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Abstract
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The continuous time ARMA(2, 1) system is considered in detail and the equivalence of the
discrete time representations in the two methods is demonstrated for models with stock
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process observed at discrete intervals. This is used to derive conditions for the embeddability
of such processes.
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1. INTRODUCTION

Interest continues to grow in time series models with dynamics that operate continuously

through real time but which can be estimated from data collected at discrete points in time

and/or over discrete intervals. A range of techniques has been developed to estimate the

parameters of linear continuous time systems. In econometric applications, the most heav-

ily deployed have been those involving: spectral representations, Robinson (1976); Kalman

filtering of state space forms, Harvey and Stock (1985) and Zadrozny (1988); and, Gaussian

estimation using the exact discrete time representation, Bergstrom (1983). Bergstrom (1990)

eloquently conveyed the advantages of using exact discrete time representations of stochastic

differential equation systems, which include efficiency of estimators and ease of computation.

Analysts using this method incur some initial set-up costs in deriving the exact discrete rep-

resentation, but these can also be seen as an opportunity to impose a priori restrictions

on parameters. Techniques have been developed to derive the exact discrete representation

of higher order continuous time systems with mixed stock-flow data, exogenous variables,

stochastic trends, cointegrating relationships and mixed differential-difference equations; see,

for example, Bergstrom (1986, 1997), McCrorie (2001) and Chambers (1999, 2009). The ex-

act discrete representation of models with moving average errors has been slower to develop,

in part because the vast majority of the literature has centred on models with errors defined

as random measures, which are not mean-square differentiable1, but this has been addressed

recently by Chambers and Thornton (2011).

In the fundamental paper in the literature, Bergstrom (1983) considers the continuous

time AR(p) process, for the n× 1 vector x(t)

d[Dp−1x(t)] = [a0 +Ap−1D
p−1x(t) + . . .+A0x(t)]dt+ ζ(dt),

where D denotes the mean square differential operator, a0 is an n× 1 vector, A0, . . . , Ap−1

are n× n matrices of unknown coefficients, and ζ(dt) is a random measure. He shows that

the unique, in the mean square sense, solution to this system, subject to initial conditions,

takes the form x(t) = y1(t) where y1(t) is obtained from partitioning the np× 1 vector, y(t)

into p n× 1 vectors, y1(t), . . . , yk(t), and

y(t) =

∫ t

0
e(t−r)Ãζ̄(dr) + eÃy(0) + (eÃ − I)a0,

1See Bergstrom (1984) for extensive discussion of this point.
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where

a =



0

0

...

0

a0


, Ã =



0 I 0 . . . 0

0 0 I . . . 0

...
...

0 0 0 . . . I

A0 A1 A2 . . . Ap−1


, ζ̄ =



0

0

...

0

ζ


,

and where the matrix exponential is defined by eAt = I +
∑∞

j=1(At)j/j!.

The uniqueness of this solution is particularly interesting, since the state space repre-

sentation of a continuous time AR(p) underlying Ã is not itself unique. A solution replacing

Ã with the matrix

A =



Ap−1 I 0 . . . 0

Ap−2 0 I . . . 0

...
...

A1 0 0 . . . I

A0 0 0 . . . 0


,

is equally valid. Although the form Ã has been widely used in the exact discrete represen-

tation literature, the form A offers advantages in models with moving average errors. It has

been used to estimate continuous time ARMA models by, among others, Zadrozny (1988)

and Brockwell2 (2004) using Kalman filter techniques and by Chambers and Thornton (2011)

using the exact discrete representation.

It is clear that the matrices A and Ã are not equivalent. Moreover, in general, eA 6= eÃ.

Nevertheless, this paper demonstrates that this apparent conflict is overcome when the

two solutions are transformed to describe the relationship between the observable y1(t) =

x(t) and its lags, using methods given in Chambers (1999). We consider in detail the

most tractable form of the model, a continuous time ARMA(2, 1), comparing the results

of Chambers and Thornton (2011) with those derived using Chambers (1999). Using a

stochastic integration-by-parts formula, established by McCrorie (2000), we demonstrate

that equivalence also holds for the representation when ζ(dt) is replaced with a moving

average stochastic process, even though this does not follow necessarily from the equivalence

of autoregressive parameters. Not only does this address an interesting puzzle, it also gives

2Brockwell (2004) uses A for the state equation but captures the moving average error through an obser-
vation equation.
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further insight into the impact of a moving average error in a continuous time model in a

widely applicable form. In common with aggregation of discrete time models3 the inclusion

of a moving average error does not change the order of its exact discrete representation.

Nevertheless we show it offers more flexibility in fitting moments in the data. Our results

depend upon the development of some general mappings between the exponents of the

coefficient matrices in the two state space forms, which are of wider interest.

The paper is organised as follows. Section 2 defines the continuous time ARMA system,

and discusses the mappings between the two possible state space forms and between their

exponents. Section 3 examines the continuous time ARMA(2, 1) system in some detail. The

exact discrete representations for the model in the two state space forms are then shown

to be equivalent. Section 4 uses the exact discrete representation of this model to discuss

the range of discrete time process which can be embedded in it. Section 5 concludes, while

proofs and derivations are contained in an Appendix.

2. STATE SPACE REPRESENTATIONS OF CONTINUOUS TIME ARMA

MODELS AND THEIR SOLUTIONS

The continuous time ARMA(p, q) model with intercept for the n × 1 vector x(t), t > 0 is

given by

Dpx(t) = a0 +Ap−1D
p−1x(t) + . . .+A0x(t) + u(t) + Θ1Du(t) + . . .+ ΘqD

qu(t), (1)

where the n× 1 vector a0 and the n×n matrices A0, . . . , Ap−1,Θ1, . . . ,Θq contain unknown

coefficients. The process u(t) is an n × 1 continuous time white noise vector with variance

matrix Σ. Systems such as (1) are of widespread interest. In this form they are not physically

realisable, but become so when both sides are integrated p times. In a continuous time

ARMA model we must impose the condition that p > q so that x(t) itself has an integrable

spectral density matrix and, hence, finite variance.

One representation of (1), close to that widely used in the exact discrete representation

literature, defines the np × 1 state vector ỹ(t) = [x(t)′, Dx(t)′, . . . , Dp−1x(t)′]′, the error

vector ũ′(t) = [0′, 0′, . . . , 0′, υ(t)′], with a moving average error

υ(t) = u(t) + Θ1Du(t) + . . .+ ΘqD
qu(t),

3Once the order of aggregation is reasonably large.
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and matrices a and Ã as defined in section 1. A simple extension of equation (3) of Chambers

(1999) enables the system to be written

Dỹ(t) = a+ Ãỹ(t) + ũ(t), t > 0. (2)

The formulae in Chambers (1999) remain exactly valid for (2), but the derivation of the

autocovariance properties of the resulting discrete time disturbance vector is complicated

by the presence of the derivatives of u(t) in ũ(t). In the next section we outline how these

should be evaluated.

An alternative state space representation is used in Chambers and Thornton (2011), in

which the np× 1 state vector is defined as y(t) = [y1(t)′, . . . , yp(t)
′]′, with y1(t) = x(t). The

system may then be written as

Dy(t) = a+Ay(t) + Θu(t), (3)

where a and A as defined in section 1 and Θ =
(
Θ′p−1,Θ

′
p−2, . . . ,Θ

′
1, I
)′

, with Θj = 0 for

j > q.

The solution to (3), conditional on y(0), can be written

y(t) = eAty(0) +

∫ t

0
[a+ eA(t−s)Θu(s)]ds, t > 0, (4)

while the solution to (2), conditional on ỹ(0), can be written

ỹ(t) = eÃtỹ(0) +

∫ t

0
[a+ eÃ(t−s)ũ(s)]ds, t > 0. (5)

It is clear that the two solutions will not, in general, be identical. There is, however, a

mapping between the matrices A and Ã, which holds at the level of the n× n sub-matrices

of autoregressive parameters. We use A[i,j] to denote the n× n sub-matrix in the i’th block

row of the j’th block column of A. Let the operator (4) denote translation of these sub-

matrices across the transverse diagonal, so that when A is partitioned into these p2 square

sub-matrices, the block A4[i,j] ≡ A[p+1−j,p+1−i]. Clearly A4 = Ã and Ã4 = A. The following

proposition identifies a useful mapping.

PROPOSITION 1. Let Fand F̃ denote, respectively, the partitioned exponents of the

matrices A and Ã defined above and assume that A0 6= 0. Then

(i) F = F̃4 if and only if AiAj = AjAi ∀i, j = 0, ..., p− 1,

otherwise
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(ii) F[i,j] = F̃4[i,j] if and only if i = 1.

Proposition 1 shows that F = F̃4 in the case of scalar processes or vector process with

only one non-zero, non-diagonal sub-matrix. This is because in this near scalar case, the

transverse block transpose operator shares the properties of the more familiar transpose

operator. Under the more general case, it is still possible to map the top block row of F

to the last block column of F̃ . Two further corollaries are worth highlighting. The first

is that the relations used in the proof of proposition 1 also show that in the specific case

of an integrated process, which has a zero root with A0 = 0, then F[p,j] = F̃4[p,j] = 0, ∀j.

The second is that Proposition 1 applies equally well when F and F̃ are redefined as Am

and Ãm for integer m. Such matrices are common in state-space solutions to temporally

aggregated systems in discrete time, and our results can easily be translated to rival state

space representations of such models.

3. THE CONTINUOUS TIME ARMA(2, 1) PROCESS

We now discuss the continuous time ARMA(2, 1) system in some detail. This is the simplest

case to capture the essential features of continuous time ARMA models while remaining

relatively tractable, the integration-by-parts technique becoming unwieldy for higher order

models. The system is therefore

D2x(t) = a0 +A1Dx(t) +A0x(t) + u(t) + Θ1Du(t), −∞ < t <∞. (6)

We proceed as if the underlying model is stationary, although the non-stationary model where

A0 equals 0, is nested as a special (and simpler) case; see the application to consumption

data in Chambers and Thornton (2011). In the first instance we consider the case in which

the variables are stocks, i.e. the observed sequence is x1, x2, . . . , xT where xt = x(t) (t =

1, . . . , T ) and T denotes sample size. For ease of notation, we define the partition of a 2n×2n

matrix K into four n× n sub-matrices as Kij ≡ K[i,j] (i, j = 1, 2).

3.1. Chambers and Thornton (2011) approach

The solution for the state vector is

y(t) =

∫ t

−∞
[a+ eA(t−s)Θu(s)]ds,
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where

A =

 A1 I

A0 0

 , Θ =

 Θ1

I

 .

From the solution of (4) it is straightforward to show that y(t) satisfies the stochastic

difference equation

y(t) = c+ Cy(t− 1) + ε(t), ε(t) =

∫ t

t−1
C(t− s)Θu(s)ds, t = 1, . . . , T, (7)

where C(r) = erA, C = C(1) = eA and c = Φa, Φ = Φ(1) and where Φ(r) =
∫ r
s=0 e

sAds.

The objective is then to derive a stochastic difference equation for xt.

Application of Corollary 1 in Chambers and Thornton (2011) with p = 2 yields

xt = f + F1xt−1 + F2xt−2 + ηt, (8)

with, after simplification, F1 = C11 + C12C22C
−1
12 , F2 = C12[C21 − C22C

−1
12 C11] and f =

[Φ12 + C12(Φ22 − C22C
−1
12 Φ12)]a0. Assumptions 1–3 in Chambers and Thornton (2011),

which relate to reconstructability and detectability in optimal control theory, ensure that

C−1
12 and C−1

22 exist.

Theorem 3 of Chambers (1999) enables the disturbance vector to be written

ηt = η(t) = C0ε(t) + C1ε(t− 1),

where ε(t) is defined in (7), C0 = S1 and C1 = C12[S2 − C22C
−1
12 S1]. Simplifying,

ηt =

∫ t

t−1
{C12(t− r) + C11(t− r)Θ1}u(r)dr

+ C12

∫ t−1

t−2

{[
C22(t− 1− r)− C22C

−1
12 C12(t− 1− r)

]
+

[
C21(t− 1− r)− C22C

−1
12 C11(t− 1− r)

]
Θ1

}
u(r)dr.

3.2. Augmented Bergstrom (1983) approach

An alternative way of deriving the exact discrete model in (8) is to use the approach of

Bergstrom (1983) with his continuous time white noise disturbance replaced by the contin-

uous time MA(1). Theorem 2 of Bergstrom (1983) delivers

xt = g +G1xt−1 +G2xt−2 + ht, (9)
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where G1 = H11 +H12H22H
−1
12 , G2 = H12[H21 −H22H

−1
12 H11] and

H = eÃ =

 H11 H12

H21 H22

 , Ã =

 0 I

A0 A1

 .
The intercept term is g = (I −G1 −G2)A−1

0 a0 = [Ψ12 +H12(Ψ22 −H22H
−1
12 Ψ12)]a0 where

Ψ =

∫ 1

r=0
eÃrdr =

 Ψ11 Ψ12

Ψ21 Ψ22

 .
Furthermore the discrete time disturbance in (9) is

ht = h(t) =

∫ t

t−1
H12(t− r)[u(r) + Θ1Du(r)]dr +

∫ t−1

t−2
P (t− 1− r)[u(r) + Θ1Du(r)]dr,

where H(r) = erÃ and P (r) = H12[H22(r)−H22H
−1
12 H12(r)].

In the case of the continuous time ARMA (2, 1), it is possible to evaluate these integrals

of the derivative Du(t) using the following integration by-parts formula, used by Simos

(1996) and established formally by McCrorie (2000).

LEMMA Let x(t) be an n×1 continuous time mean square differentiable random process.

Then the following integration-by-parts formula is valid:∫ t

t−1
ψ(s)Dx(s)ds = ψ(t)x(t)− ψ(t− 1)x(t− 1)−

∫ t

t−1
ψ′(s)x(s)ds.

Applying the lemma to the first term in ht involving Du(r) gives∫ t

t−1
H12(t− r)Θ1Du(r)dr

= H12(0)Θ1u(t)−H12(1)Θ1u(t− 1)−
∫ t

t−1
H ′12(t− r)Θ1u(r)dr

= −H12Θ1u(t− 1) +

∫ t

t−1
H22(t− r)Θ1u(r)dr.

The final equality results since H ′(t − r) = (d/dr)eÃ(t−r) = −ÃH(t − r), H(0) = I and

H(1) ≡ H. In a similar fashion,∫ t

t−1
H22(t− r)Θ1Du(r)dr

= H22(0)Θ1u(t)−H22(1)Θ1u(t− 1)−
∫ t

t−1
H ′22(t− r)Θ1u(r)dr

= Θ1u(t)−H22Θ1u(t− 1)

+A0

∫ t

t−1
H12(t− r)Θ1u(r)dr +A1

∫ t

t−1
H22(t− r)Θ1u(r)dr.
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After substituting these expressions back, terms involving u(t− 1) and u(t− 2) cancel out,

meaning that ht, like ηt, comprises terms involving integrals with respect to u(t),

ht =

∫ t

t−1
{H12(t− r) +H22(t− r)Θ1}u(r)dr

+ H12

∫ t−1

t−2

{
[H22(t− 1− r)−H22H

−1
12 H12(t− 1− r)]

+ [A0H12(t− 1− r) +A1H22(t− 1− r)−H22H
−1
12 H22(t− 1− r)]Θ1

}
u(r)dr.

There are clear similarities in the relationship between the matrix exponentials and the

discrete time autoregressive matrices in (8) and (9), although the underlying state space

matrices are different (A and Ã). The disturbance vectors do, however, appear to be rather

different. The presence of the submatrices A0 and A1 in ht means that even if one were to

take for granted an equivalence of the autoregressive parts, the equivalence of the moving

average errors does not necessarily follow. Nevertheless, this is established in the following

proposition.

PROPOSITION 2. Let x(t) be generated by (6) and let the observed sequence be xt = x(t)

(t = 1, . . . , T ). Then the discrete time representations (8) and (9) are equivalent in the sense

that: (i) F1 = G1; (ii) F2 = G2; (iii) f = g; and, (iv) ηt = ht.

The proof of the above result extends the method of Bergstrom (1983) to account for the

continuous time MA disturbances. Although it is, in principle, applicable to higher-order

models, doing so would require repeated sequential application of Lemma 1 which renders

it the less attractive approach.

The various expressions for ηt and ht do, however, help to highlight the impact of the

moving average error in a continuous time model on the structure of its exact discrete

representation. The Θ1 matrix does not just scale all of the moments of ηt proportionally.

While these moments are still subject to constraint by the C matrix, they are not rigidly

determined by it and so the analyst has more freedom to produce a statistically acceptable

model.

Although the recursive ‘Gaussian’ techniques in which the exact discrete representation

is employed offer computational advantages over rival methods, they still involve finding the

Choleski decomposition of the covariance matrix. This matrix has a block Toeplitz structure

with non-zero blocks around the principal diagonal corresponding to the order of moving
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average in the error term in the exact discrete representation, which is of order p − 1 if

the data are stocks and p if the data contain flows, see Bergstom (1983). Because they do

not increase this order, including a moving average error in the underlying continuous time

model is the computationally far easier way of adding flexibility than increasing the order

of the autoregressive part. The empirical relevance of continuous time models with moving

average components was demonstrated by Chambers and Thornton (2011) in applications

looking at sunspot, interest rate and household consumption data.

It is straightforward to extend the mapping to the case when xt is a flow variable,

i.e. when xt =
∫ t
t−1 x(τ)dτ (t = 1, . . . , T ) with the consequence that ηt =

∫ t
t−1 η(τ)dτ and

ht =
∫ t
t−1 h(τ)dτ . Demonstrating equivalence in models involving both stocks and flows

is considerably more complicated and we do not attempt it here. The complications arise

because the relevant selection matrices, as set out in Chambers (1999), no longer translate

to the partitions of C and H used above. The same is largely true of higher order models

where, for example, C11 no longer has the same dimension as C22 and the matrix C12

extends beyond the top block row of C. Establishing equivalence for scalar processes is more

straightforward. Doing so enables us to invert the mapping between the continuous time

and discrete time models and thus consider when it is possible to ‘embed’ a discrete time

process in a continuous time one.

4. EMBEDDING A DISCRETE TIME ARMA IN A CONTINUOUS TIME

ARMA

The question of whether it is possible for a real valued discrete time scalar ARMA process

to have been generated by observing a continuous time ARMA process at regular discrete

intervals, known as ‘embedding’ the discrete time process in a continuous time process, has

been considered by, among others, Phillips (1959). More recently, He and Wang (1989)

develop arguments that are closely aligned to the exact discrete representation based on

expressing a discrete time ARMA (p, q), with p > q as a p+ r dimensional AR(1), where r

is the number of negative real roots in the autoregressive polynomial. Their decision not to

discuss the impact of a moving average error is shown to be an oversight by Brockwell (1995)

and by Brockwell and Brockwell (1998), who show that discrete time processes with zeros on

the unit circle cannot be embedded in stationary continuous time processes. These analyses
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and that by Huzii (2007), who gives some general conditions and discusses the discrete time

ARMA (2, 1) at length, are based on frequency domain representations of the processes.

The exact discrete representation remains a valid analysis provided due care is taken over

the moving average terms. One advantage is that, subject to initial conditions, it does not

depend on stationarity. In addition, it naturally provides an explicit mapping from the four

dimensional parameter space defining a discrete time ARMA (2, 1) to the four dimensional

parameter space defining a continuous time process from which it may have been sampled,

subject to consideration of aliasing, see Priestley (1981, pp 226). The following mapping

also has practical uses enabling an analyst to use estimates from a discrete time model as

initial values in a continuous time maximisation procedure.

Consider the discrete time ARMA (2, 1) process

yt − b1yt−1 − b2yt−2 = (1− µL)(1− νL)yt = (1− φL)et, t = 1, . . . , T, (10)

where et is a zero mean white noise process with variance σ2
e and the continuous time process

D2x(t)− a1Dx(t)− a0x(t) = (D−α)(D− β)x(t) = u(t) + θDu(t), −∞ < t <∞,(11)

where u(t) is a zero mean white noise process with variance σ2
u.

PROPOSITION 3. Let yt be generated by (10). Let x(t) be generated by (11) and let

the observed sequence be xt = x(t) (t = 1, . . . , T ). Then the two processes are equivalent if:

(i) eα = µ, eβ = ν;

(ii) θ = ±

√
βg(µ, ν;φ)− αg(ν, µ;φ)

αβ[αg(µ, ν;φ)− βg(ν, µ;φ)]
; and,

(iii) σ2
u =

2αβ(α2 − β2)(1 + φ2)σ2
e

β(1− α2θ2)(1− µ2)(1 + ν2)− α(1− β2θ2)(1 + µ2)(1− ν2)
,

where g(x, y;φ) = (1− x2)[φ(1 + y2)− (1 + φ2)y] = (1− x2)(φ− y)(1− φy).

Note that terms in odd powers of θ have all cancelled, meaning that moving average

processes with the same absolute value for θ are observationally equivalent. Taking the

positive square root ensures that the process is ‘minimum phase’, which corresponds to

invertibility in a discrete time process.

The question of embeddability is equivalent to asking under what circumstances will

10



the processes yt and x(t) be real. That is to say for which real parameters (b1, b2, φ, σe)

does the mapping present parameters (a0, a1, θ, σu) that are also real numbers. For (b1, b2)

to be real then µ and ν must either be conjugates or real valued. When µ and ν are a

conjugate pair (including identical real roots), so are the parameters α = ln(µν)/2 + iλ

and β = ln(µν)/2 − iλ, with λ = cos−1( µ+ν
2
√
µν ) + 2πj, j = 0,±1,±2, . . . and so a0 and a1

are real. In this case the autoregressive parameters are subject to aliasing, with α and β

identified only up to the addition of 2πij, with consequences for the identification of a0, see

the discussion in Brockwell (1995). When µ and ν are not conjugates, neither are α and β.

The parameters a0, a1 will only be real if α and β are. This will be the case if µ and ν are

positive and so α = ln(µ) and β = ln(ν), but cannot be if either µ or ν are negative. Note

that the need for both yt and xt to be real valued rules out aliasing in this case.

Given that φ is real, σu and the values of x(t) are real if θ is. In the special case of

conjugate roots where µ and ν are equal, real and negative, the expression in Proposition

3 (ii) simplifies to θ = i/
√
a0, which must be imaginary. It is not possible, therefore, to

embed such discrete time processes in continuous time ARMA(2, 1) processes, although it

may be possible in higher order continuous time ARMA processes, see Huzii(2007). For a

given triple, (µ, ν, φ) there needs to exist (α, β), with eα = µ and eβ = ν such that the

expression in Proposition 3(ii) is real. This is considered below.

PROPOSITION 4. The real valued process yt generated by (10) can be embedded in a

continuous time process generated by (11) provided:

(i) for real α, β:

αβ[g(µ, ν;φ) + g(ν, µ;φ)]2 > (α+ β)2[g(µ, ν;φ)g(ν, µ;φ)];

(ii)whereas for complex α, β:

αβ[g(µ, ν;φ) + g(ν, µ;φ)]2 < (α+ β)2[g(µ, ν;φ)g(ν, µ;φ)].

The conditions in Proposition 4 reflect the general condition that θ must be the square

root of a positive real number. Since both the numerator and denominator are real if µ

and ν are real, the test is whether the product of numerator and denominator is positive.

If, however, µ, ν are a conjugate pair then so are α, β and g(µ, ν;φ), g(ν, µ;φ) and both

numerator and denominator are imaginary. The test is then that their product is real and

negative.
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The restrictions on the parameter φ given µ and ν to ensure embeddability can be

determined by considering the shape and the roots of the quadratic functions: qN1 (1 +φ2) +

qN2 φ for the numerator and αβ[qD1 (1 + φ2) + qD2 φ] for the denominator, with

qN1 = α(1− ν2)µ− β(1− µ2)ν,

qN2 = −[α(1− µ2)(1 + ν2)− β(1− ν2)(1 + µ2)] = −(α− β)(1− µ2ν2)− (α+ β))(µ− ν),

qD1 = [β(1− µ2)ν − α(1− ν2)µ],

qD2 = −[β(1− µ2)(1 + ν2)− α(1− ν2)(1 + µ2)] = (α− β)(1− µ2ν2)− (α+ β))(µ− ν).

The sign of the numerator and denominator depends on whether they have real roots, that

is on the sign of

(qN2 )2 − 4(qN1 )2 = (qD2 )2 − 4(qD1 )2 = (1− µ2)(1− ν2)[(α− β)2(1− µν)2 − (α+ β)2(µ− ν)2],

and on the signs of qN1 qD1 .

In the case of complex conjugate roots, α = a+ ib and β = a− ib, with b > 0, without

loss of generality, then µ = eα[cos(b) + i sin(b)] while ν = eα[cos(b)− i sin(b)] and the above

expressions become

qN1 = −2ea[a sin(b)(1 + e2a) + b cos(b)(1− e2a)]i,

qN2 = −2[4ae2a cos(b) sin(b) + b(1− e4a)]i,

qD1 = −2ea[a sin(b)(1 + e2a)− b cos(b)(1− e2a)]i,

qD2 = −2[4ae2a cos(b) sin(b)− b(1− e4a)]i,

(qN2 )2 − 4(qN1 )2 = (qD2 )2 − 4(qD1 )2 = 4
{

1 + e4a − e2a[cos2(b)− sin2(b)]
}
×

[b2(1− e2a)2 − 4a2e2a sin2(b)]i2.

We consider the case of the stationary CARMA(2, 1) in more detail. In the case of real

roots, with µ ≥ ν without loss of generality, it can be shown (see appendix) that qN1 > 0 and

qD1 > 0, meaning that both the numerator and denominator are convex. This means that

both numerator and denominator have real roots and so change sign over their domain. For

α 6= β these sign changes will not occur simultaneously and so there will be blind spots -

two regions of φ for given µ 6= ν that cannot be hit with a CARMA(2, 1).

The case of complex roots is complicated by the possibility of aliasing, which has notice-

ably different effects from aliasing on the autoregressive and moving average parts. Adding

12



(or subtracting) multiples of 2π to the coefficient b has no effect on µ and ν while changing

the shape of numerator and denominator, potentially violating the conditions in Proposition

4 for some values but not for others.

The embeddability literature has so far concentrated on whether it is possible to embed a

discrete stock variable in a continuous time models. Not all discrete time processes are stocks,

however. Since their exact discrete representation is known, see Chambers and Thornton

(2011), this method opens up the possibility of considering flow variables and even vectors

containing both stock and flow variables. This is worthy of further research.

5. CONCLUDING COMMENTS

This paper has explored different methods for deriving the exact discrete time representa-

tions of continuous time autoregressive moving average processes. We have demonstrated

the equivalence between the exact discrete time representations for data generated by a

continuous time ARMA(2, 1) system by the methods of Bergstrom (1983), with a support-

ing lemma, and Chambers and Thornton (2011). The exploration of the two forms gives

further insight into the effect of introducing a moving average error on the exact discrete

representation. The moments of the error term remain influenced, but not determined, by

the underlying autoregressive model, offering the analyst greater flexibility to model the

data parsimoniously at a relatively small additional cost in computation. When applied to

univariate models, the exact discrete time representation enables a mapping to be drawn

from the parameters of an observed discrete ARMA to those of a continuous time process

from which it may have been sampled. By considering when that mapping is to the real line

rather than the complex plane, we have considered the question of embeddability.
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APPENDIX

Proof of Proposition 1. Note that I4 = I and X4+Y 4 = (X+Y )4 for conformable

matrices, X and Y . Establishing the proposition for the matrix exponential then reduces

to establishing it for arbitrary integer powers of A and Ã, which we do by induction. First

suppose that for some positive integer r, (A4)r = (Ar)4. Evidently this is true for r = 1.

Then note that every square matrix must commute in multiplication with powers of itself.

Given this, the necessary and sufficient condition that the i, j’th block of (A4)r+1 should

equal the i, j’th block of (Ar+1)4 is that

(A4)r+1
[i,j] =

p∑
k=1

A4[i,k](A
4)r[k,j] =

p∑
k=1

A[k,p+1−i]A
r
[p+1−j,k],

must equal

(Ar+1)4[i,j] = Ar+1
[p+1−j,p+1−i] =

p∑
k=1

Ar[p+1−j,k]A[k,p+1−i].
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In other words, the sub-matrices that give rise to the i, j’th block should ‘commute in sum’.

This establishes the sufficiency of (i).

Now consider the following equivalent expressions for the matrix Ar+1, firstly AAr and then

ArA: 

Ap−1A
r
[1,1] +Ar[2,1] Ap−1A

r
[1,2] +Ar[2,2] . . . Ap−1A

r
[1,j] +Ar[2,j] . . .

Ap−2A
r
[1,1] +Ar[3,1] Ap−2A

r
[1,2] +Ar[3,2] . . . Ap−2A

r
[1,j] +Ar[3,j] . . .

Ap−3A
r
[1,1] +Ar[4,1] Ap−3A

r
[1,2] +Ar[4,2] . . . Ap−3A

r
[1,j] +Ar[4,j] . . .

...
...

...

Ap−iA
r
[1,1] +Ar[i+1,1] Ap−iA

r
[1,2] +Ar[i+1,2] . . . Ap−iA

r
[1,j] +Ar[i+1,j] . . .

...
...

...

A0A
r
[1,1] A0A

r
[1,2] . . . A0A

r
[1,j] . . .



;



∑p
k=1A

r
[1,k]Ap−k Ar[1,1] . . . Ar[1,j−1] . . .∑p

k=1A
r
[2,k]Ap−k Ar[2,1] . . . Ar[2,j−1] . . .∑p

k=1A
r
[3,k]Ap−k Ar[3,1] . . . Ar[3,j−1] . . .

...
...

...∑p
k=1A

r
[i,k]Ap−k Ar[i,1] . . . Ar[i,j−1] . . .

...
...

...∑p
k=1A

r
[p,k]Ap−k Ar[p,1] . . . Ar[p,j−1] . . .



.

We need only consider whether the ‘commute in sum’ property holds in the first block column.

The expansion of ArA establishes that Ar+1
[i,j] = Ar[i,j−1], j = 2, . . . , p, ∀i, from which it follows

from that if the condition holds for Ar[i,1], ∀r ≤ r it holds for all Ar[i,j], ∀r ≤ r+ j − 1, but

if it fails for Ar̄[i,1] then it fails for Ar̄+j−1
[i,j] .

The sufficiency of (ii) then depends on showing thatAr+1
[1,1] =

∑p
k=1A

r
[1,k]Ap−k =

∑p
k=1Ap−kA

r
[1,k].

Comparing terms along the principal diagonals above establishes Ar[i,i−1] = Ap−iA
r
[1,i] +

Ar[i+1,i] for i = 2, 3, . . . , p− 1. Recursive substitution of this equality, ending with Ar[p,p−1] =

A0A
r
[1,p], into AAr establishes ‘commute in sum’ for this block.

Then note that this condition refers only to sub-matrices in the first block row of Ar. Given

that the mapping holds for r = 1 across this block row, it holds ∀r across the block row

regardless of whether it holds across other block rows, establishing the sufficiency of (ii).

To see the necessity of (i) and (ii), consider the generic term Ar+1
[i,1] . Note that the matrices
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Ap−i and Ar[1,1] are not paired together in multiplication in the bottom expression for i > 1.

Nor are they multiplied together to form any other block element. Thus
∑p

k=1A
r
[i,k]Ap−k =∑p

k=1Ap−kA
r
[i,k] for given i > 1 if and only if Ar[i,k]Ap−k = Ap−kA

r
[i,k], ∀k. �

Proof of Proposition 2. We first establish some useful mappings. For the CARMA

(2, 1), we simplify the above to

Ar+1 =

 Ar11A1 +Ar12A0 Ar11

Ar21A1 +Ar22A0 Ar21

 =

 A1A
r
11 +Ar21 A1A

r
12 +Ar22

A0A
r
11 A0A

r
12

 ,
and

Ãr+1 =

 Ãr12A0 Ãr11 + Ãr12A1

Ãr22A0 Ãr21 + Ãr22A1

 =

 Ãr21 Ãr22

A0Ã
r
11 +A1Ã

r
21 A0Ã

r
12 +A1Ã

r
22


Comparing blocks, it follows that from the definition of the matrix exponential that:

C11(s) = A1C12(s) + C22(s);

C21(s) = A0C12(s);

C11(s)A1 + C12(s)A0 = A1C11(s) + C21(s);

H22(s) = H11(s) +H12(s)A1; and,

H21(s) = H12(s)A0.

While, from proposition 1, it follows that:

H22(s) = C422(s) = C11(s); and,

H12(s) = C412(s) = C12(s).

We use these mappings to establish:

(i) G1 = H11 +H12H22H
−1
12 = C11 − C12A1 + C12 (A1C12 + C22)C−1

12

= C11 + C12C22C
−1
12 = F1;

and,

(ii) G2 = H12

(
H21 −H22H

−1
12 H11

)
= C12

(
C12A0 − (C22 +A1C12)C−1

12 (C11 − C12A1)
)

= C12

(
C12A0 −A1C11 +A1C12A1 + C22A1 − C22C

−1
12 C11

)
= C12

(
C21 − C22C

−1
12 C11

)
= F2.

(iii) Since Φ(r) is also the sum of the identity matrix and sequential ascending powers of
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A, the mappings within and between C and H apply within and between Φ and Ψ. Equality

between f and g comes from applying these mappings and noting that

Ψ22 −H22H
−1
12 Ψ12 = (A1Φ12 + Φ22)− (A1C12 + C22)C−1

12 Φ12 = Φ22 − C22C
−1
12 Φ12

(iv) To show equivalence between ht and ηt, we utilise the mappings from proposition

1, to write,

ht =

∫ t

t−1
{C12(t− r) + C11(t− r)Θ1}u(r)dr

+ C12

∫ t−1

t−2

{
C11(t− 1− r)− C11C

−1
12 C12(t− 1− r)

}
u(r)dr

+ C12

∫ t−1

t−2

{
A0C12(t− 1− r) + (A1 − C11C

−1
12 )C11(t− 1− r)

}
Θ1u(r)dr.

Since C11(t− 1− r)−C11C
−1
12 C12(t− 1− r) = C22(t− 1− r)−C22C

−1
12 C12(t− 1− r), results

from substituting C11(t− 1− r) = A1C12(t− 1− r) +C22(t− 1− r) into the second line and

by substituting A0C12(t − 1 − r) = C21(t − 1 − r) and (A1 − C11C
−1
12 ) = C22C

−1
12 into the

final line establishes equivalence. �

Proof of Proposition 3. In this scalar case we base our analysis around Lemma 1.

Firstly we factorise (11)

(D − α)(D − β)x(t) = u(t) + θDu(t),

then repeated solution of the differential equations gives the exact discrete representation,

(1− eαL)(1− eβL)xt = ηt,

where

ηt =

∫ t

s=t−1

∫ s

r=s−1
eβ(t−s)eα(s−r)[u(r) + θDu(r)]drds.

The mapping in (i) follows directly. The mappings in (ii) and (iii) depend on matching the

covariance structure of ηt to that of (1− φL)et. To this end, note that∫ t

s=t−1

∫ s

r=s−1
eβ(t−s)eα(s−r)ζ(r)drds

=

∫ t

r=t−1

∫ t

s=r
eβte−αre(α−β)sζ(r)dsdr +

∫ t−1

r=t−2

∫ r+1

s=t−1
eβte−αre(α−β)sζ(r)dsdr

=

∫ t

r=t−1

1

α− β
[eα(t−r) − eβ(t−r)]ζ(r)dr −

∫ t−1

r=t−2

1

α− β
[eβeα(t−1−r) − eαeβ(t−1−r)]ζ(r)dr,
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and that by Lemma 1,∫ s

r=s−1
eα(s−r)Dζ(r)dr = ζ(s)− eαζ(s− 1) + α

∫ s

r=s−1
eα(s−r)ζ(r)dr.

Using these expressions we can write ηt as∫ t

r=t−1

{
1 + αθ

α− β

[
eα(t−r) − eβ(t−r)

]
+ θeβ(t−r)

}
u(r)dr

−
∫ t−1

r=t−2

{
1 + αθ

α− β

[
eα(t−1−r)eβ − eαeβ(t−1−r)

]
+ θeαeβ(t−1−r)

}
u(r)dr

=
1

α− β

∫ 1

s=0

{[
(1 + αθ)eαs − (1 + βθ)eβs

]
u(t− s)

−
[
(1 + αθ)eαseβ − (1 + βθ)eαeβs

]
u(t− s− 1)

}
ds,

the final equality following a change of variables. It then follows that E
{
η2
t

}
=

σ2
u

(α− β)2

∫ 1

0

{[
(1 + αθ)eαs − (1 + βθ)eβs

]2
+
[
(1 + αθ)eαseβ − (1 + βθ)eαeβs

]2
}
ds

=
σ2
u

(α− β)2

∫ 1

s=0

{
(1 + αθ)2e2αs(1 + e2β)

−2(1 + αθ)(1 + βθ)(1 + e(α+β))e(α+β)s + (1 + βθ)2(1 + e2α)e2βs
}
ds

=
−σ2

u

(α− β)2

{
(1 + αθ)2

2α
(1− e2α)(1 + e2β)

−2
(1 + αθ)(1 + βθ)

α+ β
(1− e2(α+β)) +

(1 + βθ)2

2β
(1 + e2α)(1− e2β)

}
=

−σ2
u

2αβ(α+ β)(α− β)2

{
β(α+ β)(1 + α2θ2)(1− µ2)(1 + ν2)

−4αβ(1 + αβθ2)(1− µ2ν2) + α(α+ β)(1 + β2θ2)(1 + µ2)(1− ν2)
}

=
σ2
u

2αβ(α2 − β2)

{
β(1− α2θ2)(1− µ2)(1 + ν2)− α(1− β2θ2)(1 + µ2)(1− ν2)

}
,

where a common factor of (α−β) has been cancelled. Note that terms in θ1 have cancelled.

Using similar methods, E {ηtηt−1}

=
−σ2

u

(α− β)2

∫ 1

0

{[
(1 + αθ)eαs − (1 + βθ)eβs

] [
(1 + αθ)eαseβ − (1 + βθ)eαeβs

]}
ds

=
−σ2

u

(α− β)2

∫ 1

0

{
(1 + αθ)2e2αseβ

−(1 + αθ)(1 + βθ)(eα + eβ)e(α+β)s + (1 + βθ)2eαe2βs
}
ds

=
σ2
u

(α− β)2

{
(1 + αθ)2

2α
(1− e2α)eβ

−(1 + αθ)(1 + βθ)

α+ β
(eα + eβ)(1− e(α+β)) +

(1 + βθ)2

2β
eα(1− e2β)

}
=

σ2
u

2αβ(α+ β)(α− β)2

{
β(α+ β)(1 + α2θ2)(1− µ2)ν
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−2αβ(1 + αβθ2)(µ+ ν)(1− µν) + α(α+ β)(1 + β2θ2)µ(1− ν2)
}

=
σ2
u

2αβ(α2 − β2)

{
−β(1− α2θ2)(1− µ2)ν + α(1− β2θ2)µ(1− ν2)

}
,

where terms in θ1 have again cancelled. Equating

E {ηtηt−1}
E
{
η2
t

} = − φ

1 + φ2
,

and solving for θ produces the mapping in (ii). The mapping in (iii) comes from equating

the variances of the two processes.

�

The Covariance Stationary CARMA (2, 1)

We take, without loss of generality, 0 > α ≥ β, implying 0 < ν ≤ µ < 1. Given this it is

straightforward to show that the denominator is convex since αβ ≥ 0 and qD1 ≥ 0 since

(1− µ2)ν − (1− ν2)µ = (ν − µ)(1 + µν) ≤ 0⇒

α(1− µ2)ν − β(1− ν2)µ ≥ α(1− µ2)ν − α(1− ν2)µ ≥ 0.

At the same time qN1 > is equal to

β(1− µ2)ν − α(1− ν2)µ = β(1− e2α)eβ − α(1− e2β)eα =

−2αβeβ
∫ 1

0
e2αsds+ 2αβeα

∫ 1

0
e2βsds = 2αβeαeβ

∫ 1/2

−1/2
(e2βs − e2αs)ds,

which is non-negative.

To show that both have real roots consider that (1−µ2)(1− ν2) > 0 and that [(α− β)2(1−

µν)2 − (α+ β)2(µ− ν)2] is the difference between two squares. One of its factors

(α− β)(1− µν)− (α+ β)(µ− ν) ≥ 0,

is a negative number subtracted from a positive number. For the other, note that

(α− β)(1− µν) + (α+ β)(µ− ν) = (α− β)(1− eα+β) + (α+ β)eβ(eα−β − 1)

= (β2 − α2)

∫ 1

s=0
[e(α+β)s − eβe(α−β)s]ds

= (β2 − α2)e(α+β)/2

∫ 1/2

s=−1/2
[e(α+β)s − e(α−β)s]ds

= (β2 − α2)e(α+β)/2

{∫ 1/2

s=0
eαs[eβs − e−βs]ds+

∫ 0

s=−1/2
eαs[eβs − e−βs]ds

}
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= (β2 − α2)e(α+β)/2

∫ 1/2

s=0
[eαs − e−αs][eβs − e−βs]ds ≥ 0,

since both [eαs − e−αs] and [eβs − e−βs] are negative for s ∈ (0, 1
2 ].
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