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Automotive and aeronautical engineer
who built the first British motor car

Invented the carburettor, disc brakes, the accelerator pedal;
theory of lift and drag.
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The aimed-fire model: G (t) Green units fight R(t) Red units.

dG

dt
= −rR

Green’s instantaneous loss-rate is proportional to Red numbers

dR

dt
= −gG

and vice versa. Divide:

dR

dG
=

gG

rR
or rR dR = gG dG

and integrate:
1

2
rR2 =

1

2
gG2 + constant

throughout the battle.
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Implications of Lanchester’s equations

rR2 − gG2

tells us how to combine numbers (R,G ) and effectiveness (r , g).

Numbers win:

suppose we begin with twice as many Reds as Greens, R0 = 2G 0,
but that Greens are three times more effective, g = 3r .
Then

rR2 − gG2 = r(2G 0)
2 − 3rG2

0 = rG2

0 > 0,

and Red wins: the battle ends with G = 0, R = G0.

Concentration is good:

If Red divides its forces, and Green fights each half in turn,
Green wins the first battle, with

√

2/3 ' 80% of G 0 remaining,
Green wins the second battle, with

√

1/3 ' 60% of G0 remaining.



Some variants of Lanchester’s equations

Ancient warfare, along a fixed, narrow battle-line with N(t)
fighting on each side:

dG

dt
= −rN

dR

dt
= −gN

Modern warfare, but with hidden targets (the unaimed-fire

model):
dG

dt
= −rRG

dR

dt
= −gGR

Either way, dR/dG is now fixed, and the constant quantity is

rR − gG ,

which is much more intuitive: fighting strength is just
numbers × effectiveness.



Asymmetric warfare

Green attacks, Red defends:

dG

dt
= −rR ,

dR

dt
= −gG

R

R0

and

rRR0 −
1

2
gG2

is conserved, so that

– Green benefits more from numbers and concentration, but

– needs g to be twice as great, or G0 to be
√

2 times as great, as
in a symmetric aimed-fire battle.
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Green attacks, Red defends:

dG

dt
= −rR ,

dR

dt
= −gG

R

R0

and

rRR0 −
1

2
gG2

is conserved, so that

– Green benefits more from numbers and concentration, but

– needs g to be twice as great, or G0 to be
√

2 times as great, as
in a symmetric aimed-fire battle.

Red has a defender’s advantage
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dt
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Divide and re-arrange:
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Integrate: the conserved quantity is

r
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where ρ = 1 + r1 − r2 and γ = 1 + g1 − g2



A generalized Lanchester model

fits loss-rates to powers of own and enemy numbers:

dG

dt
= −rR r1Gg2

dR

dt
= −gG g1R r2

Divide and re-arrange:

gGg1−g2 dG = rR r1−r2 dR

Integrate: the conserved quantity is

r

ρ
Rρ − g

γ
Gγ .

where ρ = 1 + r1 − r2 and γ = 1 + g1 − g2, the exponents,
capture the conditions of battle:

– Red should concentrate its force if ρ > 1, divide if ρ < 1.

– if ρ < γ then Red has a defender’s advantage, by a factor γ/ρ
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Do Lanchester equations describe real warfare?

(either sets of battles or time-series within battles)

Fits to land- and all-arms battles
(US Civil War, Iwo Jima, Kursk, Ardennes, Korean War)

are poor.

Of course:

Lanchester’s equations are temporally and spatially homogeneous,
with no command-and-control or variation in terrain or tactics.

F W Lanchester
Aircraft in Warfare: the dawn of the fourth arm

(London: Constable & Co., 1916)

How about a (purely) aerial battle?



The Battle of Britain

A battle of attrition and intended annihilation, in which one day’s
fighting was much like another, the single-seat fighters on each
side were well-matched, and all units were seeking engagement.



The Battle of Britain

A battle of attrition and intended annihilation, in which one day’s
fighting was much like another, the single-seat fighters on each
side were well-matched, and all units were seeking engagement.

Take daily loss-rates for RAF (δR) and Luftwaffe (δG ) aircraft and
fit to RAF (R) and Luftwaffe (G) daily sortie numbers:

Find the parameters r , r 1, r2, g , g1, g2 for which the data best fit

δR = gGg1R r2 , δG = rR r1Gg2

by linear regression onto

log δR = log g+g1 log G+r2 log R , log δG = log r+r1 log R+g2 log G



Are the days independent?
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RAF losses
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RAF losses

dR

dt
= −gG1.12±0.17R0.18±0.25

= −gG1.2 (ΣR2 = 0.66)



RAF losses

dR

dt
= −gG1.12±0.17R0.18±0.25

= −gG1.2 (ΣR2 = 0.66)

Hooray for Lanchester!



Luftwaffe losses
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Luftwaffe losses

dG

dt
= −rR0.00±0.25G 0.86±0.18

= −gG 0.9 (ΣR2 = 0.49)



Luftwaffe losses

dG

dt
= −rR0.00±0.25G 0.86±0.18

= −gG 0.9 (ΣR2 = 0.49)

Not so good.

In fact, fitting to R alone,

dG

dt
∝ R0.87±0.22

explains only ΣR2 = 0.24.



Subtleties I

G and R are highly correlated (0.74):
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and so the overall powers in the loss-rates, g1 + r2 and r1 + g2,
are better-determined than their constituents: variation is less
significant along the lines of constant g1 + r2 and r1 + g2 than
orthogonal to them.



Subtleties II

When g1 + r2 6= 1 or r1 + g2 6= 1, autonomous battles (‘raids’)
should not be aggregated into daily data.

If they are, the effect is to push the overall powers g1 + r2 and
r1 + g2 away from their true values and towards one, and to
reduce the quality of the fit.



Subtleties II

Example: y = x2
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Subtleties II

Example: y = x2 and sums of these: e.g. not only (3, 9) but also
(1 + 2, 1 + 4) = (3, 5) and (1 + 1 + 1, 1 + 1 + 1) = (3, 3).
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and the best fit is now log y = 1.5 log x , with ΣR2 = 0.6.



Subtleties III

The good correlations we saw earlier are really not so surprising,
since the natural null hypothesis is of an overall linear dependence
of loss rates on sortie numbers.

All tactical implications follow from the constant quantities,
which in turn follow from the dependence of the loss ratio δR/δG
on R and G , which is poorly modelled.



Subtleties III
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Overall

dR

dt
= −gG 1.12±0.17R0.18±0.25 ,

dG

dt
= −rR0.00±0.25G 0.86±0.18

suggests γ = 1 + g1 − g2 ' 1.3, ρ = 1 + r1 − r2 ' 0.8, but these
are poorly modelled.



Overall

dR

dt
= −gG 1.12±0.17R0.18±0.25 ,

dG

dt
= −rR0.00±0.25G 0.86±0.18

suggests γ = 1 + g1 − g2 ' 1.3, ρ = 1 + r1 − r2 ' 0.8, but these
are poorly modelled.

The results of which we can be most sure are differences of g1 + r2

or r1 + g2 from one: and we found

g1 + r2 = 1.30, r1 + g2 = 0.86,

and thus
γ − ρ = g1 + r2 − r1 − g2 = 0.44.

We can conclude with fair confidence that γ > 1 and that ρ < 1,
and with much more confidence that γ > ρ.
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The Big Wing

Should the RAF’s squadrons mass into wings (3 squadrons)
or ‘Big Wings’ (5 or more) before engaging?

Is mere concentration of numbers advantageous for the RAF?

Is ρ > 1?

No
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Tactical implications

Days with large numbers of sorties favoured the Luftwaffe
– they certainly did not favour the RAF.

Rather, to the extent to which γ > ρ, the RAF had a defender’s advantage.

The achievement of Keith Park (Commander, 11 Group, RAF
Fighter Command) lay in creating and exploiting this advantage:

‘It [is] better to have even one strong squadron of our fighters
over the enemy than a wing of three climbing up below them’

How to win a battle:

‘Get there first with the most men’ (Nathan Bedford Forrest)
Given the choice, in this case, first is better.



What, finally, of Lanchester’s laws?

‘British air doctrine was based upon Lanchester’ (Higham)

– and Leigh-Mallory, commander of 12 Group to the north, and the
key proponent of the Big Wing, would surely have acted upon them



What, finally, of Lanchester’s laws?

‘British air doctrine was based upon Lanchester’ (Higham)

– and Leigh-Mallory, commander of 12 Group to the north, and the
key proponent of the Big Wing, would surely have acted upon them

Lanchester was right about British losses, but not about German,
and his conclusions for RAF tactics would have been fundamentally
wrong for the battle as actually fought.



What, finally, of Lanchester’s laws?

‘British air doctrine was based upon Lanchester’ (Higham)

– and Leigh-Mallory, commander of 12 Group to the north, and the
key proponent of the Big Wing, would surely have acted upon them

Lanchester was right about British losses, but not about German,
and his conclusions for RAF tactics would have been fundamentally
wrong for the battle as actually fought.

Perhaps it’s a good thing his laws were not acted upon.


