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Abstract

We consider the aggregation of heterogeneous dynamic equations across a large pop-
ulation, as introduced by Granger (1980), where the dynamics arise because agents face
a signal extraction problem caused by incomplete information. Agents are unable to tell
the duration of the shocks they face and make forecasts that use their private history
efficiently but do not utilise any other agents’ history. Homogeneous versions of this
theoretical model have been proposed in the literature on household consumption. We
show that, under plausible assumptions, the observed changes in the cross-section ag-
gregate shows long term persistence even though every individual micro-series follows a
random walk. In doing so we are obliged to weaken the independence assumptions used
previously in this aggregation literature, widening considerably the type of results that
such models can produce to include aggregates which are not mean reverting.
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1 Introduction

1.1 Aggregation and Long Memory

Among the many seams opened in economics by Sir Clive Granger, one of the richest has

been the area of fractional integration. In a ground breaking 1980 paper, Granger and

Roselyn Joyeaux studied the properties of a series, Yt, t = 0, 1, 2, 3, ..., given by

(1− L)dYt = ǫt (1)

where ǫt is a white noise process and d, the order of integration of Yt, is not an integer. The

fractional differencing filter in (1) was also developed and studied independently by Hosking

(1981).

This natural extension of the unit root leads to the property of long memory1: hyperbolic

decay of the autocorrelation function. For the same series this takes the form

γj ≡ Cov(Yt, Yt−j) ∼ cj2d−1, as j → ∞, (2)

for some constant c. The frequency domain analogue is that the spectral density of the series

around the origin is characterised by

f(λ) ∼ c|λ|−2d, as λ→ 0, (3)

where λ denotes frequency. The parameter d reflects the degree of memory of the series.

The autocovariances are not summable for d > 0. Despite this, a process is second order

stationary, having first and second moments that are stable through time, if −1/2 < d < 1/2.

Whereas, if 1/2 ≤ d < 1, the process is mean reverting but has unbounded variance: the

impact of shocks decays at a slow rate. The singularity resulting from (1) dominates the

spectral density around the zero frequency, even when ǫt is a finite order auto-regressive

moving average (ARMA) process. This has enabled a range of semi-parametric estimators

of d, such as those proposed by Geweke and Porter-Hudak (1983) and Robinson (1994), which

are consistent, asymptotically normal and robust to short-run dynamics. These estimators

have been applied in a number of empirical studies to test for the presence, and to estimate

the degree, of long memory in macroeconomic variables. Amongst them, Gil Alana and

Robinson (2001) test for fractional integration at seasonal frequencies in quarterly data for

consumption and income in the U.K. and Japan: the same data sets used by Hylleberg,

Engle, Granger and Yoo (1990) for the initial application of their test for seasonal unit

roots. They find evidence to support a non-integer order of integration at some seasonal

frequencies, despite being unable to reject the null hypothesis of a unit root at the zero

1See Guegan (2005) for a thorough overview of definitions of the term.
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frequency in the U.K. data. Also looking at U.K. aggregate consumption data, Chambers

(1998) finds a value of d of around 1.4.

The fact that shocks persist in long memory models for far longer than in conventional

(autoregressive moving average) ARMA models has made them useful in modelling a range

of economic variables. A good overview of applications in economics and finance is provided

in Baillie (1996). Although fractionally integrated models are not the only models to produce

long memory, see Granger and Ding (1996), they have proved very popular in both empirical

and theoretical work. Part of this popularity arises from the possibility to generate them

from the aggregation of heterogeneous dynamic (AR(1)) relationships. Suppose that

xi,t = θixi,t−1 + ψiǫt + υi,t, (4)

where ǫt is a white noise shock that is common to all agents and υi,t is a white noise shock

that is specific to household i, with E {υi,tυj,t} = 0, ∀i 6= j. These shocks are held to

be independent of one another and the autoregressive parameter, θi. The properties of

the aggregate XN,t =
∑N
i=1 xi,t for large N were considered by Robinson (1978). While

independently Granger (1980) showed that as the number of relationships to be aggregated

becomes large, the aggregate can exhibit long memory. In that paper, the autoregressive

parameter varies on (0, 1) with a type 2 beta density

f(θ) =
2

B(p, q)
θ2p−1(1− θ2)q−1, p, q > 0, 0 ≤ θ ≤ 1, f(θ) = 0, elsewhere,

with B(p, q) = Γ(p)Γ(q)/Γ(p+ q) where Γ(q) =
∫

∞

0 yq−1e−ydy is the Gamma function. The

memory parameter d is always less than one and depends negatively on the parameter q,

which determines the shape of the density approaching one.

The aggregation of heterogeneous AR(1) relationships has also been studied by Gonçalves

and Gourieroux (1998), who develop Granger’s analysis and consider the behaviour of com-

mon and idiosyncratic components when the aggregate is an average across the population.

They establish what has become known as the ‘usual result’ that idiosyncratic shocks tend to

disappear from the aggregate asymptotically as the population gets larger. Pesaran (2003)

also considers this problem in the context of establishing a framework for aggregating lin-

ear dynamic models based on providing an optimal predictor. Lippi and Zaffaroni (1998)

and Zaffaroni (2004) provide a rigorous analysis of cross-sectional aggregation under weaker

assumptions and, significantly, establish the conditions under which idiosyncratic shocks do

not tend asymptotically to zero, although they always do after differencing. Oppenheim and

Viano (2004) consider the aggregation of processes that experience no common shocks, and

hence use the normalisation N−1/2 to establish convergence of the aggregate to a stochastic

process. Their model is formulated first in discrete time and then in continuous time as the

sum of heterogeneous Ornstein-Uhlenbeck processes.
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1.2 Incomplete information

Despite possessing many desirable empirical features, fractionally integrated models some-

times suffer from a serious shortcoming. As Granger (2000) observes

There is also little or no basic economic theory leading to fractional I(d) variables,

unlike the efficient market theory for I(1)

This paper attempts to address this point, generating results where the micro-series are

random walks, in line with ‘the efficient market theory’, but the macro-series will be I(d).

We examine the case when agents optimise under imperfect information, imagining they

face shocks of differing durations that they are unable to tell apart. Agents use their own

information efficiently: they base their actions on optimal forecasts, derived using techniques

in Granger and Newbold (1977). Their own information is, however, incomplete in the sense

that they do not know any other agent’s shocks. Models of incomplete information have

a long history in economics for explaining behaviour both by firms and by households. As

an example, we show that these conditions are created by a very plausible modification to

the models of household consumption under uncertainty proposed by Goodfriend (1992) and

Pischke (1995): heteroskedasticity of income shocks across the population. In the context

of consumption, the capacity to generate long memory in an aggregate from a large number

of I(1) series means that aggregate consumption can be I(d) even though every household

obeys Hall’s (1978) well-known random walk hypothesis.

In considering the aggregation, we adopt the general, semi-parametric, framework developed

by Robinson (1978) and deployed in Lippi and Zaffaroni (1998) and Zaffaroni (2004), but we

are forced to confront a number of issues not previously covered in this literature. The most

important of these is that, because agents’ behaviour is based on signal extraction between

two types of shocks, their AR(1) parameter is a known function of the variances of those

shock processes. These elements had generally, hitherto, been assumed to be independent2.

Relaxing that assumption gives rise to some significant, and in some ways counter-intuitive,

new results with clear implications for the modelling and forecasting of the aggregate. It

becomes possible to generate orders of integration that are not bounded at one and idiosyn-

cratic shocks which survive in the aggregate even after differencing.

This paper also sits within a wider literature linking the parameters of micro-series with those

of the macro-series to which they aggregate, raising the possibility that information from

one could enhance understanding of the other. Lewbel (1994) considers how the moments of

the micro-distribution of a heterogeneous autoregressive parameter shape the autocorrela-

2There is a very brief discussion of a more general case in Zaffaroni (2004).
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tion function of the aggregate, without studying long memory directly. Abadir and Talmain

(2002) explore the properties of aggregate output from a real business cycle model of hetero-

geneous firms operating under monopolistic competition. They examine the autocorrelation

properties of aggregate GDP within the model when the firms receive temporary produc-

tivity shocks and show that the series exhibits a form of long memory, displaying more

persistence than a standard ARIMA model while also being mean reverting. To further

this in our consumption example, the micro-model is estimated on a U.S. panel study and

estimates of the behaviour of the distribution of the autoregressive parameters made.

Section 2 develops the basic model. Section 3 discusses how these same parameters would

translate through to macroeconomic data, particularly in the memory of consumption. The

model is then applied to U.S. panel data in section 4. Some extensions to the basic model

are discussed in section 5 and section 6 concludes.

2 Economic Underpinnings

We adopt the straightforward conventions on behaviour and processes used widely in the

literature on incomplete information. Assumption 1 ensures a closed form expressions for

each agent’s behaviour under uncertainty; the remainder outline the information set.

Assumption 1: Agent’s preferences. Agent’s are faced with a long-run optimisation

problem and exhibit preferences that imply smoothing and certainty equivalence.

Assumption 2: Shock processes and level of information. All agents are subject to

shocks that are either permanent, I(1), or transitory, I(0), in nature. No agent knows which

type of shock they are experiencing at any point in time, although they do know the variances

of the permanent and transitory shock processes.

Assumption 3: Cross-section impact of shock processes. The permanent shocks

are macroeconomic in nature, impacting to some degree on all agents in the economy. The

transitory shocks are microeconomic in nature, unconstrained by any macroeconomic process,

so that each agent’s transitory shock is orthogonal to every other.

Assumption 4: Variances of shock processes. The variances of these shocks varies

across agents.

In order to fix ideas, we discuss these in the context of our example: household consumption.

Assumption 1 translates to the set-up discussed in the well-known paper by Hall (1978),

with household utility that consist of the (infinite) discounted sum of temporally separable
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quadratic felicity functions, non-stochastic tastes and a discount rate that is constant and

equal to the rate of return on capital. The assumption that preferences are temporally

separable is simplifies the analysis. It would certainly be possible to consider other types

of discounting/ habit formation/ short-run persistence in the agent’s consumption problem.

The effect would be to introduce an additional autoregressive parameter into the model,

complicating the analysis of aggregation unnecessarily. As discussed in Zaffaroni (2004),

the properties of the aggregate of heterogeneous higher order autoregressive processes is

determined by the root of each autoregressive polynomial closest to the unit circle.

It seems reasonably plausible that households should experience uncertainty about the per-

sistence of the given shocks that they face, even though experience has taught them some-

thing about the relative scale of the two processes. In proposing this dilemma, Pischke

(1995) imagines a worker being made redundant but being unable to forecast precisely the

duration of their unemployment. Other work-related examples include a worker receiving

the offer of overtime. At first sight this is a classic transitory shock, but the worker will

adapt their consumption patterns in the light of revised inferences about the likelihood of

future overtime, capacity within their industry, the tightness of their labour market and

the possibility of future salary increases that the offer of overtime might indicate. Or a

worker receiving a one-off performance-related bonus will come to a judgment that balances

the stated ‘one-off’ with the greater likelihood of higher pay or promotion indicated by the

‘performance-related’. The presence of additional full-information shocks, the persistence of

which are recognisable by the household, is discussed as an extension.

In order to explore the effects of aggregation across the economy, we are forced to make

assumptions about which shocks are common and which are idiosyncratic. In the main,

we follow Pischke (1995) and Goodfriend (1992) in assuming that the permanent shock,

ǫi, affects everyone in the economy, while all transitory shocks, υi, are idiosyncratic. This

assumption is, however, stronger than is needed to drive many of the results in section 3 and

variations are discussed in section 5.

We diverge from that literature only in assumption 4. In both Goodfriend (1992) and Pischke

(1995) both shocks are assumed to be homoskedastic across the economy. This is restrictive.

Within a large economy, different agents, maybe by choice, will experience different levels of

income volatility. This could be due to differing exposure to macroeconomic fluctuations, it

could be due to more household specific shocks, or it could be a combination of the two. Our

model supposes that households are heterogeneous in their exposure to both permanent/

common and transitory/ idiosyncratic shocks, but the homoskedasticity of either one is

contained as a special case. Many of our results still hold when only one type of shock is

heteroskedastic.
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2.1 Agent’s Behaviour

Becoming more specific, denote the permanent shock, ǫi,t/(1−L), where L is the lag operator

and ǫi,t is a white noise processes with zero mean and variance σ2ǫ,i. While we maintain

assumption 3, the permanent shock can be written as ψiǫt/(1 − L), ψi ∈ (0,∞), and its

variance, without loss of generality as ψ2
i .

3 Denote the transitory shock, υi,t, which is a

white noise process with zero mean and variance σ2υ,i. Unable to observe these in isolation,

agents are forced to forecast their sum. They notice that the first difference of this series4

follows a stationary first order moving average process, that is

{ǫi,t + υi,t − υi,t−1} = ηi,t − θiηi,t−1. (5)

Since the spectral densities of the two sides are identical it follows that,

σ2η,i
2π

∣

∣

∣1− θie
−iλ

∣

∣

∣

2
=
σ2ǫ,i
2π

+
σ2υ,i
2π

∣

∣

∣1− e−iλ
∣

∣

∣

2
,

where i =
√
−1. Equating these spectral densities over any two of: the points λ = 0; or,

π/2; or the region, 0 < λ < π/2 and solving the resulting quadratic equation gives,

σ2η,i = σ2υ,i/θi = σ2ǫ,i/(1− θi)
2 = ψ2

i σ
2
ǫ /(1− θi)

2,

θi = 1 +
1

2

[

ai −
√

(ai + 2)2 − 4

]

, (6)

where ai = σ2ǫ,i/σ
2
υ,i and we have chosen this particular root as it delivers an invertible

moving average.

Note that θi ∈ (0, 1) provided neither υi or ǫi are degenerate and θi → 1 as σ2ǫ,i/σ
2
υ,i → 0,

that is for those agents whose shocks are more likely to be transitory in nature. Also note

that θi is heterogeneous as long as at least one of the permanent and transitory shocks is

heteroskedastic across the population. The parameters of the structural model (σ2ǫ,i, σ
2
υ,i) are

fully recoverable from the parameters of the reduced model (θi, σ
2
η,i). The major implication

from inverting (6), which will feature later, is that

ai = σ2ǫ,i/σ
2
υ,i =

(1− θi)
2

θi
. (7)

In the absence of complete information, agents respond to the stochastic process modelled by

the right hand side of (5). So in period t, agents forecast the change in their the stochastic

process next period as −θiηi,t. The essential feature of this paper is in that each period

agents base their decision only on their value of η for that period. They do so optimally,

so the variable of interest does not depend on past or future values of ηi. Neither does it

3Where do not follow this convention it is to allow equations to be recycled in section 5 when assumption
3 is weakened.

4Either through experience of the observable income process or widespread familiarity with the rules of
adding ARMA processes
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depend on ηj,t, but since

E {ηi,tηj,t} = E

{

ǫi,tǫj,t
(1− θiL)(1− θjL)

}

=
ψiψj

1− θiθj
6= 0,

the two are not independent. This means that agent j’s shock contains information relevent

to agent i. It also means that the correct aggregation procedure treats all common and

idiosyncratic shocks as dynamic components.

To fix ideas we return to our consumption example, where ǫ and υ are now income shocks.

The household recognises that the change in its income is given by (5). As Pischke (1995)

points out, its optimal behaviour is to increase consumption by ηi,t plus the discounted value

of the forecast change in income for next period. That is

∆ci,t =

(

1− θi
1 + r

)

ηi,t =

(

1− θi
1 + r

)

ǫi,t + (1− L) υi,t
1− θiL

, (8)

where ∆ ≡ (1− L).

It is clear from the first part of (8) that household consumption, given their information set,

is still a random walk. Since ηi,t is not orthogonal to ηj,t for i 6= j, however, equation (8)

can only be aggregated in cross-section correctly using the final expression, and aggregate

consumption will not be martingale. In addition, provided common and idiosyncratic shocks

do not make up the same proportion of permanent and transitory shocks for each household

then ηi,t provides additional information on ǫj,t and υj,t. If households had access to informa-

tion on each other’s shocks they would improve their own estimates of their permanent and

transitory shocks. In Goodfriend’s model this information is available to households with a

one-period lag, which induces a moving average into the process for aggregate consumption.

We follow Pischke (1995) in assuming that this information is never fully assimilated by

households, either because of the difficulty of evaluating this information or because it is

relatively costly to acquire and process in comparison with the benefits to future utility that

it conveys.

3 Cross-sectional Aggregation and Long Memory

We now consider the properties of the aggregate of the variable of interest across N agents

in the economy. The notation in this section is directly related to the consumption exam-

ple from the previous section, but the analysis could easily be applied to other situations

with incomplete information. We use CN,t to denote aggregate consumption adjusted for
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deterministic changes to preferences5, so that

∆CN,t ≡
N
∑

i=1

1

N
[∆ci,t]

=
N
∑

i=1

1

N

[(

1− θi
1 + r

)

ǫi,t + (1− L)υi,t
1− θiL

]

. (9)

3.1 Heteroskedastic Income Shocks

The properties of CN,t depend on the assumptions made about the heterogeneity of income

shocks υi or ǫi. If both types of shocks are completely idiosyncratic then ∆CN,t is simply

the sum of N independent white noise processes and is itself white noise.

It is unlikely, however, that all shocks occurring within an economy are unrelated or that all

agents face equal exposure to them. We model this heteroskedasticity of risk across i in the

levels of σ2ǫ,i and/or σ
2
υ,i which implies, by equation (6), heterogeneity in θi. If σ2ǫ,i and σ

2
υ,i

are constrained to take a finite number of values, say p and q respectively, then θi can take

only x ≤ pq values. In this case it is well known that (9) would have an ARMA(x, x − 1)

structure.

A finite order ARMA model, however, will not result if θi has a distribution that is con-

tinuous over a non-zero interval. Following Granger (1980), provided θi ∈ (0, 1) is not

bounded strictly below some level κ < 1, then the aggregate ∆CN,t can exhibit long mem-

ory. Granger’s original assumed Beta (II) distribution for θ is stronger than we need to

characterise the limit process of CN,t. We follow Zaffaroni (2004) in making the following,

semi-parametric, assumption about the distribution of θ.

Assumption 5: Distribution of θ close to 1. θ is absolutely continuous on (0, 1) and is

distributed as θ ∼ cb(1− θ)b, as θ → 1−, b > −1, with cb an arbitrary constant.

Assumption 5 accommodates a number of parametric forms of the distribution of θ, for

example, a uniform distribution would translate to a value of b = 0.

As we shall see, the properties of CN,t are determined by the behaviour of the density of

the θi’s as they approach unity. Intuitively, the behaviour of the autocovariance function at

long lags depends increasingly on those whose AR parameter is very close to one.

The properties of aggregates of heterogeneous AR(1) relationships, of the form shown in (4),

has been studied extensively by Granger (1980), Gonçalves and Gourieroux (1998), Lippi

and Zaffaroni (1998) and Zaffaroni (2004). Equation (9), however, differs from the type of

problem studied previously in threee ways.

5Perhaps after the removal of a deterministic trend component reflecting the demography of the population.
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1. there is a term which is a function of the AR parameter,
(

1− θi
1+r

)

on the right hand

side;

2. because it is derived as an optimal linear forecast, θi is itself a function of the variances

ψ2
i and σ2υ,i and,

3. the 2 types of shock have different orders of integration.

The first and second points break with an assumption that has been common throughout

the literature until now: that of independence between the heterogeneous AR parameters

and the variances of the common and idiosyncratic shocks. Provided there is a positive rate

of return on capital, r > 0, then
(

1− θi
1+r

)

is bounded and non-zero and so will only affect

the scale of the variance and spectral density of CN,t, not whether or not they exist or the

rate at which they head off toward a singularity.

The second point is more challenging. Following the relationship between σ2ǫ,i and σ
2
υ,i laid

out in (7), we can imagine, without loss of generality

ui,t =
ψi
√
θi

1− θi
ui,t, (10)

where ui,t is a zero mean white noise process with E {ui,tuj,t} = 1, ∀i = j and 0 otherwise.

This translates the heteroskedastic processes for both idiosyncratic and permanent shocks

into homoskedastic processes multiplied by functions of θi and ψi. Since θi is a function of

ψi and σ
2
υ,i, we make the following assumption.

Assumption 6: Boundedness of ψi and its relationship with θi. ψi is strictly bounded,

and strictly positive, for all corresponding θi ∈ (0, γ) for any γ < 1. ψi ∼ ca(1 − θi)
a as

θ → 1−, with ca an arbitrary constant.

This mirrors assumption 5 in focusing on the processes affecting households with high values

for θi. It does not attempt to describe the relationship between ψi and θi fully, only the

part that is dominant as θi is in the locality of one. The parameter a determines whether

ψi: remains positive and bounded (a = 0); heads off to infinity (a < 0); or, down to zero

(a > 0), and the rate at which it does so. Assumption 6 precludes singularities corresponding

to values of θ < 16. A value of a = 0 is necessary but not sufficient for ψi to be determined

independently of θi. A value for a > 0 would indicate that a high θi, i.e. those with a

relatively high ratio of transitory to permanent shock, resulted from being relatively insulated

from the impact of macroeconomic shocks, and hence a narrow distribution of σ2υ,i. Whereas

a value for a < 0 would indicate that a high θi resulted from being relatively risk loving,

6Anyone who has a value of ψi = 0 is removed from the problem of incomplete information. Provided
they are not so numerous as to weaken substantively arguments based on having a large population, they
can be accommodated by remembering that their consumption is a random walk, see section 5.
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heavily exposed to macroeconomic shocks but even more so to microeconomic shocks, and

hence a more widespread distribution of σ2υ,i.

We consider the aggregation of the permanent and transitory shocks separately. Taking

account of the different levels of integration, we write

CN,t = UN,t +
EN,t
1− L

, where,

UN,t ≡
N
∑

i=1

1

N

[(

1− θi
1 + r

)

υi,t
1− θiL

]

,

EN,t ≡
N
∑

i=1

1

N

[(

1− θi
1 + r

)

ǫi,t
1− θiL

]

.

In the first instance we will investigate the existence of the variances of these processes, which

will determine whether they remain in any aggregates, and the behaviour of their spectral

densities, which will provide further insight into memory. Following (10), the idiosyncratic

component, UN,t will have variance and spectral density respectively denoted

V U
N,t =

N
∑

i=1

1

N2

[

(

1− θi
1 + r

)2 ψ2
i θi

(1− θi)2
1

(1− θ2i )

]

,

SUN,t(λ) =
N
∑

i=1

1

2πN2







(

1− θi
1 + r

)2 ψ2
i θi

(1− θi)2
1

∣

∣

∣1− θie−iλ
∣

∣

∣

2






, (11)

−π < λ ≤ π.

The variances and spectral density of the differenced, cross-sectionally aggregated common

shock, EN,t, on the other hand, will also include the cross products between households

reacting to the same shock. This will have variance and spectral density respectively denoted

V E
N,t =

N
∑

i,j=1

1

N2

[

(

1− θi
1 + r

)(

1− θj
1 + r

)

ψiψj
(1− θiθj)

]

,

SEN,t(λ) =
1

2πN2

∣

∣

∣

∣

∣

N
∑

i=1

(

1− θi
1 + r

)

ψi

1− θie−iλ

∣

∣

∣

∣

∣

2

, (12)

−π < λ ≤ π.

An unusual feature of processes comprising the sum of heterogeneous dynamic equations is

that these variances and spectral densities are sums which depend on a parameter, θi, that

is a random variable and as such become random variables themselves. Throughout this

literature, these quantities are considered as functions of the parameters of the distributions

of these random variables and their convergence, or otherwise, evaluated as the population

size, N , gets large.

In considering these objects, we adopt the approach employed in Zaffaroni (2004), adapted
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to take account of the particular issues outlined above. The finiteness of these quantities

will, in general, depend on the values of expressions of the form

N
∑

i=1

1

N(1− θi)k
.

These will be finite in the limit and equal to

E

{

1

(1− θi)k

}

,

as long as
∫ 1

u

dF (θ)

(1− θ)k
<∞, (13)

for each arbitrary constant 0 < u < 1, where F (θ) denotes the distribution of θ. Even where

this is not finite, it will determine the rate at which the sum goes off to infinity. One crucial

difference from the existing literature is that k will turn out to be determined jointly by the

parameter a as well as the parameter b and the moment in question.

Finally we will evaluate the memory of the two processes. Following Granger (1980) and

Zaffaroni (2004), we will show the potential for hyperbolic decay in the autocorrelation

function of the idiosyncratic component. Following Lippi and Zaffaroni (1998) we will analyse

the behaviour of the spectrum around the origin for the common component.

3.2 Idiosyncratic component

Idiosyncratic shocks are assumed to be I(0), but aggregate consumption also contains com-

mon shocks, which are assumed to be I(1), and so is likely to be differenced. As a result we

consider the properties of the idiosyncratic shock both in levels and in differences, denoted

∆UN,t.

We remind that an AR(1) process xt = ut/(1 − θL) =
∑

∞

k=0 θ
kut−k, where ut is white

noise has a variance V ar {xt} = V ar {ut} /(1− θ2) and an autocovariance at lag s given by

Cov {xtxt−s} = θsV ar {ut} /(1− θ2). If that process is differenced, the resulting process is

∆xt = (1− L)ut/(1− θL) = ut +
∞
∑

k=0

θk(θ − 1)ut−k−1.

Since the two terms do not overlap and ut is white noise, this differenced AR(1) process has

a variance, V ar(∆x)

= V ar(u) +
∞
∑

k=0

θ2k(θ − 1)2V ar(u)

=
{

(1− θ2) + (1− θ)2
}

V ar(x)

= 2(1− θ)V ar(x), (14)
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and an autocovariance, E {∆xt∆xt−s}

= E

{[

ut +
∞
∑

k=0

θk(θ − 1)ut−k−1

]

×
[

ut−s +
∞
∑

k=0

θk(θ − 1)ut−k−s−1

]}

= θs−1(θ − 1)V ar(u) + θs
∞
∑

k=0

θ2k(θ − 1)2V ar(u)

= θs−1

{

(θ − 1) +
θ(θ − 1)2

1− θ2

}

V ar(u)

= −θs−1(1− θ)2V ar(x). (15)

We evaluate the aggregation of the idiosyncratic component in the following propositions,

considering the variance, spectral density and memory of UN,t and ∆UN,t. First, we consider

the nature of the variance, the circumstances under which it is finite and under which the

‘usual result’ holds.

Proposition 1: As N → ∞

(i) Variance of UN,t

if a+ b > 1/2 then V U
N,t

→

a.s. 0,

whereas if a+ b ≤ 1/2 then N
2(a+b)−1

b+1 V U
N,t

→

d Sδ,

(ii) Variance of ∆UN,t

if a+ b > 0 then V ∆U
N,t

→

a.s. 0,

whereas if a+ b ≤ 0 then N
2(a+b)
b+1 V ∆U

N,t

→

d Sδ

where Sδ denotes a δ-stable random variable defined7 as,

Sδ(1) + Sδ(2) + ...+ Sδ(N) =d N1/δSδ +DN ,

where the left hand side denotes the sum of N ≥ 2 independent realisations of the process

Sδ and DN is a real constant depending on N . The parameter 0 < δ ≤ 2 is the highest finite

moment of the distribution.

Proof See Appendix

We note an extra normalisation required is for the convergence of V U
N,t and V

∆U
N,t to a δ-stable

random variable and that it is always a negative power of N . Under the normalisation

N−2, which is implicit in V U
N,t, these quantities do not converge, even to a random variable.

These conditions in proposition 2 should then be read as the circumstances in which the

7Variously, see Samorodnitsky and Taqqu section 1.1.
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idiosyncratic component does not succumb to the law of large numbers and vanish in mean

square - the failure of the ‘usual result’ as first noted in Lippi and Zaffaroni (1998). The fact

that agents are signal processing between the two types of shock does, potentially, increase

the possibility of this type of result. In the previous literature, the usual result failed only

if b < −1/2, which required that the distribution of θ became more dense as it approached

one. In this setting, however, it is perfectly possible for the usual result to fail even for

positive b, when θ is becoming less dense as it approaches 1, provided a + b ≤ 1/2. There

are two reasons for this. The first is the reinforcement of the effect on the size of V U
N,t from

higher values of θ if these come with higher σ2υ,i provided a < 0. The second is that the

signal extraction in (5) in effect integrates the transitory shocks.

In Zaffaroni (2004), the differenced idiosyncratic component always disappears in mean

square. Under our assumptions this will not happen if a + b ≤ 0. This is noteworthy as it

had previously been assumed to hold within the literature on consumption under incomplete

information8.

The proof of proposition 2 underlines the important role of discounting in this model. If

r = 0, then the order of k in each part of the proof would be one lower, which would

redetermine the critical parameter values. This point applies equally to all other propositions

in this section.

Given the possibility of unbounded variance, even with differenced data, it is natural now

to consider the spectral density of the idiosyncratic component SUN,t(λ) at the origin and at

other frequencies. This is the subject of proposition 2.

Proposition 2: As N → ∞

(i) Spectral density of UN,t away from the origin

if a+ b > 0 then SUN,t(λ)
→

a.s. 0, for λ 6= 0,

whereas if a+ b ≤ 0 then N
2(a+b)
b+1 SUN,t(λ)

→

d Sδ, for λ 6= 0,

(ii) Spectral density of UN,t at the origin

if a+ b ≤ 1 then SUN,t(0)
→

a.s.∞,

whereas if a+ b > 1 then SUN,t(0)
→

a.s. 0.

Proof See Appendix

Proposition 2 is very closely related to proposition 1. From part (i) we see that the spectral

density will contain a continuum of singularities across some frequency band, i.e. that could

8In Goodfriend (1992) it is a matter of assumption, whereas Pischke (1995) generalises his example to
cover a law of large numbers argument, for completely idiosyncratic shocks.
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not be removed by differencing, if a + b ≤ 0. It is not surprising that it is power in these

non-zero bands that causes the failure of the ‘usual result’ even in differenced data and that

they are of the same order of distribution as in proposition 1(ii).

For 0 < a+ b ≤ 1/2, UN,t has an infinite variance but a spectral density that tends toward

zero for λ 6= 0.

(ii) makes it clear that in the limit SUN,t(λ) is either unbounded or zero at the origin. Com-

paring the values for the parameters over which these occur with those from proposition 1

we see that for 1/2 < a+ b ≤ 1 UN,t has both a singularity at the origin and a finite variance

(actually 0 in the limit). This suggests that UN,t could be a long memory process and it is

that which we now consider.

The most straightforward way to derive the memory for the idiosyncratic component is from

its autocorrelation function, using (2).

Since the variance of UN,t goes either to 0 or ∞, we normalise by the variance to get

convergence to a stochastic process.

Proposition 3 As N → ∞,

(i) Memory of UN,t

UN,t/
√

V U
N,t has memory dU = 1

2(3 − b − 2a). If 2a + b > 2, UN,t/
√

V U
N,t

→

d UM,t(dU ) where

UM,t(dU ) is a Gaussian stochastic process.

(ii) Memory of ∆UN,t

∆UN,t/
√

V ∆U
N,t has memory dU−1 = 1

2(1−b−2a). If a+b > 0, ∆UN,t/
√

V ∆U
N,t

→

d UM,t(dU−1)

where dUM,t is a Gaussian stochastic process.

Proof See Appendix

The condition that a + b > 0 ensuring that NV ∆U
N,t exists is clearly linked to the finiteness

of the spectrum away from the origin discussed in proposition 2.

Proposition 3 highlights the different effects of the a and b parameters on UN,t. In determin-

ing the mean square of UN,t, a and b carried equal weight, whereas in determining memory,

a counts for twice b. This is because the effects of the ψi are normalised by N−1 in proposi-

tions 1 and 2, but by only N−1/2 in proposition 3. One implication is that the link between

survival in mean square and memory is more sophisticated than is the case when all the

parameters are assumed to be independent of one another. There is no degree of memory

for UN,t that guarantees that it escapes the usual result. Although, given b > −1, we can

say that any idiosyncratic process that escapes the ‘usual result’ must have dU > 1/2.
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This analysis incorporates the model studied previously in the literature, where the param-

eters are assumed to be independent, as a special case. When a = 1, the effects of signal

processing and weights in aggregate second moments cancel out and propositions 1, 2 and

3 translate back to the results in Zaffaroni (2004). This includes the case when households

experience idiosyncratic shocks driven by the same homoskedastic process, meaning that all

the heterogeneity comes from different exposures to common macroeconomic shocks.

Allowing heterogeneous ψi has, however, given rise to the possibility of an unusual and

counterintuitive result. The interaction between a and b means that, unlike in the previous

literature, the memory of the idiosyncratic component need not be bounded below 1. The

model is capable of producing an idiosyncratic series, UN,t, that is unit root or even explosive,

despite being the aggregate of stationary AR(1) relationships. This is all the more remarkable

given our starting point that consumption is a random walk for every household, given their

information set. A theme to which we shall return after we have considered the common

component.

3.3 Common component

We now consider the common shock process. For simplicity and for easy comparison with the

idiosyncratic component, we do this by considering the properties of EN,t. Since aggregate

consumption contains EN,t/(1 − L), it is clear that properties such as the finiteness of the

variance are only relevant to data that has been differenced. We also note that the order of

integration of the common component in consumption will then be one higher than that of

EN,t.

It is clear straightaway that, unlike in the idiosyncratic case V E
N,t will never go to zero. We

adapt an expression used in Gonçalves and Gourieroux (1998) to write

EN,t =
∞
∑

s=0

{

N
∑

i=1

1

N

[(

1− θi
1 + r

)

ψi (θ
s
i )

]

}

ǫt−s. (16)

As N → ∞, the expression in {.} tends, almost surely, to its expectation, which we denote

νs. We note that, by repeated integration by parts,

∫ 1

0

(

1− θi
1 + r

)

θ(s)(1− θ)a+bdθ =
Γ(s+ 1)Γ(a+ b+ 1)

Γ(s+ a+ b+ 2)

− 1

1 + r

Γ(s)Γ(a+ b+ 1)

Γ(s+ a+ b+ 1)
, (17)

provided r > 0. Then for large values of s, by Stirling’s formula,

νs ∼ cs−(a+b+1), (18)
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with c an arbitrary constant. We can then rewrite

V E
N,t = 1

[

1 + ν21 + ν22 + ν23 + ν24 + ....
]

,

SEN,t(0) =
1

2π
[1 + ν1 + ν2 + ν3 + ν4 + ....]2 .

Now, from (18),
∑

∞

s=0 νs converges, indicating that SEN,t(0) is bounded, if a + b > 0, while
∑

∞

s=0 ν
2
s converges, indicating that V E

N,t is bounded, if a + b > −1/2. This is stated more

formally in the next two propositions, which mirror proposition 1 and 2.

Proposition 4: As N → ∞

Variance of EN,t

if a+ b > −1/2 then V E
N,t

→

a.s. V E <∞,

whereas if a+ b ≤ −1/2 then n
2(a+b)+1

b+1 V E
N,t

→

d Sδ,

where, as in proposition 1, Sδ denotes a δ stable random variable.

Proof See Appendix

As long as a+b > −1/2 as a condition then proposition 4 points out that the variance of the

common component, EN,t tends to a non-zero constant. We now consider how this variance

is split across the spectrum.

Proposition 5: As N → ∞

(i)Spectral Density of EN,t away from the origin

if a+ b > −1 then SEN,t(λ)
→

a.s. se(λ) <∞, for λ 6= 0,

(ii)Spectral Density of EN,t at the origin

while if a+ b ≤ 0 then SEN,t(0)
→

a.s.∞.

Proof See Appendix

Finally, we consider the impact of this on the series CN,t, we investigate the memory prop-

erties of EN,t.

Proposition 6

Behaviour of the spectral density of EN,t in the region of the origin

As λ→ 0

c1λ
2(a+b), (a+ b) < 0,

SEN,t(λ) ∼ c2 log(λ
−1), (a+ b) = 0,

16



c3, (a+ b) > 0,

with c1, c2, c3 arbitrary positive constants.

Proof See Appendix

This implies that EN,t
→

d Et(dE), where Et(dE) is a stochastic process with memory param-

eter dE = −(a + b), following (3). As the shock is common, we cannot apply central limit

theorem arguments to it and so Et will only be Gaussian if ǫt is.

As with the idiosyncratic component, the aggregate common component, EN,t, could be

unit root or even explosive, even though it is the sum of strictly stationary series. When

a = 0, the results of propositions 4, 5 and 6 are the same as those for the model with

independent parameters. This includes the case when all households are equally vulnerable

to macroeconomic shocks, meaning that the heterogeneity comes from household specific

volatilities.

3.4 Modelling the Aggregate

These results raise some interesting questions concerning the modelling of the aggregate.

Remembering that the idiosyncratic component is inherently one degree of integration below

the common, and that it is likely that we will want to difference the data, we summarise the

results of this section in the following 3 cases:

Case 1: a+ b ≤ 0 ⇒ V U
N,t, V

∆U
N,mt → δstable

Here the idiosyncratic component survives in mean square in both the aggregate and its first

difference. The order of integration of CN,t is therefore d = dU = 3/2 − a − b/2, which is

greater than 1. The order of integration of ∆CN,t is therefore d∆ = dU − 1 = 1/2− a− b/2,

which is greater than 0.

Case 2: 0 < a+ b ≤ 1/2 ⇒ V U
N,t → δstable, V ∆U

N,mt → 0

Here the idiosyncratic component survives in mean square in the aggregate but not in its

first difference. The order of integration of CN,t is therefore d = dU = 3/2− a− b/2, which

is greater than 1/2. The order of integration of ∆CN,t is d∆ = dE = −a− b, which must be

below 1/2.

Case 3: a+ b > 1/2 ⇒ V U
N,t, V

∆U
N,mt → 0;

The ‘usual result’ holds for both levels and first differences. The order of integration of CN,t

is therefore d = dE+1 = 1−a− b, which is less than 1/2. The order of integration of ∆CN,t

is d∆ = dE = −a− b, which must be below −1/2.
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In the region covering case 1, the variable of interest has an infinite spectrum. Whereas

in case 3, it is stationary, even in levels. So case 2 is perhaps the most plausible for many

macroeconomic series. It is certainly the most interesting. Firstly, in case 2 we have the

counter-intuitive result that differencing the aggregate will reduce its order of integration

by more than one. This is a feature of all aggregations in which the ‘usual result’ fails to

hold and is only exacerbated, not created, by signal processing shocks of different orders

of integration. Secondly, this feature makes it possible to estimate a and b separately from

estimates of d and d∆. If d − d∆ > 1, then it is easy to show that b = 2(d − d∆) − 3 and

a = 3− 2d+ d∆.

Our results also have implications for the forecasting of the aggregate, which will be driven

overwhelmingly by the common shocks. Forecasts of the impact of a sudden common shock

will depend heavily on how persistent the shock is within the system, in other words the

memory. As the memory of the idiosyncratic component is always larger than that of the

common component, it will dominate estimates of the memory of aggregate consumption

whenever the idiosyncratic component survives in mean square. Some caution is needed,

therefore, in using estimates of the memory, for example from a log-periodogram type esti-

mator, in projecting forward the effect of a shock based on the economy if there is evidence

that either cases 1 and 2 apply. In case 1, this problem is inescapable: dE is masked by dU .

We must do our best with an upper bound. In case 2, a forecast of consumption would be

better based on an estimate of memory from the differenced series, that is d∆ + 1, than one

estimated from the series in levels, d.

4 Estimation

4.1 Data

The data are taken from the University of Michigan’s Panel Study of Income Dynamics

(PSID). This data series has been used to estimate models of household consumption by

numerous authors, including Hall and Mishkin (1982), Zeldes (1989), Lawrence (1991) and

Dynan (2000). A description of the data set is in the appendix. We assume that the data

are not subject to time aggregation. Estimates under time aggregation in both discrete and

continuous time are in Thornton (2009).
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4.2 Methodology

The models to be estimated are of the form

∆ci,t = Xi,tβ + θi(∆ci,t−1 −Xi,t−1β) +

(

1− θi
1 + r

)

ζi,t. (19)

The termXi,tβ and its lag serve to adjust for non-stochastic changes in household preferences.

Following those previous authors, the external regressors in Xi,t are largely demographic:

the change in food needs; age of the head; a dummy indicator for whether the head of

the household is white plus a constant. In common with previous authors, we do not find

evidence of persistent household effects and do not include them in our estimates. The

coefficient β is estimated from a single dynamic equation covering the entire sample and

retained in the estimates of the heterogeneous models. The choice of interest rate r is set at

5 per cent over the period. Changing this value made little difference to the estimates.

The error term, ζi,t contains both idiosyncratic and common shocks. In the model discussed

above, it is not white noise. Note that the its correlation structure, Γi,j(s) ≡ E {ζi,tζj,t−s} is

Γi,j(0) = σ2ǫ,i + 2σ2υ,i =

{

1 +
2θi

(1− θi)2

}

ψ2
i , i = j

= σǫ,iσǫ,jψiψj , i 6= j,

Γi,j(1) = −σ2υ,i = − θi
(1− θi)2

ψ2
i , i = j,

= 0, i 6= j,

Γi,j(s) = 0, ∀|s| > 1. (20)

The final equalities result from (7). Note that our parameters of interest determine the

covariance structure of the error term, as often happens in models that are aggregated

temporally. We therefore use a recursive procedure outlined in Bergstrom (1990) to compute

the likelihood conditional on the first two observations in the sample. Even this procedure

requires the Choleski decomposition of a (sparse) matrix of equal to the number of households

multiplied by the number of time periods. For computational convenience the estimates come

from 16 cohorts of 46 households.

4.3 Results

The distribution of the (preliminary) estimates of θ, based on the Epanechnikov kernel, are

drawn in figure 1. These are summarised, along with estimates of the parameters a and b,

in table 1.
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Figure 1: Estimated Density of θ under Incomplete Information

Table 1. Estimates of Heterogenous autoregressive parameter
for household consumption under incomplete information preferences

Mean of θ’s 0.2264

Standard Deviation of θ’s 0.1935

b as θ → 1 0.0369

a as θ → 1 0.0007

Memory of consumption p.c. at 0 1.4809

Memory of ∆ consumption p.c. at 0 −0.0376

no. observations 8832

The estimates lie in the region 0 < a+b ≤ 1/2. This is the case where the idiosyncratic com-

ponent survives in levels but not in differences and hence the estimated order of integration of

consumption per capita is more than 1 higher than the estimated order of integration in the

difference of consumption. Aggregate consumption would be integrated of order 1.4 to 1.3,

which is quite close to the estimates in Chambers (1998) on U.K. on aggregate consumption

data.

5 Extensions

We now introduce two generalisations to the model, focusing on their impact on the memory

of the variable in question. Such generalisations will also affect the autocovariance structure

of the micro data laid out in (20), mostly in straight-forward ways9. Once again the context

of aggregate consumption is used to enhance intuition.

9For further discussion see Thornton (2009).
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5.1 Partial Information

While it seems plausible that agents are unsure of the duration of many of the shocks that

they face, it is also likely that there are some shocks whose persistence is well known. For ex-

ample, gifts or lottery wins are clearly very different in persistence to promotions or attaining

qualifications. Suppose that household i, in addition to the shocks analysed previously in the

paper, received income shocks with a known persistence. We consider the impact of these

when they are permanent or transitory, common or idiosyncratic. Assumption 1 implies that

any permanent or transitory shock of known persistence will add a component integrated

of order one to the aggregate, CN,t. These shocks would not influence the distribution of

θi, which depends on the unknown shocks. One effect therefore is that the aggregate must

be integrated of at least order one, but may actually be higher under cases 2 and 3 above.

If the additional known shock is common, then the first difference is at least integrated of

order 0, but may be higher. If the additional known shocks are all idiosyncratic, then their

aggregation and division by N produces a quantity which survives in mean square in levels

(where it has unbounded variance) but not in differences (where it does not). In this case

the order of integration of the first difference of the aggregate could be negative.

5.2 The Presence of Common, Transitory or Idiosyncratic, Permanent

shocks

The precise mapping of common to permanent and idiosyncratic to transitory serves to

simplify the analysis of the aggregate and provide direct comparison with earlier models.

The mapping is not essential for the model to generate long memory, provided agents are

faced with a signal extraction problem between permanent and transitory shocks and, as we

shall see, there is relevant information in the aggregate that they do not use in solving that

problem.

Attempting to minimise the additional notation required, suppose each agent’s permanent

shock process also contains idiosyncratic shocks, µi,t, so that ǫi,t = ψiǫt + µi,t. While each

agent’s transitory shock process also contains a common shock, τiνt, so that υi,t = ξi,t+ τiνt.

As before, all of the processes are zero mean and independent of one another and, without

loss of generality, the variances of ǫt and νt are equal to one.

Equation (7) would still apply as before, leaving θi the same function of σ2υ,i/σ
2
ǫ,i, but these

variances are each now the sum of the variances of the corresponding idiosyncratic and

common shocks.

When considering aggregation we must now evaluate both the common and the idiosyncratic
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shock processes in first differences. We can model these as moving average processes using

identical arguments to those used to establish (5). The first difference in the common shock

is ∆ǫit = ψiǫt + (1 − L)τiνt = ψi

(1−φi)2
(1 − φiL)et, with et a common white noise shock

with unit variance. The scale parameter in the final expression is established using identical

arguments to those used in equation (6). While we can also model the first difference of

the idiosyncratic shock as ∆υit = µi,t + (1− L)ξi,t = (1− χiL)ui,t with ui,t an idiosyncratic

and heteroskedastic white noise shock with V ar(ui,t) = V ar(ξi,t)/χi. Note that as long as

µi,t is not degenerate10, in which case χi would equal one, the order of integration of the

idiosyncratic component has risen by one.

It is well known that moving average terms, in general, have no impact on the long term

properties of a time series captured in its degree of memory or the finiteness of its variance,

see Zaffaroni (2004). This is subject to the condition that neither of the moving average

polynomials (1 − φiL) or (1 − χiL) cancel with the autoregressive polynomial (1 − θiL).

Cancellation is only brought about when the ratio of the variances of transitory to permanent

shocks is the same for common and idiosyncratic shocks, this is if τ2i /ψ
2
i equals σ2ξ,i/σ

2
µ,i,

and therefore both equal σ2υ,i/σ
2
ǫ,i. If this were the case, then the agent would gain no extra

information about the duration of their own shocks by looking at shocks across the economy:

being able to split their own current shock into common and idiosyncratic components

would not change their forecast of the next period’s realisation of the stochastic process for

them. This reinforces the point that persistence depends very much on incomplete relevant

information.

As before, the aggregation of both components should consider the heteroskedasticity of the

common and idiosyncratic shocks, et and ui,t. For the common shock, additional assumptions

are needed about the behaviour of the new parameter φi, particularly as θi → 1−. The

assumption that φi is independent of θi is one candidate, but assumptions in which the two

are related are possible. For the idiosyncratic shock and thus assumptions on V ar(ξi,t) and

χi are needed.

6 Conclusions

In analysing an autoregressive model derived from a signal extraction problem we have

bridged the literatures on the empirical implications of the random walk hypothesis and the

theoretical underpinnings of long memory in macroeconomic time series. We have shown, on

10There are meaningful permanent idiosyncratic shocks.
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the one hand, that incomplete information in a very simple model can produce micro-series

that are random walks but aggregate to something that can exhibit long memory. Moreover,

earlier results in this literature that idiosyncratic shocks tend to zero in mean square are

broken for some (not unreasonable) parameter values. At the same time, our autoregressive

signal extraction model is unique within the literature on the aggregation of heterogeneous

autoregressive models in being capable of producing: integration of order greater than 1;

and, an idiosyncratic component that can survive in mean square even after differencing.

Estimates of the heterogeneous parameters were made using maximum likelihood, which

took account of the presence of the parameters of the model in both the autoregressive

and moving average parts. Kernel techniques were used to study features of the underlying

distributions. More sophisticated estimation techniques are worthy of investigation.
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[8] Gonçalves, E., Gourieroux, C., (1998) Aggregation de processes autoregressifs d’ordre 1.

Annales d’Economie et Statistique 12,127–149.

[9] Goodfriend M. (1992) Information-aggregation bias. American Economic Review 82:

508–519.

[10] Granger, C. W. J., Newbold P. (1977). Forecasting economic time series, Academic

Press.

23



[11] Granger, C. W. J. (1980). Long memory relationships and the aggregation of dynamic

models. Journal of Econometrics 14:222–238.

[12] Granger, C. W. J., Joyeaux, R. (1980). An introduction to long memory time series

models. Journal of Time Series Analysis 1:15–29.

[13] Granger, C. W. J., Ding, Z. (1996). Varieties of Long Memory Models. Journal of

Econometrics 73:61–778.

[14] Granger, C. W. J.(2000). Current Perspectives on Long Memory Processes. Academia

Economc Papers 28:1–16.

[15] Guegan, D., (2005). How can we define a concept of long memory? An econometric

survey. Econometric Reviews 24: 113–149.

[16] Hall, R. E. (1978). Stochastic Implications of the Life Cycle - Permanent Income Hy-

pothesis: Theory and Evidence. Journal of Political Economy 86:971–987.

[17] Hall, R. E., Mishkin, F. S. (1982). The Sensitivity of Consumption to Transitory Income:

Estimates from Panel Data on Households. Econometrica 50:461–482

[18] Hosking, J.(1981) Fractional differencing. Biometrika 68: 165–178.

[19] Hylleberg, S. Engle, R. F., Granger, C. W. J., Yoo, B. S., (1990) Seasonal integration

and cointegration. Journal of Econometrics 44: 215–238.

[20] Lawrence, E. (1991). Poverty and the Rate of Time Preference: Evidence from Panel

Data. Journal of Political Economy 99:54–77.

[21] Lewbel, A. (1994) Aggregation and simple dynamics. American Economic Review 84:

95–918.

[22] Lippi, M. , Zaffaroni, P., (1998) Aggregation of simple linear dynamics: exact asymp-

totic results. Econometrics Discussion paper 350, STICERD-LSE.

[23] Oppenheim, G., Viano, M. C., (2004) Aggregation of random parameters Ornstein-

Uhlenbeck or AR processes: some convergence results. Journal of Time Series Analysis

25: 335–350

[24] Pesaran M. H. (2003) Aggregation of linear dynamic models: an application to the life

cycle hypothesis under habit formation. Economic Modeling 20: 385–435

[25] Pischke, J.-S., (1995) Individual income, incomplete information, and aggregate con-

sumption. Econometrica 63: 805–840.

[26] Robinson, P. M. (1978). Statistical Inference for a random coefficient autoregressive

model. Scandinavian Journal of Statistics, 5, 163–168.

[27] Robinson, P. M. (1994). Semiparametric analysis of long memory time series. Annals of

Statistics, 22: 515–539.

24



[28] Samorodnitsky, G., Taqqu, M., (1994) Stable non-Gaussian Processes: Stochastic mod-

els with Infinite Variance. Chapman and Hall, New York, London.

[29] Thornton, M. A., (2009) Information and Aggregation: The Econometrics of Dynamic

Models of Consumption under Cross-Sectional and Temporal Aggregation. University of

Essex PhD thesis. Unpublished.

[30] Zaffaroni, P. (2004). Contemporaneous aggregation of linear dynamic models in large

economies. Journal of Econometrics. 120: 75–102.

[31] Zeldes, S. P. (1989). Consumption and Liquidity Constraints: An Empirical Investiga-

tion. Journal of Political Economy. 97:305–46.

Appendix

Proof of Proposition 1

(i) First note that the quantity

XU
N,t =

N
∑

i=1

[

ψ2
i θi

(1− θi)2
1

(1− θ2i )

]

(A1)

will be finite as long as the contribution for households i whose θi is in the locality of one is

finite. This will depend on whether,

N
∑

i=1

[

c2a
(1− θi)2−2a

1

(1− θ2i )

]

, (A2)

is finite.

Then we note that

N
∑

i=1

1

2

[

1

(1− θi)3−2a

]

≤
N
∑

i=1

[

1

(1− θi)2−2a

1

(1− θ2i )

]

≤
N
∑

i=1

[

1

(1− θi)3−2a

]

. (A3)

Given that ca is a constant and θi is bounded at one, we can apply Zaffaroni (2004) lemma

1 (pp96), with k = 3− 2a and for δ = b+1
k to get

for δ > 1 that is 2a+ b > 2

N−1XU
N,t

→

a.s. caE
{

1
(1−θi)3−2a

}

<∞,

and for δ ≤ 1,

N−1/δXU
N,t

→

d Sδ.

In the first case, δ > 1, we have a finite quantity when dividing by N , and so the first part

of the proposition holds by Kolmogorov’s law of large numbers. Indeed in the second case,

δ ≤ 1, N−2XU
N,t → 0 so long as N1/δ is growing more slowly than N2, in other words as long

as δ > 1/2.

Then we note that if,
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N−2XU
N,t → 0 then V U

N,t
→

a.s. 0,

and if,

N−1/δXU
N,t

→

d Sδ then N
(2−1/δ)V U

N,t

→

d Sδ,

since the additional elements in V U
N,t are bounded, and bounded above 0, when θ is in the

locality of 111: (1− θi
1+r )

2 is bounded by ( r
1+r )

2 and 1, θi is bounded above by one, and ca, cb

are constants. The proof is completed by noting that δ > 1/2 ⇔ (b + 1)/3 − 2a > 1/2 ⇔
a+ b > 1/2 and that 2− 1/δ = (2b+ 2a− 1)/(b+ 1).

(ii) We now consider the variance of ∆UN,t. First we note that, following the expansion in

(14), the equivalent quantity to (A1) is

X∆U
N,t =

N
∑

i=1

2
ψ2
i θi

(1− θi)2
(1− θi)

(1− θ2i )
.

Following an identical argument to part (i), this will be finite in the limit if

N
∑

i=1

[

c2a
(1− θi)2−2a

(1− θi)

(1− θ2i )

]

, (A4)

is finite.

Then we note that

N
∑

i=1

[

1

2(1− θi)2−2a

]

≤
N
∑

i=1

[

1

(1− θi)2−2a

(1− θi)

(1− θ2i )

]

≤
N
∑

i=1

[

1

(1− θi)2−2a

]

. (A5)

We then apply Zaffaroni lemma 1 with k = 2− 2a. This part goes to a delta stable random

variable when δ = b+1
2−2a ≤ 1/2, in other words when a + b ≤ 0. And in this case 2 − 1/δ =

2− (2− 2a)/(b+ 1) = 2(a+ b)/(b+ 1).

⋄

Proof of Proposition 2

(i) Firstly we notice that

N
∑

i=1

1
∣

∣

∣1− θie−iλ
∣

∣

∣

2 , (A6)

is finite for λ 6= 0 and decreasing in λ. The finiteness of the spectral density away from the

origin will then depend on the finiteness of

N
∑

i=1

1

N2

[

c2a
(1− θi)2−2a

]

. (A7)

The proof of (i) then follows similar arguments to those used in proposition 1 to establish

11Another, equivalent explanation is to note that, in keeping with Zaffaroni’s lemma, following the trans-
formation z = (1− θ)−1, any finite polynomial of θ is inevitably a slowly varying function of z
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the properties of the variance V U
N,t, now with k = 2(1− a). Under this condition δ > 1/2 ⇔

(b+ 1)/2(1− a) > 1/2 ⇔ a+ b > 0 and that 2− 2(1− a)/(b+ 1)/ = 2(a+ b)/(b+ 1).

(ii) We note that the spectral density of the idiosyncratic component at the origin is

SUN,t(0) =
N
∑

i=1

1

2πN2

[

(

1− θi
1 + r

)2 ψ2
i θi

(1− θi)2
1

(1− θi)2

]

. (A8)

The proof of (ii) then follows that for proposition 1 with k = 2(2 − a). Like the variance,

the spectral density at the origin is either infinite or 0. The delineating factor is whether

δ ≤ 1/2 ⇔ (b+ 1)/2(2− a) ≤ 1/2 ⇔ a+ b ≤ 1.

⋄

Proof of Proposition 3

First we define xui,t =
∑

∞

j=0 θ
j
i υi,t−j .

(i) We consider first the case when NV U
N,t is bounded. Following the proof of proposition

1(i) (when δ > 1), that is when 2a+ b > 2. And hence, as N → ∞

UN,t
√

V U
N,t

=
[

NV U
N,t

]

−1/2
[

1/N1/2
N
∑

i=1

[(

1− θi
1 + r

)

(1− Lm)

(1− L)

]

xui,t

]

→

d Ut, (A9)

where Ut are distributed N(0,1), by the Lindberg-Levy central limit theorem. The memory of

this process will be determined by the autocovariance of the xui,t, Cov
{

1
N1/2x

u
i,t,

1
N1/2x

u
i,t−s

}

,

which for large s will be determined by those individuals with values for θi in the region of

one, since it is their shocks that persist longest. In this case we can write, as N → ∞,

Cov

{

1

N1/2

N
∑

i=1

xui,t,
1

N1/2

N
∑

i=1

xui,t−s

}

=
N
∑

i=1

σ2υ,i
N

θs+1
i

(1− θ2i )

=
1

N

N
∑

i=1

c2aθ
s+2
i

(1− θ2i )(1− θi)2−2a
→ cE

{

θs+2
i

(1− θi)3−2a

}

, (A10)

deploying the argument used to bound (A3) and with c an arbitrary constant. Since, for

integer s, by repeated integration by parts,
∫ 1

0
θs+2(1− θ)2a+b−3dθ =

Γ(s+ 3)Γ(2a+ b− 2)

Γ(s+ 2a+ b+ 1)
, (A11)

where Γ(x) denotes the Gamma function, then by Stirling’s formula for large s,

E

{

θs+2
i

(1− θi)3−2a

}

= c
Γ(s+ 3)Γ(2a+ b− 2)

Γ(s+ 2a+ b+ 1)
∼ cs(2−b−2a), (A12)

with c an arbitrary constant that is not the same throughout. This equates to a memory

parameter of dU = 1/2(3− 2a− b).

(ii) Following the proof of proposition 1(ii), when a + b > 0, then NV ∆U
N,t is bounded. We
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can then deploy the arguments used for part (i). Noting that, following (15),

Cov

{

1

N1/2

N
∑

i=1

∆xui,t,
1

N1/2

N
∑

i=1

∆xui,t−s

}

=
N
∑

i=1

−
σ2υ,i
N

θsi (1− θi)
2

(1− θ2i )

= − 1

N

N
∑

i=1

θs+1
i (1− θi)

(1− θ2i )(1− θi)1−2a
→ −cE

{

θs+1
i

(1− θi)2−2a

}

, (A13)

with c an arbitrary constant. It follows that for large s, applying Stirling’s formula,

E

{

θs+1
i

(1− θi)1−2a

}

= c
Γ(s+ 2)Γ(2a+ b)

Γ(s+ 2a+ b+ 2)
∼ cs(−b−2a), (A14)

with c an arbitrary constant. This equates to a memory parameter of 1/2(1−2a−b) = dU−1.

Note that the result from (ii) can be used to show that the memory of UN,t is dU = 1/2(3−
2a − b) for cases where a + b > 0. The memory of UN,t when a + b ≤ 0, when not even

NV ∆U
N,t is bounded, can be established using theorem 3 in Zaffaroni (2004) with 2a + b − 2

replacing b.

⋄

Proof of Proposition 4

The proof is very close to that for proposition 1, with the obvious difference that, as ǫt is

a common shock then its average does not follow the law of large numbers argument used

with the idiosyncratic shock. The task is to determine when V E
N,t is finite and when it is not.

First note that the quantity

XE
N,t =

N
∑

i,j=1

[

ψiψj
(1− θiθj)

]

, (A15)

will be finite as long as the contribution for households i, j with values θi, θj are in the

locality of 1 is finite. This will depend on whether,

N
∑

i,j=1

[

c2a(1− θi)
a(1− θj)

a

(1− θiθj)

]

, (A16)

is finite. To determine the order of k in the expression of the form (13) that translated to

this expression, we notice that (A16) can be bounded by

N
∑

i=1

[

c2a(1− θi)
2a

(1− θ2i )

]

≤
N
∑

i,j=1

[

c2a(1− θi)
a(1− θj)

a

(1− θiθj)

]

≤
[

N
∑

i=1

ca(1− θi)
a

(1− θ2i )
1/2

]2

. (A17)

To determine finiteness, we first consider the lower bound. Following similar arguments

to those used on equation (A3), we determine this expression to be of order k = 1 − 2a

and hence to be bounded if δ > 1/2 ⇔ b+1
1−2a > 1/2 ⇔ a + b > −1/2. Otherwise it will

go to a delta stable random variable of order 2 − 1/δ = (2b + 2a + 1)/(b + 1). Then we

consider the upper bound. Since the quantity inside the [.] is to be squared, it will only

be bounded if it goes to a delta stable variable of order > 1. That is it will be bounded
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provided δ > 1 ⇔ b+1
1/2−a > 1 ⇔ a+ b > −1/2. Otherwise it will go to a delta stable variable

of order 2− 2/δ = (2b+ 2a+ 1)/(b+ 1). Since both the upper and lower bounds go to the

same distribution for the same values of a and b, the result follows.

⋄

Proof of Proposition 5

The finiteness of SEN,t(λ) away from the origin and the M − 1 zeros induced by temporal

aggregation depends on the finiteness of

SEN,t(λ) =
1

2πN2

∣

∣

∣

∣

∣

N
∑

i=1

(

1− θi
1 + r

)

ψi

1− θie−iλ

∣

∣

∣

∣

∣

2

. (A18)

∣

∣

∣1− θie
−iλ

∣

∣

∣

−1 ∣
∣

∣1− θje
iλ
∣

∣

∣

−1
is finite for all i, j for λ 6= 0 and decreasing in λ. The finiteness

of the spectral density away from the origin will then depend on the finiteness of

N
∑

i,j=1

1

N2

[

c2a(1− θi)
a(1− θj)

a
]

. (A19)

The proof of (i) then follows similar arguments to those used in proposition 4, noting that

N
∑

i=1

[

c2a(1− θi)
2a
]

≤
N
∑

i,j=1

[

c2a(1− θi)
a(1− θj)

a
]

≤
[

N
∑

i=1

ca(1− θi)
a

]2

. (A20)

The lower bound is amenable to Zaffaroni (2004) lemma 1, and will be finite as long as

b+1
−2a > 1/2 ⇔ b+ a > −1. The upper bound, which is a squared term, will be finite as long

as b+1
−a > 1 ⇔ b+ a > −1. In both instances the bound for finiteness is the same.

The proof for (ii) is also similar. We note that the spectral density of the idiosyncratic

component at the origin is

SEN,t(0) =
1

2πN2

[

N
∑

i=1

(

1− θi
1 + r

)

ψi
1− θi

]2

. (A21)

We then note that

N
∑

i=1

[

c2a
(1− θi)

2a

(1− θi)2

]

≤
N
∑

i,j=1

[

c2a
(1− θi)

a(1− θj)
a

(1− θi)(1− θj)

]

≤
[

N
∑

i=1

ca
(1− θi)

a

(1− θi)

]2

. (A22)

Similar arguments to part (i) lead to the conclusion that if b+1
2−2a > 1/2, b+1

1−a > 1 ⇔ b+ a > 0

then SEN,t(0) is finite.

⋄

Proof of Proposition 6

The proof follows from Lippi and Zaffaroni (1998) Theorem 11, using (18) allowing a+ b to

replace b.

⋄
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Data Source

The data are taken from the University of Michigan’s Panel Study of Income Dynamics

(PSID). The PSID is an annual survey of the households in its sample and any split-offs:

new households including members who had been in households included in the sample.

Household consumption data are restricted to questions on food: consumed inside the home;

outside the home; and, purchased by food stamps. The longest unbroken spell for these data

is the 14 years from 1974 to 1987. The sample considered here consists of those households

who existed from 1972 to 1987, in order to provide instruments at sufficient lags, and live in

the 48 contiguous states, in order to make common shocks easier to identify. In order to avoid

additional variation due to a change in the main decision maker, the sample is restricted

to those households who maintained the same head throughout this period. Households

with a retired head are removed. As part of data collection, the degree of imputation in

the responses given to some of the questions is recorded by the interviewer. Our sample is

restricted to households whose answers needed minimal imputation. Since the latter part

of the chapter examines heterogeneous dynamic models, upon which the extremes of the

underlying distribution is most important, the only additional households who are removed

as outliers are those who claim to spend nothing in one period. This leaves a balanced panel

of 736 households. The data are weighted using the Bureau of Labor statistics series for

food inside and outside the home, with 1984 as the base year.

The PSID also records a number of other relevant variables for households, including an

estimate of the food needs of the household based on its composition. Other demographic

variables of potential interest include the age12, gender and race of the head. Figures for

household income, employment, hours worked and whether the household received any lump-

sum payments are also collected for the previous calendar year.

12Since data collection is only roughly annual it is possible for the head of the household to have zero, one
or two birthdays between surveys. Where lagged demographic variables are used in estimates, however, the
lag of age is set to the current age minus one. This ensures the perfect collinearity between age, constant
and lag age that means that the latter can be omitted from any partialling procedures with no effect, rather
than leaving three series that are very nearly collinear
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