
Is air combat Lanchestrian? 5 September 2011

Niall J. MacKay

Department of Mathematics, University of York, UK

1. Introduction

In his seminal work on the mathematics of warfare, Lanchester’s purpose was to make a

crucial distinction between what he called ‘ancient’ warfare, in which combat is essentially

a set of duels, and ‘modern’ war, in which, with the advent of long-range aimed projectile

weapons, combatants with the advantage of numbers could concentrate their fire, many-on-

one.[?] When these assumptions are built into the simplest possible dynamical system, ancient

war produces a linear law, in which fighting strength is given by units’ individual effec-

tiveness multiplied by their numbers, while modern war results in a square law, in which

strength is individual effectiveness times numbers squared. Which of these holds for air com-

bat? Lanchester thought the answer was clear: air combat is modern, square-law war, and he

included his original articles in a book on Aircraft in Warfare.[?] The same answer has seemed

obvious to modern commentators, too.[?]

In the last couple of decades the standard way to perform a Lanchestrian campaign analysis

has been to fit the two sides’ loss rates to (possibly different) monomial scalings—one writes

each side’s loss rate as a power of its own numbers multiplied by a power of its opponents’.[?]

Unsurprisingly, such loss rates are usually roughly in proportion to overall numbers, as both

common sense and the statistical effects of aggregation would lead us to expect (see below).

However, the answers to all tactical and operational questions follow rather from the ratio of

these loss rates, the casualty exchange ratio (CER), and indeed it is the expression for this that

leads to the dynamical systems’ conserved quantities which result in the linear and square

laws and their generalizations. Essentially, by taking the quotient of the loss rates we have

eliminated the explicit time dependence: the point is that a battle’s outcome depends on the

ratio of losses sustained, not on the rate of its progress. Yet even Morse and Kimball, who

number among the fathers operations research, treat the CER separately from the Lanchester

equations.[?]

To see how this works, let B and R be Blue and Red sortie rates, and −dB/dt and −dR/dt

be the corresponding loss rates. Lanchester’s aimed-fire equations are

dB

dt
= −rR ,

dR

dt
= −bB , (1)

where r (resp. b) are the losses caused by Red (resp. Blue) per sortie. Upon dividing, we see

that the CER
dR

dB
=

bB

rR
, (2)
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which we separate to give bB dB = rR dR and integrate to give the square law 1
2rR

2 =
1
2bB

2+constant. Thus the signature of the square law is that the CER is proportional to the

force ratio (FR) B/R, while that of the linear law rR = bB+constant is that the CER is con-

stant.

One might be tempted to test between linear and square laws by performing a simple linear

regression fit of the CER to the FR. However, this would be mistaken, for the conclusions are

not invariant under B ↔ R, because the significance of β in fitting dB
dR

= α + β R
B

is different

from that in fitting dR
dB

= α+ βB
R

. Rather one should seek the scaling of dR
dB

with B
R

by fitting

dR

dB
= α

(

B

R

)β

, (3)

equivalent to performing a linear regression of the logarithm of the CER onto that of the FR.

From a statistical perspective, the point is that residuals with respect to a given FR are given

the same weight as those with respect to its reciprocal. Evidence for the square law rather

than the linear law would then be for β = 1 to be preferred to β = 0, while any evidence for

β 6= 0 points to a non-trivial dependence of CER on FR.

2. Two campaigns of World War Two

Here we look at two campaigns for which we have finely-resolved sortie and loss data, the

1940 Battle of Britain and the 1941-45 carrier-based Pacific air campaign. For the former we

have daily data, while for the latter the data are at the level of a carrier operation, ranging

from a single raid to several weeks’ action. Of course, ideal data would be for individual,

indivisible engagements. When one sums a number of smaller, independent engagements,

the resulting loss rates are pushed towards linear dependence on sortie numbers (owing, at

root, to what mathematicians call ‘Jensen’s inequality’). To the extent to which larger loss

rates are due to their being the sums of more rather than larger engagements, aggregation

effects can obscure evidence for the square law.

The Battle of Britain, 1940

Let B be Royal Air Force (RAF) and R (estimated) Luftwaffe daily sortie numbers, and

δB := −dB/dt and δR := −dR/dt be RAF and Luftwaffe daily loss rates, discretized to dt =1

day.[?] The logarithm of the CER= δR
δB

is plotted against that of the FR= R
B

in Figure 1(a). If

we fit
δR

δB
= α

(

B

R

)β

(4)

then we find β = 0.26 ± 0.17 with a t-test significance of p = 0.13. In fact the battle naturally

splits into two phases: a first, more intense phase up to 15th September 1940, for which β =

−0.007 ± 0.217 (p = 0.98); and a second phase after this, for which β = 0.45 ± 0.30 (p = 0.14).
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All fits have a proportion of variance explained (which, at the risk of ambiguity, we write

conventionally as
∑

R2) less than 0.05. Thus, in the Battle of Britain, it seems that there is no

strong evidence for the square law, or for any dependence of the CER on the FR.
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(b) The US-Japanese Pacific air campaign

Figure 1: Log-log plot of Casualty Exchange Ratio against Force Ratio

The Pacific Air War, 1941-1945

Here we let B be US Navy (USN) and R estimated Imperial Japanese Navy (IJN) sortie

numbers, and δB and δR be USN and IJN losses in the corresponding operation.[?,?] The log-

log plot of CER against FR is Figure 1(b). We find β = 0.13 ± 0.09 with p = 0.13. This

recedes further from significance if we again split the campaign into its two very different

phases, either side of the lull in the summer of 1943. (The USN fared vastly better in the

second phase, with the introduction of Hellcats and the relative improvement in its pilots’

experience levels.) For the first phase we find β = −0.006 ± 0.16 (p = 0.97); while for the

second β = −0.005 ± 0.092 (p = 0.96). Again all
∑

R2 < 0.05. Thus, once again, we see no

evidence that air combat is other than a set of duels.

As we noted, aggregation effects could conceivably be masking evidence for the square law,

especially in the case of the Pacific war. Nevertheless the absence of evidence for dependence

of the CER on the FR is striking.

3. The Air Campaign and evidence for the square law

In his seminal book The Air Campaign, John Warden argues consistently for the importance

of numbers and concentration in air combat: for example, ‘a primary goal of the operational

commander ought to be to make sure that his forces outnumber the enemy every time they

meet’.[?] This is not a new position. In considering the Battle of Britain, for example, it is strik-
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ing how closely Warden’s arguments parallel those used between the world wars in lectures

at the RAF Staff College.[?] Yet the tactic which won the Battle of Britain and the (air) Battle of

Malta, due to Keith Park, was very different: forward interception by minimal numbers. In

contrast, the emphasis of Leigh-Mallory and his proteges on concentration (exemplified in the

‘Big Wing’) proved disastrous, both in the 1941 fighter sweeps over France and in the early

stages of the Battle of Malta.[?,?]

In Warden’s view, the special feature of the Battle of Britain as a defensive campaign was

Dowding’s use of a strategic reserve.[?] But, if a scaling law for loss rates indeed underlies the

Battle of Britain data, it certainly does not result in Lanchester’s square law, but rather in the

‘defender’s advantage’ of cover and concealment, and not of concentration, for which the pro-

totype variant of Lanchester’s equations is that of guerrilla warfare.[?,?] Even though The Air

Campaign nowhere mentions Lanchester’s equations, it is effectively advocating the square

law, and its mathematical argument rests on the CER: ‘Loss rates vary disproportionately

with the ratio of forces involved’.[?] This in turn rests on a rather problematic 1970 study.[?]

The analysis in this study utilizes two sets of data, each consisting of sortie and loss num-

bers of the form considered above. One is of the 26 months of the air campaign over Korea

(Figure 2(a)). The time periods have the merit of being identical, but 30 times longer than in

the daily rates used in the Battle of Britain, so that aggregation problems will be consistently

much more severe. Further, points with high CER δR
δB

are very sensitive to changes in monthly

Blue losses, which were often as low as one or two. For these data, β = 0.23 ± 0.24, p = 0.35,

and
∑

R2 < 0.04, so that there is again no evidence of sensitivity of the CER to the FR.
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(a) Monthly data for the Korean War
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Figure 2: Ratio plots of data used in the 1970 study.[?]

The other set is of twelve World War Two (WWII) campaigns, and is the only one of the four

sets which appears to support proportionality of the CER to the FR. Unfortunately it is also
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by far the most problematic of the data sets. Each of its points is a campaign, and these vary

hugely in duration and magnitude, ranging from Midway (3 days, and about 200 sorties) to

the second half of the 1944 battle over western Europe (3 months and over 200,000 sorties).

Independent of aggregation issues, whereas in the other sets one might expect some degree

of homogeneity among the data points, in this set we have different campaigns, fought at

different stages of the war, between different antagonists and using different airplanes. Thus,

in particular, and unlike for the other three sets, we might expect each data point to vary

not only in B,R but also in b, r: the study is guilty of what Helmbold calls ‘the Constant

Fallacy’.[?]

The plot of these points is shown in Figure 2(b), in which we have identified some of the

outlying points: the second half of the 1944 battle over western Europe (WE2), the 1941-

2 campaign of the American Volunteer Group in China (AVG), the 1940 Battle for France

(France), and the 1942 Eastern New Guinea campaign (ENG). This data set has β = 0.82±0.33

at p = 0.03 and
∑

R2 = 0.38, and so (provided one believes that b/r is the same for all twelve

campaigns) provides some evidence for the square law.

The (anonymous) author of the 1970 study claims to have found a good fit to (what are effec-

tively, although not identified as) Lanchester’s aimed-fire equations, but in fact the argument

is circular: the paper posits relationships of the form δB/B ∝ (B/R)−1 and δR/R ∝ (R/B)−1

and then finds the best-fitting constants of proportionality (without regard to goodness of

fit).[?] This amounts to finding the best-fitting values of b and r in (??), and thereby of b/r

in a posited proportionality (??) of the CER to the FR. It is not a test of the truth of such a

relationship, or of the applicability of the square law.

4. Conclusion

Does air combat obey the square law? It would be highly tendentious to cite the last data

set, of disparate WWII campaigns, as evidence that it does. When we probe further, using

data resolved down to months, individual carrier operations or days, which we would expect

to reduce aggregation problems and thereby improve the evidence for the square law, in fact

the evidence melts away. If one wishes to believe that air combat is Lanchestrian—that mere

concentration of numbers is advantageous in air combat, all other things being equal—a more

convincing argument is needed.
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