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Abstract. Previous work has shown that principal component analysis (PCA) of 
three-dimensional face models can be used to perform recognition to a high de-
gree of accuracy.  However, experimentation with two-dimensional face images 
has shown that PCA-based systems are improved by incorporating linear dis-
criminant analysis (LDA), as with Belhumier et al’s fisherface approach.  In this 
paper we introduce the fishersurface method of face recognition: an adaptation 
of the two-dimensional fisherface approach to three-dimensional facial surface 
data.  Testing a variety of pre-processing techniques, we identify the most effec-
tive facial surface representation and distance metric for use in such application 
areas as security, surveillance and data compression.  Results are presented in 
the form of false acceptance and false rejection rates, taking the equal error rate 
as a single comparative value. 

1 Introduction 

Despite significant advances in face recognition technology, it has yet to achieve the 
levels of accuracy required for many commercial and industrial applications.  The 
high error rates stem from a number of well-known sub-problems.  Variation in light-
ing conditions, facial expression and orientation can all significantly increase error 
rates, making it necessary to maintain consistent image capture conditions between 
query and gallery images.  However, this approach eliminates a key advantage offered 
by face recognition: a passive biometric that does not require subject co-operation.  In 
an attempt to address these issues, research has begun to focus on the use of three-
dimensional face models, motivated by three main factors.  Firstly, relying on geomet-
ric shape, rather than colour and texture information, systems become invariant to 
lighting conditions.  Secondly, the ability to rotate a facial structure in three-
dimensional space, allowing for compensation of variations in pose, aids those meth-
ods requiring alignment prior to recognition. Thirdly, the additional discriminatory 
depth information in the facial surface structure, not available from two-dimensional 
images, provides supplementary cues for recognition. 

In this paper we investigate the use of facial surface data, taken from 3D face mod-
els (generated using a stereo vision 3D camera), as a substitute for the more familiar 
two-dimensional images.  A number of investigations have shown that geometric 
facial structure can be used to aid recognition.  Zhao and Chellappa [1] use a generic 



3D face model to normalise facial orientation and lighting direction prior to recogni-
tion, increasing accuracy from approximately 81% (correct match within rank of 25) 
to 100%.  Similar results are witnessed in the Face Recognition Vendor Test [2], 
showing that pose correction using Romdhani et al’s 3D morphable model technique 
[3] reduces error rates when applied to the FERET database. 

Blanz et al [4] take a comparable approach, using a 3D morphable face model to 
aid in identification of 2D face images.  Beginning with an initial estimate of lighting 
direction and face shape, Blanz et al iteratively alters shape and texture parameters of 
the morphable face model, minimising difference to the two-dimensional image.  
These parameters are then taken as features for identification, resulting in 82.6% cor-
rect identifications on a test set of 68 people. 

Although these methods show that knowledge of three-dimensional face shape can 
aid normalisation for two-dimensional face recognition systems, none of the methods 
mentioned so far use actual geometric structure to perform recognition.  Whereas 
Beumier and Acheroy [5, 6] make direct use of such information, testing various 
methods of matching 3D face models, although few were successful.  Curvature analy-
sis proved ineffective, and feature extraction was not robust enough to provide accu-
rate recognition.  However, Beumier and Acheroy were able to achieve reasonable 
error rates using the curvature of vertical surface profiles.  Verification tests carried 
out on a database of 30 people produced EERs between 7.25% and 9.0% on the auto-
matically aligned surfaces and between 6.25% and 9.5% when manual alignment was 
used.  Chua et al [4] attempt to identify and extract rigid areas of 3D facial surfaces, 
creating a system invariant to facial expression.  The similarity of two face models is 
computed by comparing a set of unique point signatures for each face.  Identification 
tests show that the probe image is identified correctly for all people when applied to a 
test set of 30 depth maps of 6 different people. 

Hesher et al [7] use PCA of depth maps and a euclidean distance metric to perform 
identification with 94% accuracy on 37 face models (when training is performed on 
the gallery set).  Further investigation into this approach is carried out by Heseltine et 
al [8], showing how different surface representations and distance measures affect 
recognition, reducing the EER from 19.1% to 12.7% when applied to a difficult test 
set of 290 face models. 

Having achieved reasonable success from the PCA-based eigensurface system in 
previous work [8], we now continue this line of research, experimenting with another 
well-known method of face recognition, namely the fisherface approach as described 
by Belhumeur et al [9], adapted for use on three-dimensional face data.  Testing a 
range of surface representations and distance metrics, we identify the most effective 
methods of recognising faces using three-dimensional surface structure. 

2 The 3D Face Database 

Until recently, little three-dimensional face data has been publicly available for re-
search and nothing towards the magnitude required for development and testing of 
three-dimensional face recognition systems.  In these investigations we use a new 



database of 3D face models, recently made available by The University of York, as 
part of an ongoing project to provide a publicly available 3D Face Database [10].  
Face models are generated in sub-second processing time from a single shot with a 3D 
camera, using a stereo vision technique enhanced by light projection. 

For the purpose of these experiments we select a sample of 1770 face models (280 
people) captured under the conditions in Fig. 1.  During data acquisition no effort was 
made to control lighting conditions.  In order to generate face models at various head 
orientations, subjects were asked to face reference points positioned roughly 45° 
above and below the camera, but no effort was made to enforce precise orientation.  

 

 

Fig. 1. Example face models taken from The University of York 3D face database 

3D models are aligned to face directly forwards before conversion into depth map 
representation.  The database is then separated into two disjoint sets: the training set 
consisting of 300 depth maps (6 depth maps of 50 people) and a test set of the remain-
ing 1470 depth maps (230 people), consisting of all capture conditions shown in Fig. 
1.  Both the training and test set contain subjects of various race, age and gender and 
nobody is present in both the training and test sets. 

3  Surface Representations 

It is well known that the use of image processing can significantly reduce error rates of 
two-dimensional face recognition methods [11, 12, 13], by removing effects of envi-
ronmental capture conditions.  Much of this environmental influence is not present in 
3D face models, however Heseltine et al [8] have shown that such pre-processing may 
still aid recognition by making distinguishing features more explicit and reducing 
noise content.  In this section we describe a variety of surface representations, derived 
from aligned 3D face models, which may affect recognition error rates.  Pre-
processing techniques are applied prior to both training and test procedures, such that 
a separate surface space is generated for each surface representation and hence a sepa-
rate face recognition system. 



Table 1. Descriptions of surface representations with the convolution kernels used 

Horizontal Gradient Vertical Gradient Horiz. Gradient Large Vert. Gradient Large 
 

 

 

 
 

 

 

 
 

Applies the 2x1 kernel 
to compute the hori-

zontal derivative 

Applies the 1x2 kernel 
to compute the vertical 

derivative 

Horizontal gradient 
over a greater horizon-

tal distance 

Vertical gradient over 
a greater vertical 

distance 

Laplacian Sobel X Sobel Y Sobel Magnitude 

 
 

 
 

 
 

 
An isotropic measure 
of the second spatial 

derivative 

Application of the 
horizontal sobel de-

rivative filter 

Application of the 
vertical sobel deriva-

tive filter 

The magnitude of 
Sobel X and Y com-

bined. 

Horizontal Curvature Vertical Curvature Curvature Magnitude Curve Type 

    
Applies sobel X twice 

to calculate the 2nd 
horizontal derivative 

Applies sobel Y twice 
to calculate the 2nd 
vertical derivative 

The magnitude of the 
vertical and horizontal 

curvatures 

Segmentation of the 
surface into 8 discreet 

curvature types 

Min Curvature Max Curvature Abs Min Curvature Abs Max Curvature 

    The minimum of the 
horizontal & vertical 

curvature values 

The maximum of 
horizontal & vertical 

curvature values 

The minimum of 
absolute horizontal & 

vertical curvatures 

The maximum of 
absolute horizontal & 

vertical curvatures 

4 The Fishersurface Method 

In this section we provide details of the fishersurface method of face recognition.  We 
apply PCA and LDA to surface representations of 3D face models, producing a sub-
space projection matrix, as with Belhumier et al’s fisherface approach [9], taking 
advantage of ‘within-class’ information, minimising variation between multiple face 
models of the same person, yet maximising class separation.  To accomplish this we 
use a training set containing several examples of each subject, describing facial struc-
ture variance (due to influences such as facial expression), from one model to another.  
From the training set we compute three scatter matrices, representing the within-class 
(SW), between-class (SB) and total (ST) distribution from the average surface � and 
classes averages �n, as shown in equation 1. 



 

(1) 

The training set is partitioned into c classes, such that all surface vectors Γni in a 
single class Xn are of the same person and no person is present in multiple classes.  
Calculating eigenvectors of the matrix ST, and taking the top 250 (number of surfaces 
minus number of classes) principal components, we produce a projection matrix Upca.  
This is then used to reduce dimensionality of the within-class and between-class scat-
ter matrices (ensuring they are non-singular) before computing the top c-1 eigenvec-
tors of the reduced scatter matrix ratio, Ufld, as shown in equation 2. 

 

(2) 

Finally, the matrix Uff is calculated, such that it projects a face surface vector into a 
reduced space of c-1 dimensions, in which between-class scatter is maximised for all c 
classes, while within-class scatter is minimised for each class Xn.  Like the eigenface 
system, components of the projection matrix Uff can be viewed as images, as shown in 
Fig. 2 for the depth map surface space. 

 

    

Fig. 2. The average surface (left) and first five fishersurfaces (right) 

Once surface space has been defined, we project a facial surface into reduced sur-
face space by a simple matrix multiplication, as shown in equation 3. 

ff
T U)( Ψ−Γ=Ω  . (3) 

The vector �T���1��2����c-1] is taken as a ‘face-key’ representing the facial struc-
ture in reduced dimensionality space.  Face-keys are compared using either euclidean 
or cosine distance measures as shown in equation 4. 

 

(4) 

An acceptance (facial surfaces match) or rejection (surfaces do not match) is de-
termined by applying a threshold to the distance calculated.  Any comparison produc-
ing a distance value below the threshold is considered an acceptance. 



5 The Test Procedure 

In order to evaluate the effectiveness of a surface space, we project and compare the 
1470 face surfaces with every other surface in the test set, no surface is compared with 
itself and each pair is compared only once (1,079,715 verification operations).  The 
false acceptance rate (FAR) and false rejection rate (FRR) are then calculated as the 
percentage of incorrect acceptances and incorrect rejections after applying a threshold.  
Varying the threshold produces a series of FAR FRR pairs, which plotted on a graph 
produce an error curve as seen in Fig. 5.  The equal error rate (EER, the point at which 
FAR equals FRR) can then be taken as a single comparative value. 
 

 
Fig. 3. Flow chart of system evaluation procedure 

6 Results 

In this section we present results gathered from performing 1,079,715 verification 
operations on the test set of 1470 face models, using the surface representations de-
scribed in section 3.  Systems are tested separately using Euclidean and cosine dis-
tance measures.  In addition we provide a direct comparison to the eigensurface 
method [8] trained and tested using the same face models, distance metrics and the 
same number of (c-1) principal components. 
 

 

Fig. 4. EERs of fishersurface and eigensurface systems using two distance metrics 



Fig. 4 shows the diversity of error for eigensurface and fishersurface methods, us-
ing cosine and Euclidean metrics for the range of surface representations.  The initial 
depth map produces an EER of 23.3% (euclidean distance) and 15.3% (cosine dis-
tance).  This trend is common for all fishersurface systems, with the cosine distance 
typically producing three quarters of the error produced by the euclidean distance.  In 
all cases the EERs of the fisherface system are lower than the equivalent eigensurface 
method.  Surface gradient representations are the most distinguishing, with horizontal 
derivatives providing the lowest error of 11.3% EER.  

 

Fig. 5. Fishersurface system error curves using two distance metrics and surface representations 

7 Conclusion 

We have applied a well-known method of two-dimensional face recognition to three-
dimensional face models using a variety of facial surface representations.  The error 
rates produced using the initial depth map representation (15.3% and 23.3% EER) 
show a distinct advantage over the previously developed eigensurface method (32.2% 
and 24.5% EER).  This is also the case for the optimum surface representations, pro-
ducing 11.3% EER for the fishersurface system and 24.5% EER for the eigensurface 
method.  We also note an increase in the eigensurface EERs compared to those re-
ported in previous work [8].  This could be attributed to the different training and test 
data, or possibly the different number of principal components used. 

Experimenting with a number of surface representations, we have discovered 
common characteristics between the eigensurface and fishersurface methods: facial 
surface gradients provide a more effective representation for recognition, with hori-
zontal gradients producing the lowest error rate (11.3% EER).  Another observation, 
also common to the eigensurface method is that curvature representations seem to be 
least useful for recognition, although this could be a product of inadequate 3D model 
resolution and high noise content.  In which case smoothing filters and larger convolu-
tion kernels may produce better results. 

The fishersurface method appears to produce better results than corresponding two-
dimensional fisherface systems (17.8% EER) tested under similar conditions in previ-
ous investigations [13], although a more direct comparison is required, using a com-
mon test database, in order to draw any quantitive conclusions. 



Testing two distance measures has shown that the choice of metric has a consider-
able effect on resultant error rates.  For all surface representations, the cosine distance 
produced substantially lower EERs.  This is in stark contrast to the eigensurface 
method, in which Euclidean and cosine measures seem tailored to specific surface 
representations.  This suggests that incorporating LDA produces a surface space with 
predominantly radial between-class variance, regardless of the surface representation, 
whereas when using PCA alone, this relationship is dependant on the type of surface 
representation used. 

In summary, we have managed to reduce error rates from 15.3% EER using initial 
depth maps, to an EER of 11.3% using a horizontal gradient representation.  This 
improvement over the best eigensurface system shows that incorporation of LDA 
improves performance in three-dimensional as well as two-dimensional face recogni-
tion approaches.  Given that the 3D capture method produces face models invariant to 
lighting conditions and provides the ability to recognise faces regardless of pose, this 
system is particularly suited for use in security and surveillance applications. 
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