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Abstract. In this project we give an introduction to Yangians
and their representations. In particular we deal with a theorem
due to Drinfel’d [10] about the adjoint⊕singlet representation of
Yangians. Using ‘birdtrack’ notation we prove this theorem for the
series of exceptional Lie algebras and su(n).
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Introduction

It was Drinfel’d [10] who wrote the defining paper on Yangians in
1985. The motivation was to study the Yang-Baxter Equation (YBE)
and the name ‘Yangian’ was in honour of C. N. Yang who found the
first solution of the YBE in terms of a certain formal series [31].

Since the 1980’s, Yangians have found many other applications in
theoretical physics, most notably in its original area of integrable mod-
els [24]. In the last few years Yangians have received much attention
due to the discovery of Yangian symmetries relating to the AdS/CFT
correspondence [6, 9, 4].

In this project we study the representations of Yangians. More
specifically we will prove a theorem of Drinfel’d [10] concerning the
adjoint⊕singlet representation of Yangians. We complete the proof for
the exceptional Lie algebras and su(n), however we only manage to
give some numerical evidence for so(n) and sp(n). Drinfel’d’s paper
[10] does not contain any proofs, and we believe that a detailed proof
has not been published elsewhere1.

1Chari and Pressley claim that they prove it in section 6 of [7], but we cannot
find the result there.
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CHAPTER 1

Yangians and their representations

1.1. Yangians

Throughout this project we will adopt the convention of summing
over repeated indicies. Further we assume that we are in a compact
space and hence we will not distinguish ‘up’ from ‘down’ indicies. The
following definition was given by Drinfel’d in [10]. A few years later he
gave another (isomorphically equivalent) definition [11], which we will
not consider here.

Definition 1.1 (Yangian, [10]). Let g be an N -dimensional simple
Lie algebra1 over C generated by {Ia}, a = 1, 2, . . . , N , with structure
constants cabc, such that

[Ia, Ib] = cabcIc (1.1)

The Yangian, Y (g), is the enveloping algebra generated by the I’s
and a second set of generators {Jb}, b = 1, 2, . . . , N , in the adjoint
representation of g, such that

[Ia, Ib] = cabcIc and [Ia, Jb] = cabcJc (1.2)

[Ja, [Jb, Ic]]− [Ia, [Jb, Jc]] = aabcdef{IdIeIf} (1.3)

[[Ja, Jb], [Ir, Js]] + [[Jr, Js], [Ia, Jb]]

= (aabcdefcrsc + arscdefcabc){IdIeIf} (1.4)

where aabcdef = 1
24
cadicbejccfkcijk and {IdIeIf} is the sum of all per-

mutations of IdIeIf . Explicitly,

{IdIeIf} = IdIeIf + IfIdIe + IeIfId + IdIfIe + IfIeId + IeIdIf (1.5)

Remark 1.2. For g = su(2) we have that (1.2) imply (1.3), and for
g 6= su(2) condition (1.4) follows from (1.2) and (1.3) [10]. Thus for
most of our discussion we will ignore (1.4).

The third defining relation (1.3) needs a bit of explanation, since it
is far from obvious what it signifies.

1with the Lie bracket being the commutator [A,B] = AB −BA
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1.1.1. Drinfel’d’s Third Relation. The Yangian is an example
of a Hopf Algebra2 [10, 24] with co-unit ε : Y (g)→ C,

ε(Ia) = ε(Ja) = 0, (1.6)

antipode s : Y (g)→ Y (g),

s(Ia) = −Ia (1.7)

s(Ja) = −Ja + 1
2
cabcIcIb, (1.8)

and coproduct ∆ : Y (g)→ Y (g)⊗ Y (g),

∆(Ia) = Ia ⊗ 1 + 1⊗ Ia (1.9)

∆(Ja) = Ja ⊗ 1 + 1⊗ Ja + 1
2
cabcIc ⊗ Ib (1.10)

Drinfel’d’s third relation (1.3) then follows from the requirement
for a Hopf algebra that ∆ be a homomorphism [24]. We show this in
Appendix A.

One can also think of the Yangian as a graded algebra where deg(Ia) =
0 and deg(Ja) = 1. Then (1.3) and (1.4) are constraints on how to con-
struct higher-order elements [24].

1.2. Relation with the Yang-Baxter Equation

The Yang-Baxter Equation (YBE) was described by McGuire and
Yang in connection with the one-dimensional N -body problem [25, 31].
It also appeared in areas of statistical mechanics [3, 2]. The YBE can
be written

R12(u− v)R13(v)R23(v) = R23(v)R13(u)R12(u− v) (1.11)

where the R’s are linear operators in the tensor product of two N -
dimensional complex spaces (e.g. CN⊗CN) parametrized by a complex
number [20].

In the theory of scattering processes the YBE arises as a factoriza-
tion condition for a multiparticle S-matrix [20, 24]. It was therefore
much studied by Faddeev and the ‘St Petersburg school’3 in relation
with the inverse scattering method, see eg [21, 29]. Relationships be-
tween the solutions of the YBE and Lie groups soon emerged [19, 5]
and before Drinfel’d introduced the Yangian in [10] similar algebraic
structures4 had been considered by Faddeev and others [13, 21, 30].
In his paper [10] Drinfel’d showed that the problem of finding rational

2see eg [17] for a textbook discussion of Hopf algebras
3As it was referred to by Molev [26]
4Now called Yangians for the general linear Lie algebra, Y (gl(n)) [26].
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solutions to the Yang-Baxter equation reduced to the problem of find-
ing finite-dimensional irreducible representations of Yangians [10, 11].
He proceeded to find such representations (and hence rational solutions
to the YBE), thus generalizing the method in [19].

Representations of Yangians, and in particular irreducible repre-
sentations, therefore play an important role in the study of the Yang-
Baxter equation.

We now proceed with a discussion of some of the representations
given by Drinfel’d in [10].

1.3. Representations of Yangians

Since Y (g) contains g as a subalgebra, any representation of Y (g)
will also be a representation of g [24]. Conversely, starting with an ir-
reducible representation ρ of g such that ρ(aabcdef{IdIeIf}) = 0 one can
extend it to an irreducible representation of Y (g) by setting ρ(Ja) = 0
[10]. The condition ρ(aabcdef{IdIeIf}) = 0 is neccessary for the rep-
resentation to be consistent with (1.3) [24], and Drinfel’d found such
representations for all g except e8 [10].

To find finite-dimensional irreducible representations of Y (g) for
all g Drinfel’d considered the adjoint⊕singlet representation given in
Theorem 1.3 below. This representation of Y (g) is reducible as a rep-
resentation of g and, although this is typically the case, it is the only
explicitly known such representation [24].

Theorem 1.3 (‘Theorem 8’ in [10]). Let g be a simple, N-dimensional
Lie algebra over C generated by {Ia}, a = 1, . . . , N , such that the I’s are
orthonormal with respect to a fixed, associative5 inner prodduct (·, ·).
Let Y (g) be the Yangian of g, v0 ∈ C\{0} and x ∈ g.

If g = su(2), then for any b ∈ C there is a representation ρ : Y (g)→
End(g⊕ C) such that

ρ(Ia)v0 = 0 (1.12)

ρ(Ia)x = [Ia, x] (1.13)

ρ(Ja)v0 = bIa (1.14)

ρ(Ja)x = (Ia, x)v0 (1.15)

5By associative we mean that (x, [y, z]) = ([x, y], z) for all x, y, z ∈ g [28].
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If g 6= su(2), then such ρ exists for a unique b. Namely, b = s3c(g),
where s3 is the ratio of the Killing form to the inner product6 and

c(su(n)) = − 1

32n2
(1.16)

c(so(n)) = − n− 4

16(n− 2)3
(1.17)

c(sp(n)) = − n+ 4

16(n+ 2)3
(1.18)

and

c(g) = − 5

144(N + 2)
(1.19)

for exceptional g.

Remark 1.4. Since su(2) ∼= sp(2) ∼= so(3), the above expres-
sions (1.16) - (1.18) exclude these cases.

It is the aim of this project to prove this theorem, and in partic-
ular to explain where the different values of b come from. The only
reason such a ρ would not be a representation is if it is not consistent
with (1.3), or (1.4) in the case of su(2). By applying ρ to these defining
relations of the Yangian we will find the conditions on b as specified in
Theorem 1.3.

Lemma 1.5. Let ρ be defined as in Theorem 1.3. Then

ρ([Ja, [Jb, Ic]]− [Ia, [Jb, Jc]])v0 = 0 (1.20)

and

ρ(aabcdef{IdIeIf})v0 = 0 (1.21)

Proof. That ρ(aabcdef{IdIeIf})v0 = 0 follows immediately from
ρ(Ia)v0 = 0. Now,

ρ([Ja, [Jb, Ic]]− [Ia, [Jb, Jc]])

= ρ(Ja[Jb, Ic]− [Jb, Ic]Ja − Ia[Jb, Jc] + [Jb, Jc]Ia) (1.22)

= ρ(JaJbIc − JaIcJb − JbIcJa + IcJbJa

− IaJbJc + IaJcJb + JbJcIa − JcJbIa) (1.23)

6For simple Lie algebras, any associative inner product is a scalar multiple of
the Killing form [12]
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So

ρ([Ja, [Jb, Ic]]− [Ia, [Jb, Jc]])v0

= ρ(Ja)ρ(Jb)ρ(Ic)v0 − ρ(Ja)ρ(Ic)ρ(Jb)v0

− ρ(Jb)ρ(Ic)ρ(Ja)v0 + ρ(Ic)ρ(Jb)ρ(Ja)v0

− ρ(Ia)ρ(Jb)ρ(Jc)v0 + ρ(Ia)ρ(Jc)ρ(Jb)v0

+ ρ(Jb)ρ(Jc)ρ(Ia)v0 − ρ(Jc)ρ(Jb)ρ(Ia)v0 (1.24)

= −ρ(Ja)ρ(Ic)bIb − ρ(Jb)ρ(Ic)bIa

+ ρ(Ic)ρ(Jb)bIa − ρ(Ia)ρ(Jb)bIc

+ ρ(Ia)ρ(Jc)bIb (1.25)

= b(−ρ(Ja)[Ic, Ib]− ρ(Jb)[Ic, Ia]

+ ρ(Ic)(Ib, Ia)v0 − ρ(Ia)(Ib, Ic)v0

+ ρ(Ia)(Ic, Ib)v0) (1.26)

= b(−ρ(Ja)ccbdId − ρ(Jb)ccadId) (1.27)

= −b(ccbd(Ia, Id) + ccad(Ib, Id)) (1.28)

= −b(ccbdδad + ccadδbd) (1.29)

= −b(ccbdδad + ccadδbd) (1.30)

= −b(ccba + ccab) (1.31)

= −b(ccba − ccba) (1.32)

= 0 (1.33)

where we used the anti-symmetry of the structure constants in the last
step. �

We thus conclude that taking ρ(·)v0 is consistent with (1.3) for any
value of b. But how about ρ(·)x? Since {Ia} is a basis of g we will only
consider the action of ρ(·)Ix on (1.3), where x = 1, . . . , N .

Lemma 1.6. Let ρ be defined as in Theorem 1.3. Then

ρ([Ja, [Jb, Ic]]− [Ia, [Jb, Jc]])Ix =

b(ccxbδas + ccbsδax − cabsδcx + cacsδbx + caxcδbs − caxbδcs)Is (1.34)

and

ρ(aabcdef{IdIeIf})Ix = aabcdef{cfxqceqrcdrs}Is (1.35)

where {·} means the sum of all permutations of d, e and f .
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Proof. From (1.23)

ρ([Ja, [Jb, Ic]]− [Ia, [Jb, Jc]])Ix =

= ρ(Ja)ρ(Jb)ρ(Ic)Ix − ρ(Ja)ρ(Ic)ρ(Jb)Ix

− ρ(Jb)ρ(Ic)ρ(Ja)Ix + ρ(Ic)ρ(Jb)ρ(Ja)Ix

− ρ(Ia)ρ(Jb)ρ(Jc)Ix + ρ(Ia)ρ(Jc)ρ(Jb)Ix

+ ρ(Jb)ρ(Jc)ρ(Ia)Ix − ρ(Jc)ρ(Jb)ρ(Ia)Ix (1.36)

= ρ(Ja)ρ(Jb)[Ic, Ix]− ρ(Ja)ρ(Ic)(Ib, Ix)v0

− ρ(Jb)ρ(Ic)(Ia, Ix)v0 + ρ(Ic)ρ(Jb)(Ia, Ix)v0

− ρ(Ia)ρ(Jb)(Ic, Ix)v0 + ρ(Ia)ρ(Jc)(Ib, Ix)v0

+ ρ(Jb)ρ(Jc)[Ia, Ix]− ρ(Jc)ρ(Jb)[Ia, Ix] (1.37)

= ρ(Ja)ccxs(Ib, Is)v0 + ρ(Ic)(Ia, Ix)bIb

− ρ(Ia)(Ic, Ix)bIb + ρ(Ia)(Ib, Ix)bIc

+ ρ(Jb)caxs(Ic, Is)v0 − ρ(Jc)caxs(Ib, Is)v0 (1.38)

= b(ccxs(Ib, Is)Ia + (Ia, Ix)[Ic, Ib]

− (Ic, Ix)[Ia, Ib] + (Ib, Ix)[Ia, Ic]

+ caxs(Ic, Is)Ib − caxs(Ib, Is)Ic) (1.39)

= b(ccxbIa + δaxccbsIs − δcxcabsIs + δbxcacsIs

+ caxcIb − caxbIc) (1.40)

= b(ccxbδas + ccbsδax − cabsδcx + cacsδbx

+ caxcδbs − caxbδcs)Is (1.41)

Now,

ρ(aabcdef{IdIeIf})Ix = aabcdef{ρ(Id)ρ(Ie)ρ(If )Ix} (1.42)

= aabcdef{ρ(Id)ρ(Ie)[If , Ix]} (1.43)

= aabcdef{ρ(Id)[Ie, [If , Ix]]} (1.44)

= aabcdef{[Id, [Ie, [If , Ix]]]} (1.45)

= aabcdef{cfxq[Id, [Ie, Iq]]} (1.46)

= aabcdef{cfxqceqr[Id, Ir]} (1.47)

= aabcdef{cfxqceqrcdrs}Is (1.48)

�
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For the representation ρ to be consistent with (1.3) we thus require
that

b(ccxbδas + ccbsδax − cabsδcx + cacsδbx + caxcδbs − caxbδcs)
= aabcdef{cfxqceqrcdrs} (1.49)

for all a, b, c, x, s = 1, 2, . . . , N .
This is the condition on b we need to investigate in order to get the

values specified in Theorem 1.3.
Note that the RHS of (1.49) when fully expanded has six terms,

each with seven structure constants and eight summed and five free
indicies. How are we to work with such an expression without getting
lost among all the indicies?



CHAPTER 2

Birdtracks

In order to handle a multitude of structure constants and indicies
summed in various ways, we will adopt a diagrammatic notation. This
notation, first introduced by Penrose [27] and much endorsed and de-
veloped by Cvitanović [8], is commonly referred to as ‘birdtracks’ due
to its appearance.

In this notation we write a δ as a straight line:

(2.1)

and a structure constant cabc as

(2.2)

Note that the legs corresponding to the indicies are ordered anti-
clockwise around the node. The antisymmetry of the structure con-
stants are reflected in the following rule,

(2.3)

Summing over two indicies is represented by joining the legs of those
indicies,

(2.4)

However, cabccdcb = κ(Ia, Id), where κ(·, ·) is the Killing form. This
can be seen by the following argument:

9
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The matrix form of ad Ia with respect to the basis {Ia}, a =
1, 2, . . . , N , is

ad Ia =


[Ia, I1] [Ia, I2] · · · [Ia, IN ]

 (2.5)

=


ca11 ca21 · · · caN1

ca12 ca22 · · · caN2
...

...
. . .

...
ca1N ca2N · · · caNN

 (2.6)

We write this in index notation as (ad Ia)ij = caji. Hence

κ(Ia, Id) = tr(ad Ia ◦ ad Id) (2.7)

= tr((ad Ia)ib(ad Id)bj) (2.8)

= (ad Ia)cb(ad Id)bc (2.9)

= cabccdcb (2.10)

So cabccdcb = κ(Ia, Id) and thus cabccdcb = sδad, where s the ratio of
the Killing form to the inner product. By renormalization we are free
to choose the value of s. Cvitanović [8], for example, sets s = 1. We
will for most part leave the s alone, except for the case of su(n) where
we will adhere to physics conventions and set s = −n.

We thus have the following diagrammatic rule,

(2.11)
The elements of a Lie algebra satisfy the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, for all x, y, z ∈ g (2.12)

In terms of structure constants this reads,

[Ia, [Ib, Ic]] + [Ib, [Ic, Ia]] + [Ic, [Ia, Ib]] = 0 (2.13)

⇔ cadecbcd + cbdeccad + ccdecabd = 0 (2.14)

⇔ cadecbcd + cbdeccad = ccedcabd (2.15)

The birddtrack version of the Jacobi identity is then [8],
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(2.16)

If we introduce a third structure constant, cfae, on both sides of (2.16)
and sum over repeated indicies we have,

(2.17)

Using (2.11) and (2.3) this becomes

(2.18)

By rearranging we obtain a rule for how to reduce a ‘3-loop’,

(2.19)

Finally we note that δbb = N , and by antisymmetry cabb = 0. In
birdtrack form these statements are:

(2.20)

(2.21)

We will often drop the letters labelling the different indicies when
they are implicit.



CHAPTER 3

Proving Theorem 1.3

How does our condition on b, (1.49), look in birdtrack notation?
Recall that (1.49) is

b(ccxbδas + ccbsδax − cabsδcx + cacsδbx + caxcδbs − caxbδcs)
= aabcdef{cfxqceqrcdrs}

The LHS of this is,

(3.1)

or

(3.2)

where we used (2.3).

12
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The RHS of (1.49) is (see Appendix B),

(3.3)

We want to show that the above six ‘bipentagons’ reduce1 to a
multiple of (3.2). Thereby we can find the value b must take for the
representation in Theorem 1.3 to exist. The full details of how we do
this can be found in Appendix B. In this section we will give a brief
summary.

By using identities derived from the Jacobi identity we show that (3.3)
equals the following:

1By ‘reduce’ we mean removing loops in the sense of (2.19) and (2.11).
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(3.4)

As seen in the last equation, we need a way to reduce a ‘4-loop’
in order to proceed with the calculation. Unlike (2.11) and (2.19), the
way in which we can reduce a 4-loop will be different for different Lie
algebras.

3.1. The exceptional Lie algebras

For the series of exceptional Lie algebras (a2 = su(3), g2, d4 =
so(8), f4, e6, e7, e8) we have the following identity [8]:

(3.5)
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Using this, we show that (3.4) reduces to

(3.6)

Comparing this to (3.2) we find that b has to equal −5s3
144(N+2)

for (1.49) to hold. Hence the representation ρ in Theorem 1.3 is
consistent with (1.3) if and only if

b =
−5s3

144(N + 2)
(3.7)

for the Lie algebras of the exceptional series

a2 = su(3), g2, d4 = so(8), f4, e6, e7, e8

including its classical elements. We can verify that the different ex-
pressions for b in Theorem 1.3 co-incide for the classical algebras in the
exceptional series. For su(3) (1.16) is

−1

32n2
=

−1

32× 32
=
−1

288

which equals (1.19):

−5

144(N + 2)
=

−5

144(8 + 2)
=
−1

288

For so(8) (1.17) is

− n− 4

16(n− 2)3
= − 8− 4

16(8− 2)3
=
−1

864

and (1.19) is

−5

144(N + 2)
=

−5

144(28 + 2)
=
−1

864

in perfect agreement.
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3.2. The Lie algebras su(n)

For g = su(n) we will adopt the notation commonly used in physics
litterature and make indirect use of Gell-Mann matrices λj [14]. These
are traceless, hermitian n×n matrices satisfying the multiplication law

λjλk =
2

n
δjk + (djkl + ifjkl)λl (3.8)

where the d-tensors are completely symmetric and the f -tensors are
the structure constants of su(n) (which are anti-symmetric) [22, 23].
In birdtrack notation we will write the structure constants f as usual:

(3.9)

while for the d-tensors we will use a white node:

(3.10)

Since the d-tensors are symmetric we have the following rule:

(3.11)

Throughout this section we will follow [23, 22, 1] and use the
normalization s = −n:

(3.12)

From [22] we have the following Jacobi-type identity:

filmdmjk + fjlmdimk + fklmdijm = 0 (3.13)

whose birdtrack equivalent can be written as

(3.14)
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Further we have the result2[22]

fijmfklm = 2
n
(δikδjl − δilδjk) + (dikmdjlm − djkmdilm) (3.15)

which we can write as

(3.16)

Rotating the above by 90 degrees we get

(3.17)

and by combining the last two equations we have

(3.18)
In [22] we also find identities for how to reduce ‘3-loops’, of which we
shall only need to use the following:

(3.19)

(3.20)

Note that the first of these is our familiar result (2.19) with the nor-
malization s = −n.

From [1] we get the following identities for reducing ‘4-loops’

(3.21)

2This is a generalization of the familiar su(2) result εijmεklm = δikδjl − δilδjk
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(3.22)
and

(3.23)

We will sometimes find it convenient to use (3.16) - (3.18) and
rewrite the first two ‘4-loop’ identities as:

(3.24)

(3.25)

These are all the identities we need to tackle equation (3.4). We do
so in Appendix C and only state the result here.

We find that (3.4) equals

(3.26)

Comparing this with (3.2) we conclude that for su(n), n ≥ 3, the
representation ρ of Theorem 1.3 is consistent with (1.3) if and only if

b =
3n

4× 24
=
−(−n)3

32n2
=
−s3

32n2
(3.27)

Recall that we used the normalisation s = −n in our calculations.
Since su(2) only has three generators, at least two of the free indicies

in (3.26) and (3.2) have to co-incide. It is a straight-forward calculation
to verify that these expressions vanish when joining any two legs. So
for su(2) both (3.26) and (3.2) are zero and hence does not restrict the
values b can take.
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3.3. The Lie algebras so(n) and sp(n)

Unfortunately we do not know how to reduce a ‘4-loop’ for the alge-
bras so(n) and sp(n). Cvitanović [8] only gives a formula for turning a
‘4-loop’ in the adjoint representation into an expression in the defining
representation - an expression we do not know how to evaluate. It is
possible that the results we need exist in litterature but we have not
been able to find them, yet.

To get some results we do numerical calculations for so(5) and
hence, by isomorphism, sp(4).

The details of this calculation can be found in Appendix E.
We find that b has to take the value specified in Theorem 1.3

for (1.49) to hold. We only show that this is a neccessary condition,
whereas Theorem 1.3 states that it is a neccessary and sufficient con-
dition. Still it gives some justification where the values of b come from.

Since sp(4) ∼= so(5) we have also shown that (1.17) is a neccessary
condition for the result to hold when g = sp(4). We note that

c(sp(4)) = − 4 + 4

16(4 + 2)3
= − 1

16× 27
(3.28)

and

c(so(5)) = − 5− 4

16(5− 2)3
= − 1

16× 27
(3.29)

So c(sp(4)) = c(so(5)) as it should.
Further, so(8) is in the exceptional series, and we have shown pre-

viously that Theorem 1.3 holds in this case.
There is one more isomorphism between the simple Lie algebras:

su(4) ∼= so(6). It is easily verified that c(su(4)) = c(so(6)). We have
thus already proved Theorem 1.3 for g = so(6) in the last section.

To summarise, we have proved Theorem 1.3 for so(8) and so(6),
and showed that b has to take the specified values for so(5) and sp(4)
if such a ρ exists.

3.4. The Lie algebra su(2)

When g = su(2) we need to look at how the representation ρ in
Theorem 1.3 acts on (1.4) instead of (1.3). This since (1.3) follows
from (1.2) for su(2) [10]. The claim of Theorem 1.3 is that the given
representation is consistent with (1.4) for all values of b. This requires
that both sides of (1.4) is zero when we apply ρ(·)v0 and ρ(·)Ix.

Lemma 3.1. Let ρ be defined as in Theorem 1.3. Then,

ρ([[Ja, Jb], [Ir, Js]] + [[Jr, Js], [Ia, Jb]])v0 = 0 (3.30)
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and

ρ((aabcdefcrsc + arscdefcabc){Id, Ie, If})v0 = 0 (3.31)

Proof. That ρ((aabcdefcrsc + arscdefcabc){Id, Ie, If})v0 = 0 follows
directly from ρ(Ia)v0 = 0. Now,

[[Ja, Jb], [Ir, Js]] + [[Jr, Js], [Ia, Jb]]

= [Ja, Jb][Ir, Js]− [Ir, Js][Ja, Jb] + (a, b)↔ (r, s) (3.32)

= (JaJb − JbJa)(IrJs − JsIr)
− (IrJs − JsIr)(JaJb − JbJa) + (a, b)↔ (r, s) (3.33)

= JaJbIrJs − JaJbJsIr − JbJaIrJs + JbJaJsIr − IrJsJaJb
+ IrJsJbJa − JsIrJaJb + JsIrJbJa + (a, b)↔ (r, s) (3.34)

When we apply ρ(·)v0 to the above the terms of the form XXXI
and XIJJ will be zero. This since ρ(Ia)v0 = 0 and ρ(Ja) takes an
element of g to C and vice versa.

So,

ρ([[Ja, Jb], [Ir, Js]] + [[Jr, Js], [Ia, Jb]])v0

= ρ(JaJbIrJs)v0 − ρ(JbJaIrJs)v0 − ρ(IrJsJaJb)v0

+ ρ(IrJsJbJa)v0 + (a, b)↔ (r, s) (3.35)

= ρ(JaJbIr)bIs − ρ(JbJaIr)bIs − ρ(IrJsJa)bIb

+ ρ(IrJsJb)bIa + (a, b)↔ (r, s) (3.36)

= ρ(JaJb)b[Ir, Is]− ρ(JbJa)b[Ir, Is]− ρ(IrJs)b(Ia, Ib)v0

+ ρ(IrJs)b(Ib, Ia) + (a, b)↔ (r, s) (3.37)

= ρ(JaJb)bcrstIt − ρ(JbJa)bcrstIt − ρ(IrJs)bδabv0

+ ρ(IrJs)bδabv0 + (a, b)↔ (r, s) (3.38)

= ρ(Ja)bcrst(Ib, It)v0 − ρ(Jb)bcrst(Ia, It)v0 + (a, b)↔ (r, s)
(3.39)

= b2crstδbtIa − b2crstδatIb + (a, b)↔ (r, s) (3.40)

= b2(crstδbtIa − crstδatIb + cabtδstIr − cabtδrtIs) (3.41)

= b2(crsbIa − crsaIb + cabsIr − cabrIs) (3.42)

Since there are only three generators in su(2) we have a, b, r, s ∈ {1, 2, 3}.
Thus for crsb 6= 0 we need {r, s, b} = {1, 2, 3}. This means that either
a = b, a = r, or a = s.
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If a = b then,

b2(crsbIa − crsaIb + cabsIr − cabrIs)
= b2(crsbIb − crsbIb + cbbsIr − cbbrIs) (3.43)

= b2(crsbIb − crsbIb) (3.44)

= 0 (3.45)

If a = r then,

b2(crsbIa − crsaIb + cabsIr − cabrIs)
= b2(crsbIr − crsrIb + crbsIr − crbrIs) (3.46)

= b2(crsbIr + crbsIr) (3.47)

= b2(crsbIr − crsbIr) (3.48)

= 0 (3.49)

If a = s then,

b2(crsbIa − crsaIb + cabsIr − cabrIs)
= b2(crsbIs − crssIb + csbsIr − csbrIs) (3.50)

= b2(crsbIs − csbrIs) (3.51)

= b2(crsbIs − crsbIs) (3.52)

= 0 (3.53)

So if crsb 6= 0, then b2(crsbIa − crsaIb + cabsIr − cabrIs) = 0. Similarly,
assuming crsa 6= 0, cabs 6= 0, and cabr 6= 0 we also get that

b2(crsbIa − crsaIb + cabsIr − cabrIs) = 0

Hence ρ([[Ja, Jb], [Ir, Js]] + [[Jr, Js], [Ia, Jb]])v0 = 0.
�

We have thus showed that taking ρ(·)v0 is consistent with (1.4), for
any value of b.

Lemma 3.2. Let ρ be defined as in Theorem 1.3. Then,

ρ([[Ja, Jb], [Ir, Js]] + [[Jr, Js], [Ia, Jb]])Ix = 0 (3.54)

and

ρ((aabcdefcrsc + arscdefcabc){Id, Ie, If})Ix = 0 (3.55)
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Proof. From (3.34)

[[Ja, Jb], [Ir, Js]] + [[Jr, Js], [Ia, Jb]]

= JaJbIrJs − JaJbJsIr − JbJaIrJs + JbJaJsIr − IrJsJaJb
+ IrJsJbJa − JsIrJaJb + JsIrJbJa + (a, b)↔ (r, s) (3.56)

When we apply ρ(·)Ix to the above, the terms of the form XXIJ and
IJJJ will be zero. So,

ρ([[Ja, Jb], [Ir, Js]] + [[Jr, Js], [Ia, Jb]])Ix

= −ρ(JaJbJsIr)Ix + ρ(JbJaJsIr)Ix

− ρ(JsIrJaJb)Ix + ρ(JsIrJbJa)Ix + (a, b)↔ (r, s) (3.57)

= −ρ(JaJbJs)[Ir, Ix] + ρ(JbJaJs)[Ir, Ix]− ρ(JsIrJa)(Ib, Ix)v0

+ ρ(JsIrJb)(Ia, Ix)v0 + (a, b)↔ (r, s) (3.58)

= −ρ(JaJbJs)crxtIt + ρ(JbJaJs)crxtIt − ρ(JsIrJa)δbxv0

+ ρ(JsIrJb)δaxv0 + (a, b)↔ (r, s) (3.59)

= −ρ(JaJb)crxtδstv0 + ρ(JbJa)crxtδstv0 − ρ(JsIr)δbxbIa

+ ρ(JsIr)δaxbIb + (a, b)↔ (r, s) (3.60)

= b(−ρ(Ja)crxtδstIb + ρ(Jb)crxtδstIa − ρ(Js)δbxcratIt

+ ρ(Js)δaxcrbtIt) + (a, b)↔ (r, s) (3.61)

= b(−crxtδstδabv0 + crxtδstδbav0 − δbxcratδstv0
+ δaxcrbsδst) + (a, b)↔ (r, s) (3.62)

= bv0(δaxcrbs − δbxcras + δrxcasb − δsxcarb) (3.63)

By an argument very similar to that in the proof of Lemma 3.1, it
can be shown that

δaxcrbs − δbxcras + δrxcasb − δsxcarb = 0

Hence ρ([[Ja, Jb], [Ir, Js]] + [[Jr, Js], [Ia, Jb]])Ix = 0.
Now,

ρ((aabcdefcrsc + arscdefcabc){Id, Ie, If})Ix
= (aabcdefcrsc + arscdefcabc){ρ(IdIe)[Ix, If ]} (3.64)

= (aabcdefcrsc + arscdefcabc){ρ(Id)[[Ix, If ], Ie]} (3.65)

= (aabcdefcrsc + arscdefcabc){[[[Ix, If ], Ie], Id]} (3.66)

where {·} means the sum of all permutations of the indicies d, e, f .
This expression was evaluated numerically using the computer soft-

ware Matlab, see Appendix D. The result was that

ρ((aabcdefcrsc + arscdefcabc){Id, Ie, If})Ix = 0 (3.67)
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�

Hence, taking ρ(·)Ix is consistent with (1.4), for any value of b.

So indeed, the constant b in the representation of Theorem 1.3 can
take any value, when g = su(2).



Conclusion

In this project we have studied Yangians and their representations.
We have given some historical background of the topic and briefly dis-
cussed its connection with the Yang-Baxter equation. We proved a
theorem from Drinfel’d’s paper [10] about the adjoint⊕singlet repre-
sentation of Y (g) for the Lie algebras of the exceptional series and
su(n). For the algebras so(5) and thus sp(4) we only managed to
give some numerical verifications of the theorem. The reason we could
not complete the proof for these algebras was that we did not find an
identity for reducing a ‘4-loop’ in these cases. It is possible that such
identities already exists in litterature, and further searches could thus
be fruitful. Another option would be to learn more about Cvitanović’s
birdtrack methods and thereby (hopefully) be able to derive the result.
It is possible that Drinfel’d had a better method than ours for proving
Theorem 1.3 and it would be interesting to know how he arrived at the
result, in particular if he did so without a long explicit calculation.

Finally we would like to point out that Yangians have found many
other applications than the Yang-Baxter equation, for example on both
sides of the AdS/CFT correspondence [6, 9, 15] and thus they continue
to be of importance to modern theoretical physics.

The author would like to thank Dr Niall MacKay for kind supervi-
sion and help with this project and Dr Adele Taylor for useful discus-
sions.
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APPENDIX A

Drinfel’d’s Third Relation

It is far from obvious what the relation (1.3) signifies in Defini-
tion 1.1 of the Yangian. Recall that (1.3) is

[Ja, [Jb, Ic]]− [Ia, [Jb, Jc]] = aabcdef{Id, Ie, If}

We saw that one can give a Hopf algebra structure to the Yangian by
defining a co-unit, antipode and coproduct. The coproduct ∆ : Y (g)→
Y (g)⊗ Y (g) is defined as follows:

∆(Ia) = Ia ⊗ 1 + 1⊗ Ia (A.1)

∆(Ja) = Ja ⊗ 1 + 1⊗ Ja + 1
2
cabcIc ⊗ Ib (A.2)

We will show that the relation (1.3) follows from the requirement that
∆ be a homomorphism. To do so we follow the outline of the argument
in [24] which originates from personal correspondence with Drinfel’d.

Let uab ∈ C be such that uab = −uba and

uab[Ia, Ib] = 0 (A.3)

If we require ∆ to be a homomorphism we have the following result
[24] 1

Lemma A.1.

uab(∆([Ja, Jb])− 1⊗ [Ja, Jb]− [Ja, Jb]⊗ 1)

= 1
4
uabcadecbfgcdfh(IeIg ⊗ Ih + Ih ⊗ IeIg) (A.4)

1In [24] the result differs from mine by a factor of 2. We assume that this is a
typo.
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Proof.

uab(∆([Ja, Jb])− 1⊗ [Ja, Jb]− [Ja, Jb]⊗ 1)

= uab([∆(Ja),∆(Jb)])− 1⊗ [Ja, Jb]− [Ja, Jb]⊗ 1) (A.5)

= uab([Ja ⊗ 1 + 1⊗ Ja + 1
2
cadeIe ⊗ Id, Jb ⊗ 1 + 1⊗ Jb + 1

2
cbfgIg ⊗ If ]

− 1⊗ [Ja, Jb]− [Ja, Jb]⊗ 1) (A.6)

= uab(
1
4
cadecbfg[Ie ⊗ Id, Ig ⊗ If ] + [Ja ⊗ 1 + 1⊗ Ja, 12cbfgIg ⊗ If ]

+ [1
2
cadeIe ⊗ Id, Jb ⊗ 1 + 1⊗ Jb] (A.7)

= uab(
1
4
cadecbfg(IeIg ⊗ IdIf − IgIe ⊗ IfId) + 1

2
cbfgIg ⊗ [Ja, If ]

+ 1
2
cbfg[Ja, Ig]⊗ If + 1

2
cadeIe ⊗ [Id, Jb] + 1

2
cade[Ie, Jb]⊗ Id) (A.8)

= 1
4
uabcadecbfg(IeIg ⊗ IdIf + ([Ie, Ig]− IeIg)⊗ IfId)

+ 1
2
uabcbfgcafkIg ⊗ Jk + 1

2
uabcbfgcagkJk ⊗ If︸ ︷︷ ︸

f↔g

+ 1
2
uabcadecdbkIe ⊗ Jk︸ ︷︷ ︸

e→g,d→f

+1
2
uabcadecebkJk ⊗ Id)︸ ︷︷ ︸

d→g,e→f

(A.9)

= 1
4
uabcadecbfg(IeIg ⊗ [Id, If ] + [Ie, Ig]⊗ IfId)

+ 1
2
uab(cbfgcafk + cafgcfbk)Ig ⊗ Jk − 1

2
uab(cbfgcafk + cafgcfbk)Jk ⊗ Ig

(A.10)

where we have renamed bound indicies in the last step. By the Ja-
cobi identity cbfgcafk = −cafgckfb − ckfgcbfa = −cafgcfbk − ckfgcabf .
Hence (A.10) is

1
4
uabcadecbfg(IeIg ⊗ [Id, If ] + [Ie, Ig]⊗ IfId)
− 1

2
uabcabfckfg(Ig ⊗ Jk − Jk ⊗ Ig) (A.11)
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Since uab[Ia, Ib] = 0, we have that uabcabf = 0. So the last term
in (A.11) is zero. Thus,

uab(∆([Ja, Jb])− 1⊗ [Ja, Jb]− [Ja, Jb]⊗ 1)

= 1
4
uabcadecbfg(IeIg ⊗ [Id, If ] + [Ie, Ig]⊗ IfId) (A.12)

= 1
4
uabcadecbfgcdfhIeIg ⊗ Ih + 1

4
uabcadecbfgceghIh ⊗ IfId︸ ︷︷ ︸

e↔f,d↔g

(A.13)

= 1
4
uabcadecbfgcdfhIeIg ⊗ Ih + 1

4
uabcagfcbedcfdhIh ⊗ IeIg (A.14)

= 1
4
uabcadecbfgcdfhIeIg ⊗ Ih − 1

4
uabcafgcbdecdfhIh ⊗ IeIg︸ ︷︷ ︸

a↔b

(A.15)

= 1
4
uabcadecbfgcdfhIeIg ⊗ Ih − 1

4
ubacbfgcadecdfhIh ⊗ IeIg (A.16)

= 1
4
uabcadecbfgcdfh(IeIg ⊗ Ih + Ih ⊗ IeIg) (A.17)

where we used uab = −uba.
�

Since uabcabc = 0 we can write

uab = vlmaclmb − vlmbclma (A.18)

for some anti-symmetric tensor vlma. This is a non-trivial result, equiv-
alent to the second homology H2(g) being zero [24].

So,

uab(∆([Ja, Jb])− 1⊗ [Ja, Jb]− [Ja, Jb]⊗ 1)

= 1
4
(vlmaclmb − vlmbclma)cadecbfgcdfh(IeIg ⊗ Ih + Ih ⊗ IeIg) (A.19)

Now we make repeated use of the Jacobi identity to obtain the
following result

Lemma A.2. (vlmaclmb−vlmbclma)cadecbfgcdfh = 2vlmacmgbcaedclhfcbdf

Proof. First we will show that

vlmaclmbcadecbfgcdfh = 2vlma(cmgbcadecbdfclfh + cmgbcadecdlfcbfh) (A.20)
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We do this by using the Jacobi identity twice.

vlmaclmbcadecbfgcdfh = vlma clmbcgbf︸ ︷︷ ︸
use Jacobi

cadecdfh (A.21)

= −vlma(cmgbclbf + cglbcmbf )cadecdfh (A.22)

= −vlma(cmgbcade clbfcdfh︸ ︷︷ ︸
use Jacobi

+cglbcade cmbfcdfh︸ ︷︷ ︸
use Jacobi

) (A.23)

= vlma(cmgbcade(cbdfclfh + cdlfcbfh)

+ cglbcade(cbdfcmfh + cdmfcbfh)) (A.24)

= vlmacmgbcadecbdfclfh + vlmacmgbcadecdlfcbfh

+ vlmacglbcadecbdfcmfh︸ ︷︷ ︸
l↔m

+ vlmacglbcadecdmfcbfh︸ ︷︷ ︸
l↔m

(A.25)

= vlmacmgbcadecbdfclfh + vlmacmgbcadecdlfcbfh

+ vmlacgmbcadecbdfclfh + vmlacgmbcadecdlfcbfh (A.26)

= 2vlma(cmgbcadecbdfclfh + cmgbcadecdlfcbfh) (A.27)

where we used the anti-symmetry of vlma.
By a similar argument one can show that

vlmbclmacadecbfgcdfh = 2vlma(cmebcafgchldcbdf + cmebcafgcbhdcldf )

Thus

(vlmaclmb − vlmbclma)cadecbfgcdfh

= 2vlma(cmgbcadecbdfclfh − cmebcafgchldcbdf

+ cmgbcadecdlfcbfh − cmebcafgcbhdcldf ) (A.28)

Now,

vlma(cmgbcadecbdfclfh − cmebcafgchldcbdf )

= vlmacmgbcaedclhfcbdf − vlmacmebcagfclhdcbdf︸ ︷︷ ︸
m↔a,b→d→f→b

(A.29)

= vlmacmgbcaedclhfcbdf − vlamcaedcmgbclhfcdfb (A.30)

= vlmacmgbcaedclhfcbdf + vlmacaedcmgbclhfcbdf (A.31)

= 2vlmacmgbcaedclhfcbdf (A.32)
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And

vlma(cmgbcadecdlfcbfh − cmebcafgcbhdcldf )

= vlmacmgbcaedcbhfclfd − vlmacmebcagfcbhdclfd︸ ︷︷ ︸
m↔a,b→d→f→b

(A.33)

= vlmacmgbcaedcbhfclfd − vlamcaedcmgbcdhfclbf (A.34)

= vlmacmgbcaed(cbhfclfd︸ ︷︷ ︸
use Jacobi

+cdhfclbf ) (A.35)

= vlmacmgbcaed(−chlfcbfd − clbfchfd + cdhfclbf ) (A.36)

= −vlmacmgbcaedclhfcbdf (A.37)

So, from (A.28), we have

(vlmaclmb − vlmbclma)cadecbfgcdfh = 2vlmacmgbcaedclhfcbdf

�

Using this result in equation (A.19) we get,

uab(∆([Ja, Jb])− 1⊗ [Ja, Jb]− [Ja, Jb]⊗ 1)

= 1
2
vlmacmgbcaedclhfcbdf (IeIg ⊗ Ih + Ih ⊗ IeIg) (A.38)

From our expression (A.18) we have

uab(∆([Ja, Jb])− 1⊗ [Ja, Jb]− [Ja, Jb]⊗ 1)

= (vlmaclmb − vlmbclma)(∆([Ja, Jb])− 1⊗ [Ja, Jb]− [Ja, Jb]⊗ 1)
(A.39)

= vlmaclmb(∆([Ja, Jb])− 1⊗ [Ja, Jb]− [Ja, Jb]⊗ 1)

− vlmbclma(∆([Ja, Jb])− 1⊗ [Ja, Jb]− [Ja, Jb]⊗ 1)︸ ︷︷ ︸
a↔b

(A.40)

= vlmaclmb(∆([Ja, Jb])− 1⊗ [Ja, Jb]− [Ja, Jb]⊗ 1)

− vlmaclmb(∆([Jb, Ja])− 1⊗ [Jb, Ja]− [Jb, Ja]⊗ 1) (A.41)

= 2vlmaclmb(∆([Ja, Jb])− 1⊗ [Ja, Jb]− [Ja, Jb]⊗ 1) (A.42)

= 2vlmacblm(∆([Ja, Jb])− 1⊗ [Ja, Jb]− [Ja, Jb]⊗ 1) (A.43)

Equation (A.38) thus reads

2vlmacblm(∆([Ja, Jb])− 1⊗ [Ja, Jb]− [Ja, Jb]⊗ 1)

= 1
2
vlmacmgbcaedclhfcbdf (IeIg ⊗ Ih + Ih ⊗ IeIg) (A.44)

= 12vlmaalmahge(IeIg ⊗ Ih + Ih ⊗ IeIg) (A.45)

where we used the expression aabcdef = 1
24
cadicbejccfkcijk, as in Defini-

tion 1.1.
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Now we take the anti-symmetric sum of all permutations of the
indicies l,m, a

2v[lma]cb[lm(∆([Ja], Jb])− 1⊗ [Ja], Jb]− [Ja], Jb]⊗ 1)

= 12v[lma]a[lma]hge(IeIg ⊗ Ih + Ih ⊗ IeIg) (A.46)

where [lma] = lma+mal + alm− lam− aml −mla.

Lemma A.3. We can express the LHS of (1.3) as

[Jl, [Jm, Ia]]− [Il, [Jm, Ja]] = 1
2
cb[lm[Ja], Jb] (A.47)

Proof. By using the Jacobi identity2,

[Jl, [Jm, Ia]]− [Il, [Jm, Ja]] = [Jl, [Jm, Ia]] + [Jm, [Ja, Il]] + [Ja, [Il, Jm]]
(A.48)

= cmab[Jl, Jb] + calb[Jm, Jb] + clmb[Ja, Jb] (A.49)

= 1
2
cb[lm[Jm], Jb] (A.50)

where we used the anti-symmetry of the structure constants. �

Equation (A.46) is then

4v[lma](∆([Jl, [Jm, Ia]]− [Il, [Jm, Ja]])

− 1⊗ ([Jl, [Jm, Ia]]− [Il, [Jm, Ja]])

− ([Jl, [Jm, Ia]]− [Il, [Jm, Ja]])⊗ 1))

= 12v[lma]a[lma]hge(IeIg ⊗ Ih + Ih ⊗ IeIg) (A.51)

To see what the RHS of this expression is we use the following
Lemma from [18]:

Lemma A.4.

a[lma]hge(IeIg ⊗ Ih + Ih ⊗ IeIg) = almahge{IeIg ⊗ Ih + Ih ⊗ IeIg} (A.52)

where {·} means the sum of all permutations of the indicies h, e and g.

Proof.

almahge{IeIg ⊗ Ih + Ih ⊗ IeIg} = alma{hge}(IeIg ⊗ Ih + Ih ⊗ IeIg)
(A.53)

2We can use the Jacobi identity for the J ’s as well since our Lie bracket [·, ·] is
just a commutator
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and

24× alma{hge} = clhicmgjcaekcijk + clgicmejcahkcijk︸ ︷︷ ︸
i→j→k→i

+ cleicmhjcagkcijk︸ ︷︷ ︸
i→k→j→i

+ clhicmejcagkcijk︸ ︷︷ ︸
j↔k

+ clgicmhjcaekcijk︸ ︷︷ ︸
i↔j

+ cleicmgjcahkcijk︸ ︷︷ ︸
i↔k

(A.54)

= clhicmgjcaekcijk + clgjcmekcahicjki + clekcmhicagjckij

+ clhicmekcagjcikj + clgjcmhicaekcjik + clekcmgjcahickji
(A.55)

= clhicmgjcaekcijk + cahiclgjcmekcijk + cmhicagjclekcijk

− clhicagjcmekcijk − cmhiclgjcaekcijk − cahicmgjclekcijk
(A.56)

= 24× a[lma]hge (A.57)

So

almahge{IeIg ⊗ Ih + Ih ⊗ IeIg} = a[lma]hge(IeIg ⊗ Ih + Ih ⊗ IeIg) (A.58)

�

Equation (A.51) is then

v[lma](∆([Jl, [Jm, Ia]]− [Il, [Jm, Ja]])

− 1⊗ ([Jl, [Jm, Ia]]− [Il, [Jm, Ja]])

− ([Jl, [Jm, Ia]]− [Il, [Jm, Ja]])⊗ 1))

= 3v[lma]almahge{IeIg ⊗ Ih + Ih ⊗ IeIg} (A.59)

Applying ∆ to the RHS of (1.3) and requiring it to be a homomor-
phism we get the following outcome.

Lemma A.5.

∆(almahge{IhIgIe})
= almahge(1⊗ {IhIeIg}+ {IhIeIg} ⊗ 1

+ 3{IeIg ⊗ Ih + Ih ⊗ IeIg}) (A.60)
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Proof. Requiring ∆ to be a homomorphism we have,

∆{IhIgIe} = {∆(Ih)∆(Ig)∆(Ie)} (A.61)

= {(1⊗ Ih + Ih ⊗ 1)(1⊗ Ig + Ig ⊗ 1)(1⊗ Ie + Ie ⊗ 1)}
(A.62)

= {IhIgIe ⊗ 1 + IhIg ⊗ Ie + IhIe ⊗ Ig + IgIe ⊗ Ih
+ 1⊗ IhIgIe + Ig ⊗ IhIe + Ie ⊗ IhIg + Ih ⊗ IgIe} (A.63)

= 1⊗ {IhIgIe}+ {IhIgIe} ⊗ 1 + 3{IgIe ⊗ Ih + Ih ⊗ IgIe}
(A.64)

= 1⊗ {IhIeIg}+ {IhIeIg} ⊗ 1 + 3{IeIg ⊗ Ih + Ih ⊗ IeIg}
(A.65)

So,

∆(almahge{IhIgIe})
= almahge(1⊗ {IhIeIg}+ {IhIeIg} ⊗ 1

+ 3{IeIg ⊗ Ih + Ih ⊗ IeIg}) (A.66)

�

Using this result in (A.59) we get

v[lma](∆([Jl, [Jm, Ia]]− [Il, [Jm, Ja]])

− 1⊗ ([Jl, [Jm, Ia]]− [Il, [Jm, Ja]])

− ([Jl, [Jm, Ia]]− [Il, [Jm, Ja]])⊗ 1))

= v[lma]∆(almahge{IhIgIe})
− v[lma]almahge(1⊗ {IhIeIg}+ {IhIeIg} ⊗ 1) (A.67)

Requiring (A.67) to hold for all v, we obtain

[Jl, [Jm, Ia]]− [Il, [Jm, Ja]] = almahge{IhIgIe} (A.68)

which is the third defining relation of the Yangian, (1.3).
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Full calculation for the exceptional algebras

In this section we will show in full detail that (1.49) holds if and

only if b = −5s3
144(N+2)

. Recall that (1.49) is

b(ccxbδas + ccbsδax − cabsδcx + cacsδbx + caxcδbs − caxbδcs)
= aabcdef{cfxqceqrcdrs}

or

24b(ccxbδas + ccbsδax − cabsδcx + cacsδbx + caxcδbs − caxbδcs)
= 24aabcdef{cfxqceqrcdrs} (B.1)

Writing out the RHS of this in full we get,

24aabcdef{cfxqceqrcdrs} = (cadicbejccfkcijk(cfxqceqrcdrs + cexqcdqrcfrs

+ cdxqcfqrcers + cfxqcdqrcers + cexqcfqrcdrs

+ cdxqceqrcfrs)) (B.2)

Now we proceed to write this in diagrammatic notation. Start-
ing with cadicbejccfkcijkcfxqceqrcdrs = caidcbejccfkcikjcfxqceqrcdrs, we write
this in birdtrack notation as:

(B.3)

We will call this type of figure a ‘bipentagon’.
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The next term in the RHS of (B.2) is caidcbejccfkcikjcexqcdqrcfrs:

(B.4)
which is also a bipentagon, but with some of the free indicies swapped.
By similiar methods we find that the birdtrack version of the RHS
of (B.2) is is

(B.5)

We have dropped the explicit labelling of indicies and will continue
to do so for the rest of this section.
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The Jacobi identity (2.16) can be written

(B.6)

Now,

(B.7)

where we used the Jacobi identity. Moving one of the free indicies ‘up’
we get

(B.8)
which implies that

(B.9)

We have thus derived the rule

(B.10)
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By a similiar argument (adding and subtracting the same terms
and using the Jacobi identity) we can derive the following result:

(B.11)

Now we use (B.10) on the last two terms of (B.5).

(B.12)
Thus (B.5) reads

(B.13)

Now we apply (B.11) to the terms of the above expression
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(B.14)
and similarly,

(B.15)
Equation (B.13) is then
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(B.16)

We use (B.10) on the last two terms:

(B.17)
Finally, from (B.16), we end up with the following expression for

the RHS of (B.1) :
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(B.18)

Our aim is to show that this equals

24b(ccxbδas + ccbsδax − cabsδcx + cacsδbx + caxcδbs − caxbδcs)

if and only if b takes a specific value, namely b = −5s3
144(N+2)

. The above

expression in birdtrack form is (see (3.2)):

(B.19)
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For the exceptional series of Lie algebras Cvitanović [8] gives the
following rule for reducing a ‘4-loop’:

(B.20)

We use this rule on the terms in (B.18), starting with the figure
labelled (1):

(B.21)
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Noting that the figure labelled (4) in (B.18) is the same as figure (1)
but with the two rightmost indicies swapped, we have that (1)+(4) is

(B.22)
where we used the Jacobi identity in the last step.

Further, this equals

(B.23)
Now, the ‘4-loops’ in (B.23) reduce as follows:

(B.24)



B. FULL CALCULATION FOR THE EXCEPTIONAL ALGEBRAS 42

(B.25)

(B.26)

and

(B.27)
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Hence (1)+(4) in (B.18) equals

(B.28)

(B.29)
By noting that figure (3) in (B.18) is the same as (1) but with

the left top and bottom indicies (or the ‘a’ and ‘b’ indicies) swapped,
and similiarly for (6) and (4), we have that ‘(3)+(6)=-1

2
((1)+(4))’ with
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these indicies swapped. So (3)+(6) in (B.18) is:

(B.30)

Next we note that figure (7) in (B.18) is the same as (1) but with
the bottom left and bottom middle (or the ‘b’ and ‘c’ indicies) swapped,
and similiarly for (8) and (4), we thus have that ‘(7)+(8)=-1

2
((1)+(4))’

with those indicies swapped. So (7)+(8) in (B.18) is:

(B.31)
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Figure (2) in (B.18) is

(B.32)

Using (B.20) this is

(B.33)
which equals

(B.34)

Noting that figure (5) is the same as figure (2), but with opposite
sign and the top and bottom right indicies swapped, we have that
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(2)+(5) is

(B.35)

Using (B.20) we can show that figure (9) in (B.18) is:

(B.36)

and (10) is:

(B.37)
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Now we add it all together. Starting with the terms of order s3:

(B.38)

(B.39)
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The terms with a factor of 5s2

6(N+2)
are

(B.40)
which is equal to

(B.41)
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Now, using the Jacobi identity

(B.42)

and

(B.43)
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Further

(B.44)

So (B.41) is equal to

(B.45)

where we moved one of the free indicies to make the use of the Jacobi
identity more clear. Hence the terms with a factor of 5s2

6(N+2)
cancel

each other.
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The terms with a factor of s2

36
are

(B.46)

which equals

(B.47)

Now, similarly to (B.43)

(B.48)
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and similarly to (B.44)

(B.49)

Now,

(B.50)

So,

(B.51)

Hence the terms with a factor of s2

36
cancel as well.

We thus conclude that (B.18) equals

(B.52)
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In classical notation, this means that (see (B.19))

24aabcdef{cfxqceqrcdrs} =

−5

6(N + 2)
(ccxbδas + ccbsδax − cabsδcx

+ cacsδbx + caxcδbs − caxbδcs) (B.53)

Thus

b(ccxbδas + ccbsδax − cabsδcx + cacsδbx + caxcδbs − caxbδcs)
= aabcdef{cfxqceqrcdrs}

if and only if

b =
−5

24× 6(N + 2)

=
−5

144(N + 2)
(B.54)

We have thus shown that the representation ρ in Theorem 1.3 is
consistent with (1.3) if and only if

b =
−5

144(N + 2)
(B.55)

for the exceptional Lie algebras.
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Full calculation for su(n)

Here we give the details of how we calculate the expression (3.4)
for g = su(n). We make use of the identities (3.13) - (3.25).

Using (3.21) on figure (1) in (B.18) we have

(C.1)
using (3.21) and (3.16). This simplifies to

(C.2)
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Thus

(C.3)
Using (B.10) we have

(C.4)
where

(C.5)
and

(C.6)
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so

(C.7)
Further

(C.8)

so

(C.9)
Using (B.10) we have

(C.10)
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(C.11)

Using all this we get that

(C.12)
Now, using the Jacobi identity and (3.16) - (3.18) we have



C. FULL CALCULATION FOR su(n) 58

(C.13)

(C.14)

(C.15)

(C.16)

and

(C.17)
So, (C.12) is

(C.18)
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We can simplify this using the Jacobi identity. Firstly,

(C.19)
Secondly,

(C.20)
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Thus (1)+(4) of (3.4) is:

(C.21)

Since ‘(3)+(6)=-1
2
((1)+(4))’ with the left top and bottom indicies

(or the ‘a’ and ‘b’ indicies) swapped, we have that (3)+(6) in (B.18) is:

(C.22)
Next we note that ‘(7)+(8)=-1

2
((1)+(4))’ with the bottom left and

bottom middle (or the ‘b’ and ‘c’ indicies) swapped, so (7)+(8) in (B.18)
is:

(C.23)

Figure (2) in (B.18) is:

(C.24)
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Now, using (3.24) and (3.25), we have

(C.25)

So

(C.26)

and hence (2)+(5) in (B.18) equals:

(C.27)
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Figure (9) in (B.18) is:

(C.28)
where we made use of (C.25).

Figure (10) in (B.18) is:

(C.29)

Rotating (C.25) we get

(C.30)
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So figure (10) is

(C.31)
Now we add together the terms in (B.18). First we see that the

terms with three structure constants cancel:

(C.32)

(C.33)

(C.34)

(C.35)
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The terms with one structure constant are:

(C.36)
So (3.4) equals

(C.37)

Comparing this with (3.2) we conclude that the representation ρ of
Theorem 1.3 is consistent with (1.3) if and only if

b =
3n

4× 24
=
−(−n)3

32n2
=
−s3

32n2
(C.38)

since we have used the normalisation s = −n in our calculations.
Thus we have proved the result for su(n).
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Numerical calculation for su(2)

In this appendix we prove the statement (3.67) in the proof of
Lemma 3.2. That is

ρ((aabcdefcrsc + arscdefcabc){Id, Ie, If})Ix = 0

By (3.66),

ρ((aabcdefcrsc + arscdefcabc){Id, Ie, If})Ix
= (aabcdefcrsc + arscdefcabc){[ [ [Ix, If ], Ie], Id]} (D.1)

In order to evaluate the RHS of this expression we use the com-
puter software Matlab. First we choose three anti-hermitian matrices
generating su(2),

I1 =

(
i 0
0 −i

)
(D.2)

I2 =

(
0 i
i 0

)
(D.3)

I3 =

(
0 1
−1 0

)
(D.4)

These matrices are orthonormal with respect to the inner product

(A,B) = 1
2
tr(AB†) (D.5)

This inner product is associative because of the cyclicity of the trace
and the anti-hermiticity of the chosen basis,

(Ia, [Ib, Ic]) = 1
2
tr{Ia(IbIc)† − Ia(IcIb)†} (D.6)

= 1
2
tr{IaI†cI

†
b − IaI

†
b I
†
c} (D.7)

= 1
2
tr{−IaI†cIb + IaIbI

†
c} (D.8)

= 1
2
tr{−IbIaI†c + IaIbI

†
c} (D.9)

= 1
2
tr{[Ia, Ib]I†c (D.10)

= ([Ia, Ib], Ic) (D.11)

Hence this inner product satisfies the requirements of Theorem 1.3.
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We then use the code below to evaluate the RHS of (D.1). The func-
tions below should be saved as M-files with file names ‘function.m’.
The other segments of code should be executed in the command win-
dow, in order of appearance.
global n

global dim

n=2;

dim=n*n-1; %=3

%----------------I.m---------------------------------

function [ Ik ] = I( k )

%Takes input k, returns matrix Ik, for k=1,2,3

global n

Ik=zeros(n);

if k==1

Ik=[1i 0; 0 -1i];

end

if k==2

Ik=[0 1i ; 1i 0];

end

if k==3

Ik=[0 1; -1 0];

end

end

%-------------------inner.m--------------------------

function [ in ] = inner( A,B )

%INNER calculates the inner product of A and B

global n

in=trace(A*B’)/2;

%B’ means B hermitian transpose

end

%------------------com.m-----------------------------

function [ com ] = com( X, Y )

%COM returns [X,Y]=X*Y-Y*X

com=X*Y-Y*X;

end

%----------------------------------------------------
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%creates the structure constants and places them in a 3x3x3 array

%the values of the constants are then obtained by writing e.g. c(1,2,3)

global c

global dim

global n

c= cat( 3, zeros(1,dim), zeros(1,dim), zeros(1,dim));

for i=1:dim

for j=1:dim

M=com(I(i),I(j));

for k=1:dim

c(i,j,k)=inner(M,I(k));

end

end

end

%----------------a.m---------------------------------

function [ A ] = a( la, mu, nu, alf, bet, gam )

%Calculates the a’s as defined by Drinfel’d

global c

global n

global dim

A=0;

for i=1:dim

for j=1:dim

for k=1:dim

A=A+c(la,alf,i)*c(mu,bet,j)*c(nu,gam,k)*c(i,j,k);

end

end

end

A=A/24;

end

%------------------rhs.m-----------------------------

function [ Sr ] = rhs( la, mu, r, s, x )

%RHS evaluates RHS for the given values of the free indicies

%

global n

global dim

global c

S=zeros(n,n);
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for alf=1:dim

for bet=1:dim

for gam=1:dim

for nu=1:dim

S=S+(a(la,mu,nu, alf, bet, gam)*c(r,s,nu) + a(r,s,nu, alf, bet, gam)

*c(la,mu,nu) )*(com(I(alf), com(I(bet), com(I(gam),I(x))))

+ com(I(bet), com(I(gam), com(I(alf),I(x))))

+ com(I(gam), com(I(alf), com(I(bet),I(x))))

+ com(I(alf), com(I(gam), com(I(bet),I(x))))

+ com(I(gam), com(I(bet), com(I(alf),I(x))))

+ com(I(bet), com(I(alf), com(I(gam),I(x)))));

%The above expression "S=S+ ..." should be written on ONE line

end

end

end

end

Sr=S;

%----------------------------------------------------

%tests if rhs=0 for all i,j,k,l,m

%The running time for this is about 2 minutes

global n

global dim

err=[]; %to store error values

for i=1:dim

for j=1:dim

for k=1:dim

for l=1:dim

for m=1:dim

if isequal(rhs(i,j,k,l,m),zeros(n,n))

else

err= [err , i, j, k, l, m,0];

%if rhs is not zero, store the values of i,j,k,l,m

end

end

end

end

end

end

err %display errors. If empty, rhs=0 for all i,j,k,l,m

%----------------------------------------------------
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We get the output
err = []

which means that the RHS of (D.1) is zero, for all a, b, r, s, x = 1, 2, 3.
Hence

ρ((aabcdefcrsc + arscdefcabc){Id, Ie, If})Ix = 0.
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Numerical calculation for so(5)

Using Matlab we evaluate both sides of the equation:

b(ccxbδas + ccbsδax − cabsδcx + cacsδbx + caxcδbs − caxbδcs)
= aabcdef{cfxqceqrcdrs} (E.1)

which gives the same condition on b as (1.49).
First we chose an anti-hermitian basis of so(5):

I1 =


0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (E.2)

I2 =


0 0 1 0 0
0 0 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (E.3)

... (E.4)

I10 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 −1 0

 (E.5)

These matrices are orthonormal with respect to the associative1

inner product

(A,B) = 1
2
tr(AB†) (E.6)

We now use the code below. The functions below should be saved
as M-files with file names ‘function.m’. The other segments of code
should be executed in the command window, in order of appearance.

1See Appendix D for a proof of associativity
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%--------------I.m----------------------------

function [ I ] = I( n )

%returns basis element of so(5)

I=zeros(5,5);

if n >= 1 && n <=4

I(1,n+1)=1;

end

if n>=5 && n<=7

I(2,n-2)=1;

end

if n==8

I(3,4)=1;

end

if n==9

I(3,5)=1;

end

if n==10

I(4,5)=1;

end

I=I-I’;

%I’ means the transpose of I

end

%---------------inner.m------------------

function [ in ] = inner( A, B )

%calculates the inner product of A and B

% so5

%

% A=I(a);

% B=I(b);

in=trace(A*B’)/2;

end

%-----------------com.m------------------------

function [ com ] = com( X, Y )

%Calculates the commutator of X and Y

com=X*Y-Y*X;

end
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%----------------------------------------------

%creates the structure constants

global c

c= cat( 3, zeros(1,10), zeros(1,10), zeros(1,10));

for i=1:10

for j=1:10

M=com(I(i),I(j));

for k=1:10

c(i,j,k)=inner(M,I(k));

end

end

end

%-------------------a.m--------------------------

function [ A ] = a( lam, mu, nu, alf, bet, gam )

%calculates the a’s in D3

global c

A=0;

for i=1:10

for j=1:10

for k=1:10

A=A+c(lam,alf,i)*c(mu,bet,j)*c(nu,gam,k)*c(i,j,k);

end

end

end

A=A/24;

end

%------------kill.m------------------------

function [ kill ] = kill( a,b )

%calculates the killing form of I(a) and I(b)

global c

kill=0;

for i=1:10

for j=1:10
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kill=kill+ c(a,j,i)*c(b,i,j);

end

end

end

%-----------testkill.m-----------------------

%calculates the Killing form between all the basis elements and

%places the result in a matrix

K=zeros(10,10);

for a=1:10

for b=1:10

K(a,b)=kill(a,b);

end

end

K

%--------------------lhs.m-------------------

function [ Sl ] = lhs( la, mu, nu, x)

%evlauates LHS of D3

global c

S=zeros(5,5);

for si=1:10

S= S + (c(nu, x, mu)*delta(la,si) + c(nu,mu,si)*delta(la,x) -

c(la,mu,si)*delta(nu,x) + c(la,nu,si)*delta(mu,x)

+ c(la,x,nu)*delta(mu,si) - c(la,x,mu)*delta(nu,si))*I(si);

%NOTE: the above expression ’S=S+...’ should be written on

the same line

end

Sl=S;

end

%---------rhs.m-----------------------------------

function [ Sr ] = rhs( la, mu, nu, x )

%Evaluates rhs of D3

S=zeros(5,5);

for alf=1:10
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for bet=1:10

for gam=1:10

S=S+a(la,mu,nu, alf, bet, gam)*(com(I(alf), com(I(bet), com(I(gam),I(x))))

+ com(I(bet), com(I(gam), com(I(alf),I(x)))) + com(I(gam), com(I(alf),

com(I(bet),I(x)))) + com(I(alf), com(I(gam), com(I(bet),I(x))))+

com(I(gam), com(I(bet), com(I(alf),I(x))))+ com(I(bet), com(I(alf),

com(I(gam),I(x)))));

%NOTE: the above expression ’S=S+...’ should be written on

the same line

end

end

end

Sr=S;

end

%------------------------------------------

We can now write for example
lhs(1,2,3,4)

rhs(1,2,3,4)

to find that both the LHS and RHS of (E.1) is zero when a = 1,
b = 2, c = 3 and x = 4.

If we instead calculate
lhs(1,2,3,5)

rhs(1,2,3,5)

we get the outputs 
0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 (E.7)

and 
0 0 0 −0.5 0
0 0 0 0 0
0 0 0 0 0

0.5 0 0 0 0
0 0 0 0 0

 (E.8)

respectively. By (E.1) we thus have the neccessary condition b = 1
2
.
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The value of b in Theorem 1.3 is

b = −s3 n− 4

16(n− 2)3
=
−s3

16× 33

By executing
testkill

we see that the ratio of the Killing form to the inner product is
s = −6.

Hence the value of b as given by Theorem 1.3 is

b =
−(−6)3

16× 33
=

1

2
in our case.

Our numerical results thus verifies Theorem 1.3. However it should
be noted that our calculation only gives a neccessary condition on b.
For a sufficient result we would need to do calculations for all a, b, c, x =
1, 2, . . . , 10.
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[8] P Cvitanović, Group Theory, Princeton University Press, (2008). Also available
at birdtracks.eu

[9] L Dolan, C R Nappi, E Witten, Yangian Symmetry in D=4 Superconformal
Yang-Mills Theory, arXiv:hep-th/0401243v2

[10] V G Drinfel’d, Hopf Algebras and the Quantum Yang-Baxter Equation, Soviet
Math. Dokl. Vol. 32, No. 1 (1985)

[11] V G Drinfel’d, A new realization of Yangians and quantized affine algebras,
Soviet Math. Dokl. Vol. 36, No. 2 (1988)

[12] K Erdmann and M J Wildon, Introduction to Lie algebras, Springer Under-
graduate Mathematics Series, Springer-Verlag (2006)

[13] L A Takhtadzhan and L D Faddeev, The quantum method of the inverse prob-
lem and the Heisenberg XYZ model, Russ. Math. Surv. 34 No. 5 (1979)

[14] M Gell-Mann, The Eightfold Way: A Theory of Strong Interaction Symmetry,
California Institute of Technology Synchrotron Laboratory Report CTSL-20
(1961), unpublished. Reproduced in M Gell-Mann, Y Ne’eman, The Eightfold
Way, Benjamin Inc. (1964)

[15] M Hatsuda and K Yoshida, Classical Integrability and Super Yangian
of Superstring on AdS5 × S5, Adv. Theor. Math. Phys. (9) (2005)
arXiv:hep-th/0407044v3 (2005)

[16] M Jimbo, Introduction to the Yang-Baxter equation, Int. J. Mod. Phys. A Vol.
4, No. 15 (1989)

[17] C Kassel, Quantum Groups, Springer Graduate Texts in Mathematics,
Springer-Verlag (1995)

[18] U Kono, Yangians and their representations, MSc thesis, University of York,
(2004), unpublished

76



BIBLIOGRAPHY 77

[19] P P Kulish, N Yu Reshetikhin and E K Sklyanin, Yang-Baxter Equation and
Representation Theory: I, Lett. Math. Phys. 5 (1981)

[20] P P Kulish and E K Sklyanin, Solutions of the Yang-Baxter Equation, J. Math.
Sci. 9 No. 5 (1982)

[21] P P Kulish and E K Sklyanin, Quantum spectral transform method - recent
developments, Lecture Notes in Physics Vol. 151 (1982)

[22] A J Macfarlane, A Sudbery, P H Weisz, On Gell-Mann’s λ-Matrices, d- and
f -Tensors, Octets, and Parametrizations of SU(3), Comm. Math. Phys. 11,
77 (1968)

[23] A J Macfarlane and H Pfeiffer, On characteristic equations, trace identities
and Casimir operators of simple Lie algebras, J. Math. Phys. 41 No. 5 (2000)
3192, arXiv:math-ph/9907024v1

[24] N J MacKay, Introduction to Yangian Symmetry in Integrable Field Theory,
Int. J. Mod. Phys. A Vol. 20, No. 30 (2005)

[25] J B McGuire, Study of Exactly Soluble One-Dimensional N-Body Problems, J.
Math. Phys. 5, No. 5 (1964)

[26] A I Molev, Yangians and their applications, arXiv:math/0211288v1 (2002)
[27] R Penrose, Angular momentum: an approach to combinatorial space-time, in

Quantum Theory and Beyond, T. Bastin, ed., Cambridge University Press,
(1971)

[28] A A Sagle and R E Walde, Introduction to Lie groups and Lie algebras, Aca-
demic Press (1973)

[29] E K Sklyanin, L A Takhtadzhyan and L D Faddeev, Quantum inverse problem
method I, Theo. Math. Phys. Vol. 40, No. 2 (1979)

[30] V O Tarasov, Structure of quantum L-operators for the R-matrix of the XXZ-
model, Theo. Math. Phys. 61 (1984)

[31] C N Yang, Some Exact Results for the Many-Body Problem in one Dimension
with Repulsive Delta-Function Interaction, Phys. Rev. Lett. 19 (1967)


