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I To illuminate core dynamics

I All the best models are wrong

I But they are fruitfully wrong

I They capture qualitative behaviors of overarching interest

I The issue is whether the model offers a fertile idealization
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Dynamical systems as an aid to thought

In this presentation we look at two models:

1. A general Lanchester-Richardson model for insurgencies
MacKay, When Lanchester met Richardson, JORS (2014)

2. The Lanchester truel
Kress, Lin & MacKay, The Attrition Dynamics of Multilateral War, OR (2018)

The point in each is (merely) to illuminate a general connection
between assumptions and outcome.

‘All that can be proved by mathematics is that certain consequences

follow from certain abstract hypotheses.’

Richardson, Arms and Insecurity (1960)
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Richardson’s arms race

dS

dt
= rR − σS + k

dR

dt
= sS − ρR + l

antagonism quiescence military spend



Lanchester’s aimed-fire model

Annihilation



Lanchester’s aimed-fire model

dR

dt
= −dS , dS

dt
= −cR

and dS2 − cR2 is constant.
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Deitchman’s ‘guerrilla’ model

dR

dt
= −dRS , dS

dt
= −cR

and dS2 − 2cR is constant.
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When Lanchester met Richardson: conclusion

At the same level of argument as

Richardson: antagonism plus quiescence leads to arms race or
stalemate

Lanchester: aimed fire leads to disproportionate value for
numbers and concentration

we have that

asymmetric attrition generalizing Deitchman’s insurgency
i.e. insurgent losses scale faster with overall numbers than state losses

+ antagonism characteristic of Richardson

⇒ stalemate

MacKay, When Lanchester met Richardson, JORS (2014)
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Tri- and multilateral war

‘If each of three pairs of nations is separately unstable then the
triplet is necessarily unstable’ [but] if each of the three pairs [is]
stable [then] the triplet of nations may [nevertheless] be unstable’

Richardson, Arms and Insecurity (1960)

On N nations:
‘the world will for most of the time be content with just enough
stability’

‘the triadic situation often favors the weak over the strong’
Caplow, Coalitions in the Triad (1956)
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The Truel

The sequential random truel:

Players A,B,C

take turns to shoot, the shooter on each turn being chosen at
random and aiming at their most accurate opponent,

with hitting probabilities a, b, c such that a > b > c .

Typically P(C win) > P(B) > P(A).

For example, let a = 4
5 , b = 3

5 , c = 2
5 .

Then P(A) = 8
27 , P(B) = 9

27 , P(C ) = 10
27 .

Better marksmanship can hurt!

Brams and Kilgour, The Truel (1997)
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The Truel

Variants may be simultaneous, have limited ammunition, allow
formation of coalitions, assume perfect anticipation.

Some conclusions are robust:
the weakness of being the best marksman, the fragility of pacts.

Often these conclusions are counterintuitive or paradoxical.
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The Lanchester Truel

Ȧ = −b(1− β)B −cγC

Ḃ = −aαA −c(1− γ)C

Ċ = −a(1− α)A −bβB

Let a > b > c > 0 and begin with A = A0,B = B0,C = C 0.
The truel finishes when at most one player remains.

Let 0 ≤ α, β, γ ≤ 1.
We now have a dynamical game in which the decision parameters
are α (for A), β for B, γ for C .

There is (in general) no quadratic conserved quantity, no ‘Square
Law’, and thus no preferred objective function.
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Ȧ = −b(1− β)B −cγC
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The Lanchester Truel

Theorem

If the objective function for each player is
its numbers minus others’ numbers, e.g. (for A) A∞ − B∞ − C∞,

then

either one force can beat the other two together,

or the outcome is mutual annihilation
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The Lanchester Truel

Lemma 1: The range of • encloses the non-dominant region, with
equality when a = b = c .
(Blue dashed triangle encloses hachured black triangle.)

Lemma 2: • is a Nash equilibrium (for this nonzero-sum game).
(Players’ optimal strategy is to shift • onto the state ×, which
then remains static, resulting in collective annihilation.)

This is robust to changes in the objective function, to the scaling
of attrition, to small mis-steps, to small random events, to small
force recruitment, to a small change in attrition rates, to the
addition of further non-dominant players.

• simply chases the state ×.
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So what happened to the ubiquitous truel idea, that the weakest is
surprisingly strong?

It’s all in the choice of the objective function.

Suppose that the only thing a force values is reducing its own
casualty rate:

A wants to maximize Ä, likewise for B and C .

Then the equilibria are...
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The Lanchester Truel: conclusion

If X ’s objective is

I long-term victory, to maximize X∞ − Y∞ − Z∞,
then either one player can beat the others put together, or the
outcome is total annihilation

I short-term reduction of loss rate −Ẋ ,
then fire distributions approach stable states in which two
players target only each other, and the weakest player has an
advantage because they are least capable of hurting the
others.
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Thank you for listening


