found solutions in 39 of the 40 runs
with 30 and 31 of them being successful respectively. If we
look at the average runtime or number generations as well as
the standard deviation in the number of generations for each
fitness calculation method, it can be seen that bitwise takes
longer than any other method in average to finish a run, and
HBS is the fastest and most dependable of all four. Thus in
the results, HBS proves to be the most reliable, and fastest
evaluation technique among the four tested methods.

C. Evolution of 4 Bit Parity

Experiments were carried out for intrinsically evolving
a 4 bit odd and even parity generator on RISA. Since the
aim was to demonstrate that the proposed fitness evaluation
methods work equally well on a different problem, rather
than provide a benchmark for the proposed fitness functions,
the evolutionary runs were done on constrained hardware to
diminish the search space. The evolution was only allowed
to work on the combinatorial logic resources and a limited
amount of routing on all (36) of the clusters on the RISA
chip.

The results are shown in table IV. The newly developed
fitness functions perform slower on average for each run
when compared to bitwise and HIFF, which both perform
approximately the same. This is due to the smaller search
space (21368) on a constrained combinatorial-only setup, and
the extra transient checks of BMH and finer grained search of
HBS does not provide the same benefits to evolution for this
sort of configuration. However, the results indicate that the
introduced hierarchical fitness evaluation methods perform
as good on different problems, and they are not bound to
XOR functions.

TABLE IV
EVOLUTIONARY RUN RESULTS ON EVOLVING 4 BIT PARITY

GENERATORS. 20 RUNS FOR EACH FITNESS MEASURE ARE CARRIED OUT.

fitness results
avg std best avg RT
gens dev gens (mins)

bitwise 305 253 75 64.0
BMH 411 220 80 86.1
HIFF 316 227 118 66.4
HBS 505 382 46 106.4

VI. CONCLUSIONS

In this paper we describe results from experiments with
intrinsic unconstrained evolution on RISA, a unique evo-
lutionary platform. This is the first time such experiments
have been undertaken. Furthermore, We have investigated the
performance of four different fitness functions and their suit-
ability for unconstrained intrinsic hardware evolution. Two
fitness measures, bitwise and HIFF [22], have been adapted
to the RISA evolvable hardware platform and two additional
measures, BMH and HBS, have been newly developed that
target hardware implementation. All four approaches have
been successfully applied to the unconstrained evolution of
an XOR gate, as well as a 4-bit even and odd parity generator.

It is shown that the conventionally used bitwise fitness
measure fails to resolve ambiguities in the hardware mea-
surements, which are caused by transient effects, and there-
fore in many cases only finds intermittent results, rather
than stable solutions. Due to its coarseness, the Bitwise
approach requires on average the largest number of gen-
erations before finding a solution. In contrast to this, the
convergence towards finding solutions is improved in the case
of BMH, HIFF and HBS. It is observed that the hierarchical
approaches (HIFF and HBS) feature the best performance
in finding stable solutions. In accordance with convergence
speed, the average runtime of a run using bitwise fitness
calculation is significantly longer than the average runtime of
runs using the other methods. HBS requires less than half of
the time to find a solution compared with bitwise techniques.

Despite the increased computational complexity of BMH,
HIFF and HBS, the time required to process one generation
remains almost the same, which is due to the fact that evalu-
ation time is dominated by the time required for configuring
the chip. It is satisfying to observe that this is not a drawback
when using the more powerful methods.

Concluding, our results show that the implemented new
fitness evaluation methods, HBS in particular, perform more
reliably and as quickly as simple bitwise evaluation in
finding solutions using unconstrained intrinsic evolution on
a dynamic hardware platform, where feedback loops are
allowed. Thus, hierarchical fitness evaluation methods are
proven to be particularly effective for hardware evolution.
While both the example circuits evolved are rather simple,
there is no suggestion that these evolved circuits are of use
in themselves. Rather than focussing on more complex tasks,

we have elucidated underlying principles related to fitness
evaluation that are generic to intrinsic evolvable hardware.

VII. FUTURE WORK

The unconstrained evolution of more complex circuits
using hierarchical fitness evaluation will be tackled in future
experiments. This will vastly increase the search space and
therefore make it considerably more difficult for the EA to
find solutions, however, it will only be possible to entirely
investigate an evolvable hardware substrate and possible
pathways of evolution, if the algorithm is carried out in an
unconstrained fashion.

It is suggested that the fitness calculation methods pre-
sented in this paper could be equally suitable for sequential
circuits, if the starting point of the target pattern is not re-
stricted, i.e. the desired output is a sequence based on the first
sample of the measured output, rather than a fixed pattern.
Sequential circuits will be targeted in future experiments.

Additionally, the evolvability of the current FPGA archi-
tecture and the genetic representation will be observed, as
this is especially crucial for successful evolution of digital
circuits [8].

Further experiments will address the scalability of RISA.
A major question will be whether unconstrained evolution
will still be feasible, since the search space will exponentially
increase as the system grows. Partitioning the tasks and
hierarchical problem solving will be tackled to overcome
these problems [1]. Finally, developmental methods will be
implemented as an approach to improve scalability [2].

REFERENCES

[1] E. De Jong, R. A. Watson, and D. Thierens, “On the complexity
of hierarchical problem solving,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2005), 2005.

[2] T. Gordon and P. Bentley, “Towards development in
evolvable hardware,” 2002. [Online]. Available: citeseer.ist.psu.
edu/gordon02towards.html

[3] A. Greensted and A. Tyrrell, “Extrinsic evolvable hardware on the
RISA architecture,” in Proceedings of 2007 International Conference
on Evolvable Systems, September 2007.

[4] ——, “RISA: A hardware platform for evolutionary design,” in
Proceedings of 2007 IEEE Workshop on Evolvable and Adaptive
Hardware, April 2007.

[5] G. W. Greenwood and A. M. Tyrrell, Introduction to Evolvable
Hardware: A Practical Guide for Designing Self-Adaptive Systems,
ser. IEEE Press Series on Computational Intelligence. Wiley-IEEE
Press, 2007.

[6] P. Haddow and G. Tufte, “Evolving a robot controller in hardware,”
in In Proc. of the Norwegian Computer Science Conference (NIK-99),
1999, pp. 141–150.

[7] P. C. Haddow and G. Tufte, “Bridging the genotype-phenotype map-
ping for digital fpgas,” in EH ’01: Proceedings of the The 3rd
NASA/DoD Workshop on Evolvable Hardware. Washington, DC,
USA: IEEE Computer Society, 2001, p. 109.

[8] ——, “Bridging the genotype-phenotype mapping for digital fpgas,”
in EH ’01: Proceedings of the The 3rd NASA/DoD Workshop on
Evolvable Hardware. Washington, DC, USA: IEEE Computer
Society, 2001, p. 109.

[9] S. Harding, “Evolution in materio,” Ph.D. dissertation, University of
York, 2006.

[10] G. Hollingworth, S. Smith, and A. Tyrrell, “The intrinsic evolution of
virtex devices through internet reconfigurable logic,” in 3rd Interna-
tional Conference on Evolvable Systems: from Biology to Hardware.
Edinburgh,: Springer-Verlag, April 2000, pp. 72–79.

[11] ——, “The safe intrinsic evolution of virtex devices,” in 2nd
NASA/DoD Workshop on Evolvable Hardware, Silicon Valley, USA,
July 2000.

[12] L. Huelsbergen, E. A. Rietman, and R. Slous, “Evolving oscillators in
silico.” vol. 3, no. 3, 1999, pp. 197–204.

[13] N. Jha and S. Gupta, Testing of Digital Systems, 1st ed. Cambridge
University Press, 2003.

[14] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[15] W. B. Langdon and R. Poli, “Genetic programming bloat with dynamic
fitness,” in EuroGP ’98: Proceedings of the First European Workshop
on Genetic Programming. London, UK: Springer-Verlag, 1998, pp.
97–112.

[16] H. Liu, J. F. Miller, and A. M. Tyrrell, “Intrinsic evolvable hardware
implementation of a robust biological development model for digital
systems,” in EH ’05: Proceedings of the 2005 NASA/DoD Conference
on Evolvable Hardware. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 87–92.

[17] S. Luke and L. Panait, “Fighting bloat with nonparametric parsimony
pressure,” in PPSN VII: Proceedings of the 7th International Con-
ference on Parallel Problem Solving from Nature. London, UK:
Springer-Verlag, 2002, pp. 411–421.

[18] ——, “A comparison of bloat control methods for genetic program-
ming,” Evol. Comput., vol. 14, no. 3, pp. 309–344, 2006.

[19] M. Salami and T. Hendtlass, “A fitness estimation strategy for genetic
algorithms,” in IEA/AIE ’02: Proceedings of the 15th international
conference on Industrial and engineering applications of artificial
intelligence and expert systems. London, UK: Springer-Verlag, 2002,
pp. 502–513.

[20] S. Silva and E. Costa, “Resource-limited genetic programming: the
dynamic approach,” in GECCO ’05: Proceedings of the 2005 confer-
ence on Genetic and evolutionary computation. New York, NY, USA:
ACM, 2005, pp. 1673–1680.

[21] A. Thompson, I. Harvey, and P. Husbands, “Unconstrained evo-
lution and hard consequences,” in Towards Evolvable Hardware:
The evolutionary engineering approach, ser. LNCS, E. Sanchez and
M. Tomassini, Eds. Springer-Verlag, 1996, vol. 1062, pp. 136–165.

[22] R. A. Watson, G. S. Hornby, and J. B. Pollack, “Modeling building-
block interdependency,” Lecture Notes in Computer Science, vol. 1498,
pp. 97–106, 1998.

