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ABSTRACT 

We explore the field of automated face recognition.  Beginning with a survey of 

existing methods applied to two-dimensional (2D) and three-dimensional (3D) face 

data, we focus on subspace techniques, investigating the use of image pre-processing 

applied as a preliminary step in order to reduce error rates.  We implement the eigenface 

and Fisherface methods of face recognition, computing False Acceptance Rates (FAR) 

and False Rejection Rates (FRR) on a standard test set of images that pose typical 

difficulties for recognition.  Applying a range of image processing techniques we 

demonstrate that performance is highly dependant on the type of pre-processing used 

and that Equal Error Rates (EER) of the eigenface and Fisherface methods can be 

reduced from 25.5% to 20.4% and 20.1% to 17.8% respectively, using our own 

specialised methods of image processing.  However, with error rates still too high for 

use in many proposed applications we identify the use of 3D face models as a potential 

solution to the problems associated with lighting conditions and head orientation.  

Adapting the appearance-based subspace methods previously examined, for application 

to 3D face surfaces, introducing the necessary orientation normalisation and format 

conversion procedures, we show that low error rates can be achieved using surface 

shape alone, despite variations in head orientation and expression.  In addition, these 

techniques are invariant to lighting conditions as no colour or texture information is 

used in the recognition process. 

We introduce a 3D face database providing 3D texture mapped face models, as well as 

2D images captured at the same instant.  This database facilitates a direct comparison of 

3D and 2D techniques, which has not previously been possible.  Contrasting the range 

of face recognition systems we explore methods of combining multiple systems in order 

to exploit the advantage of several methods in a single unified system.  Various methods 

of system combination are tested, including combination by dimensional accumulation, 

elimination and genetic selection.  This research leads to an innovative multi-subspace 

face recognition method capable of combining 2D and 3D data, producing state-of-the-

art error rates, with a clear advantage over single subspace systems: The lowest EER 

achieved using 2D, 3D and 2D Projection methods are 9.55%, 10.41% and 7.86% 

respectively, yet multi-subspace combination reduces this error down to 4.50% on the 

same test data. 
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Continuing research into the use of 3D face models we develop an additional novel 

method of recognition, based on the correlation of isoradius contour signal ensembles, 

which possesses significant advantages over other methods in that orientation 

normalisation is encapsulated within the recognition process and hence not required as a 

preliminary alignment procedure.  It is also able to simultaneously utilise information 

from many data modalities, such as colour, texture, shape and temperature, giving great 

potential as an aid to facial orientation normalisation or as a separate 3D object 

recognition technique in its own right. 
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11  II nnttrr oodduucctt iioonn  

In the early years of the 21st century, we find ourselves continually moving further away 

from the necessity of physical human interaction playing a major part of menial 

everyday tasks.  Striding ever closer to an automated society, we interact more 

frequently with mechanical agents, anonymous users and the electronic information 

sources of the World Wide Web, than with our human counterparts.  It is therefore 

perhaps ironic that identity has become such an important issue in the 21st century.  It 

would seem that in an age where fraud is costing the public billions of pounds every 

year and even the most powerful nations are powerless against a few extremists with a 

flight ticket, it is not who we are that is important, but rather, that we are who we claim 

to be.  For these reasons, biometric authentication has already begun a rapid growth in a 

wide range of market sectors and will undoubtedly continue to do so, until biometric 

scans are as commonplace as swiping a credit card or scrawling a signature. 

Face recognition has been described as the Holy Grail of biometric identification 

systems, due to a number of significant advantages over other methods of identification 

(as well as the difficulties encountered in the quest to obtain a practical working 

system).  However, with the current state of the art, these advantages do not include 

operating performance in terms of recognition accuracy.  When compared with other 

identification technologies, face recognition cannot compete with the low error rates 

achieved using iris or fingerprint systems.  However, no other biometric technology can 

match face recognition for its convenience of identification ‘at-a-glance’ or the 

advantages offered in being analogous to our own method of identification, used by 

humans from the moment we first glance upon our parents’ faces. 

In this thesis we explore research carried out in the field of automated face recognition, 

identifying the problems encountered and the most promising methods of overcoming 

these difficulties.  Taking this knowledgebase as a starting point, we strive to improve 

the current start of the art, with the ultimate aim of producing a highly effective face 

recognition algorithm, for use in such application areas as secure site access, suspect 

identification and surveillance.  It is likely that the techniques developed throughout this 

thesis will have several potential areas of application other than those already 

mentioned.  These would include such topics as image compression, video encoding, 
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image and shape reconstruction and image archiving.  Although all worthy of study, 

each additional application area would entail additional tests and evaluation procedures, 

so in the interest of time we limit ourselves to the two applications of identification and 

verification. 

11..11  FFaaccee  RReeccooggnnii tt iioonn  aass  aa  BBiioommeettrr iicc  

Strictly, the term biometrics describes the quantifiable characteristics used in measuring 

features of biological organisms.  However, recently the term is more commonly used to 

describe the variation in biological characteristics of humans, used to differentiate 

between people.  Some such measurements are now finding a use in automated security 

and surveillance systems, which use biometrics to verify an individual’s identity against 

some claimed persona at a secure site access terminal or searching a database of known 

subjects to identify an individual from some previously captured biometric data.  

Interest in biometrics has grown as the technology has become more readily available 

and error rates have decreased. 

Throughout this thesis we refer to a system’s ability to recognise a given subject.  We 

define recognition, in the context of biometric systems, as the capability to perform 

verification and identification.  Verification is the process of comparing one biometric 

pattern with another biometric pattern, resulting in either a rejection or acceptance 

decision.  Whereas identification is the process of comparing one biometric pattern with 

a set of two or more biometric patterns in order to determine the most likely match. 

Over time, the need for passwords, swipe cards and pin numbers is slowly being 

replaced by uniquely identifying biometrics.  Although public acceptance and the 

general understanding of the capabilities of this new technology hinder the switch from 

legacy systems, there are still great incentives to use biometrics: 

• Increased security.  Swipe cards and PIN numbers can easily be obtained 

by potential intruders, whereas acquiring a subject’s biometric requires 

specialist knowledge and equipment, and in most cases would not be 

possible without alerting the subject’s attention. 

• Reduced fraud.  It becomes extremely difficult for somebody to willingly 

give up his or her biometric data, so sharing identities (for “buddy 

punching” in time and attendance systems) is virtually impossible.  In 
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addition, because it becomes necessary to expose one’s own biometric 

data (i.e. your own face), potential fraudsters are reluctant to attempt 

false verification. 

• Cost reduction.  By replacing plastic swipe cards, all cost associated with 

producing, distributing and replacing a lost card is completely 

eliminated. 

In addition to the advantages mentioned above, once a biometric identification system is 

in place, other advantages begin to emerge.  For example, there are known cases of 

large corporations discovering several of their employees were in fact the same person, 

having managed to obtain numerous identities on the company payroll system: 

something easily identified when several employees appear to have the same facial 

biometric.  What’s more, without the biometric system in place, any intentional 

misleading could have been difficult to prove, putting the incident down to a clerical 

error, but the ability to view the same face logged in as multiple people is extremely 

convincing evidence. 

These incentives have lead to several biometric options emerging over the last few 

years.  The most common being fingerprint, face and iris recognition but other examples 

included the retina, voice, skin texture, ear shape, gait (walking stride), hand geometry, 

vein pattern, thermal signature and hand-written signature.  Each has its own advantages 

and may be particularly suited towards specific applications.  For example, fingerprint 

scanners are small, light and relatively cheap, allowing for integration into a wide range 

of mobile devices.  The iris pattern is so complex and diverse that a false match is 

unlikely to occur even between millions of subjects (although there are reports of high 

enrolment failure rates), whereas the less accurate thermal signature can be taken in the 

dark from a distance: ideal for covert operation. 

Face recognition, although not necessarily suitable for all applications, does have 

several key advantages over the other biometrics mentioned above, which we now 

discuss in detail: 

Non-intrusive.  Whereas most biometrics require some degree of user interaction in 

order to acquire biometric data, such as looking into an eye scanner or placing a finger 

on a fingerprint reader, accurate face recognition can be performed by simply glancing 

at a camera from a distance.  This non-contact biometric acquisition is highly desirable 
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when subjects being scanned are customers, that may have some reluctance due to the 

big-brother stigma or associated criminality-surrounding acquisition of personal data 

and therefore the whole process needs to be kept as convenient as possible.  This 

capability can be taken a step further, using strategic camera placement to perform 

recognition even without the subject’s knowledge.  An obvious example would be 

CCTV cameras monitoring an area for known criminals or tracking a suspected terrorist 

from one location to another. 

Public acceptance.  It has become apparent that face recognition systems generally 

receive a higher level of public acceptance than most other biometrics.  This is perhaps 

partly due to the non-intrusive nature of face recognition as described above, but may 

also be the result of greater understanding and empathy of how the technology is 

capable of recognising a face; it is well known that the public fear what they do not 

understand.  Another factor is the association that other biometrics have with crime (i.e. 

fingerprints).  Whatever the reason, people have become accustomed to their facial 

image being required by numerous organisations and few people now object to looking 

at a camera for the purpose of biometric recognition.  It is another thing entirely to 

require a more committed action on behalf of the subject, such as leaning into an eye 

scanner or making contact with some other scanning device.  With many obvious 

benefits of integrating biometrics into governmental organisations (such as the NHS, 

welfare system or national ID cards), public acceptance is an important factor if these 

systems are to be implemented nationwide. 

Existing databases.  One key hold-up for any large organisation considering 

implementation of a biometric system is the amount of time required in collection of a 

biometric database.  Consider a police force using an iris recognition system.  It would 

take a number of years before the database was of sufficient size to be useful in 

identifying suspects.  Whereas large databases of high quality face images are already in 

place, so the benefits of installing a face recognition system are gained immediately 

after installation. 

Analogy to human perception.  Perhaps the greatest advantage, (which is also often the 

most ignored) is that the biometric data required for face recognition (an image of a 

face) is recognisable by humans.   This allows for an additional level of backup, should 

the system fail.  A human reviewing the same biometric source (the reference image and 

live query image) can always manually check any identification or verification result.  
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Whereas any decision made by other biometric recognition systems, such as iris or 

fingerprint, would require an expert to provide any reliable confirmation.  A second 

product of this duality with the human method of recognition is that the biometric data 

can be distributed to other organisations (from a police department to the airport 

authorities for example) and still be useful even if the other organisations do not have a 

face recognition system in operation. 

A complete biometric face recognition system encompasses three main procedures.  The 

preliminary step of face detection (which may include some feature localisation) is often 

necessary if no manual (human) intervention is to be employed.  This involves the 

extraction of a face image from a larger scene.  Many methods have been applied to this 

problem: template-based techniques, motion detection, skin tone segmentation, 

principal component analysis, and classification by neural networks to name but a few.  

All of which present the difficult task of classifying “non-face” images from those areas 

of a complex scene that do contain a face.  This procedure is greatly aided if the 

conditions under which image acquisition is performed can be controlled.  Therefore, it 

is not surprising that many algorithms currently available are only applicable to specific 

situations.  Assumptions are made regarding the orientation and size of the face in the 

image, lighting conditions, background and subject co-operation. 

The next procedure is that of searching and matching, often termed identification.  This 

stage takes the probe image extracted from the scene during the face detection stage, 

and compares it with a database of known people (previously enrolled), searching for 

the closest matching images, thus identifying the most likely matching people.  An 

important point regarding this process is that it does not produce a definitive ‘yes’ or 

‘no’ decision as to whether any two images are of the same person or not.  Instead the 

process simply indicates which images match the probe image more closely than the 

others do. 

The final procedure is verification.  This describes the process by which two face 

images are compared, producing a ‘yes’ or ‘no’ decision as to whether the images are of 

the same person.  The process requires a query image (usually the live captured image) 

and a single pre-selected gallery image (also referred to as the target image).  This pre-

selection can take place in a number of ways: a swipe card or pin number indicating the 

appropriate gallery image; an automated identification procedure as described above, 

selecting the most likely match from an image set; a manually selected image offered as 
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a potential match.  The two images in question are then compared producing a “same 

person” or “different people” classification.  This decision is often made by application 

of a threshold to a similarity (or dissimilarity) score, such as that produced in the 

identification process.  By adjusting this threshold value, one can change the balance 

between the number of false acceptances and false rejections. 

11..22    TThheessiiss  RRaatt iioonnaallee  

Face recognition has recently become a very active research area, partly because of the 

increased interest in biometric security systems in general, but also because of recent 

advances that have taken the state-of-the-art far beyond the initial attempts of using 

direct image comparison.  However, perhaps one of the main driving forces behind the 

exploration of face recognition technologies is because the human vision system is 

capable of recognising faces to such a high degree of accuracy, under conditions that 

put current systems to shame.  Not wanting to be beaten by human evolution, the 

computer vision community has applied a great deal of resources to improving face 

recognition such that it has now arisen as a separate field in its own right.  Obviously, 

face recognition has strong links to the more general area of pattern recognition and it is 

from this research field that many face recognition methods were originally derived.  

Although the restricted variance between different face patterns, well known operating 

difficulties and target applications has meant that what may have begun as standard 

pattern recognition methods have been refined to such an extent that they become 

specialised face recognition techniques in their own right. 

Despite significant advances having been made in two-dimensional face recognition 

technology, it has yet to be put to wide use in commerce or industry.  Notwithstanding 

the range of advantages offered by face recognition, other biometrics are often chosen 

for applications in which a face recognition system would have seemed ideal.  This is 

primarily because the error rates of current face recognition systems are still too high for 

many of the applications in mind.  These high error rates stem from the consistent 

problem that face recognition systems are highly sensitive to the environmental 

circumstances under which face images are acquired.  For example, head orientation, 

partial occlusion, expression and lighting conditions can all adversely affect recognition 

performance.  Using standard 2D intensity images captured using a digital camera, in 

order to reduce error rates, it is necessary to maintain a consistent facial orientation for 
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both the query and gallery image.  Even small changes in facial orientation can greatly 

reduce system effectiveness.  This situation is worsened by the fact that facial 

expressions change from one image to another, as can light direction and intensity, 

increasing the chance of a false rejection or false acceptance (when both the enrolment 

image and live image are subject to the same extreme conditions). 

The Face Recognition Vender Tests [ 1 ] and Face Recognition Grand Challenge [ 2 ] 

identify a number of particular areas in which further advancement is required in order 

to expand the number of successful applications.  These include the general need to 

lower FARs and FRRs, the capability to operate in sunlight and at various non-frontal 

poses, but also to improve our understanding of the effects of demographic factors, the 

ability to predict performance on very large gallery sets and why using multiple images 

from video footage did not improve performance.  Our research addresses the first three 

of these points, improving general FAR/FRR performance of 2D and 3D systems, the 

use of 3D shape data to improve robustness to lighting conditions and correcting 

orientation of facial pose.  

In an attempt to overcome these problems, biometrics integrators have devised 

increasingly creative methods of controlling the acquisition environment in the various 

application scenarios.  For example, LCD displays forcing the user to manoeuvre their 

head into specific positions, carefully placed cameras and artificial lighting are often 

employed to create consistent capture conditions.  However, facial expression has 

proved to be much harder to control and in order to reduce error rates for such 

applications as secure site access, it is necessary to specify a required facial expression 

(usually neutral).  Unfortunately, these approaches remove one of the key advantages of 

facial recognition i.e. no need for subject co-operation, rendering such systems less 

suitable for surveillance applications.  Therefore, any improvement in the ability of face 

recognition systems to operate under a range of lighting conditions, facial expressions 

and head orientations will allow for a much wider application of the technology.  In 

particular, automated surveillance of known criminals and terrorists in high-security 

areas would be of great value, but is not yet feasible using current face recognition 

methods.  Any improvement allowing operation in such applications would also benefit 

less critical systems, such as time and attendance and site access programs.  If error 

rates could be reduced to match those of other biometrics, then the other advantages of 

face recognition can be exploited without the cost of reduced overall accuracy. 
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We suggest that three-dimensional (3D) facial surface data could be used to combat 

some of the problems mentioned above.  Firstly, when dealing with purely geometrical 

data, rather than the intensity information presented in two-dimensional images, lighting 

conditions do not effect the biometric data being compared (providing that the 3D facial 

surface can still be constructed accurately by the 3D capture device).  The problem of 

facial orientation can also be compensated for, as the facial surface can be rotated in 3D 

space such that the orientation of the query model matches that of the gallery model.  

Changes in facial expressions, however, are still likely to cause degradation in 

performance.  Although, the additional light-invariant geometrical measurements, 

together with the colour and texture data, may be sufficiently information rich to allow 

variability in facial expression, while still maintaining a low error rate. 

Compared to the wealth of research carried out into 2D face recognition, there has been 

relatively little research into 3D facial recognition.  There appears to be three main 

reasons for this: 

• Availability of data.  2D images of faces are readily available on-line and 

easily created with use of a standard camera.  3D facial surface data, 

however, is scarcely available, if at all, and creation of such data can be a 

complex and expensive process. 

• Range of applications.  3D recognition limits the possible applications to 

time and attendance, surveillance (in a highly controlled environment) 

and security applications, due to the need for specially dedicated 

equipment.  This can be seen as particularly limiting, when compared to 

2D methods, which could be applied to searching, indexing and sorting 

the existing image archives of legacy systems. 

• Human analogy.  Humans are capable of recognising a face in a 

photograph (a 2D image) to a high degree of accuracy.  This has lead to 

the notion that a 2D image is all that is necessary for a machine to 

recognise a face. 

Methods for comparing and matching 3D surfaces are plentiful [ 75 ] [ 76 ] [ 77 ] [ 78 ]    

(including graph matching approaches [ 79 ] [ 80 ] [ 81 ]: a typical representation for 

surface structure) and well documented, but few have been applied to the problem of 3D 

face recognition.  It is also possible that existing 2D face recognition methods may be 
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applicable to the 3D data (particularly the appearance-based approaches), and be able to 

take advantage of the extra depth information.  Therefore, initial development of 3D 

face recognition systems will be relatively straightforward, allowing comparison 

between current methods of face recognition, augmented to three dimensions. 

Until recently, methods of 3D capture have usually required the use of laser scanning 

equipment.  Such equipment, although highly accurate, may not be safe for human 

facial capture as the laser may damage the eye.  Also, a scan can take significant time to 

complete, requiring the subject to remain perfectly still during this time, which would 

be unsuitable for some of the application scenarios in mind.  Stereovision systems are 

able to capture at a faster rate, without the need of a laser.  However, such systems 

require identification of areas of high contrast and distinctive local patterns; something 

that cheeks and forehead lack.  For these reasons 3D facial recognition has remained 

relatively unexplored.  The research that has been carried out in this area has had to rely 

on a very limited amount of facial surface data [ 3 ] [ 4 ][ 5 ][ 6 ][ 7 ][ 8 ] or made use of 

a single generic facial surface to enhance two-dimensional approaches by correcting 

pose or predicting lighting conditions [ 9] [ 10 ][ 11 ]. 

The emergence of new 3D capture equipment, such as the enhanced stereo vision 

system by Camera Metrix and Vision RT, InSpeck’s illumination projection system and 

the Geometrix FaceVision200 has meant that population of a large database of 3D facial 

surfaces has now become viable.  As the cost of this equipment falls, its use in 

application areas such as site access and surveillance becomes a distinct possibility. 

In summary, the large amount of research that has already gone into two-dimensional 

face recognition provides a solid, well-documented background from which to begin, 

with the remaining problems of lighting conditions, facial orientation and expression 

presenting an initial set of suitably challenging goals, whereas the largely unexplored 

area of 3D face recognition, held back by lack of suitable 3D-capture technology, 

provides an area of research with high potential for significant advancement. 

11..33    RReesseeaarr cchh  GGooaallss  

This thesis aims to cover a wide range of face recognition techniques, including the 

technical background, ideas, concepts and some of the more practical issues involved.  

The emphasis will be on research into methods of improving existing systems, while 

introducing new approaches and investigating unexplored areas of research.  Although 
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the focus will tend towards the theoretical, we will prototype the algorithms as 

verification and identification applications applied to real-world data.   We will also 

touch upon some of the more practical implementation issues that arise when using such 

systems in the real world, highlighting any additional work or technology that must be 

realised before a final application is implemented.  The ultimate aim will be to produce 

a fully functional face recognition engine (providing the core verification and 

identification functions), which is not impaired by some of the shortcomings of existing 

face recognition systems. 

More specifically, we aim to address the following issues: 

• Give an overview of existing face recognition systems and the current state 

of research in this field. 

• Identify the problems associated with existing face recognition systems and 

possible avenues of research that may help to address these issues. 

• Improve the effectiveness of existing face recognition algorithms, by 

introduction of additional processing steps or adaptation of the method. 

• Design and implement novel face recognition approaches, taking advantage 

of the newly emerging 3D-capture technology. 

• Analyse and evaluate a range of face recognition systems applied to both 

two-dimensional and 3D data, in order to identify the advantages and 

disadvantages offered by the various approaches. 

• Determine the most effective method of combining methodologies from the 

range of face recognition techniques, in order to achieve a more effective 

face recognition system. 

• Evaluate this final face recognition system and present results in a standard 

format that may be compared with other existing face recognition systems. 

• Identify limitations of the final face recognition system and propose a line of 

further research to combat these limitations. 
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22  TThheessiiss  SSttrr uuccttuurree  

The structure of this thesis is directly based around the collection of investigations that 

took place as part of the larger scale research project working towards 3D face 

recognition and understanding of how this performs when compared to 2D face 

recognition.  We began with the motivation that significant improvements in face 

recognition technology could be achieved by exploiting the emerging technology of 3D 

scanning devices.  However, the path to achieving this covered a number of sub-goals 

that separated nicely into smaller investigations, each uncovering new elements of 

knowledge that would aid us in our quest for the final system, but also worthy 

investigations in their own right. 

Many of these investigations were presented at academic conferences and published in 

the accompanying proceedings.  Therefore, each chapter of this thesis often shares a 

substantial amount of content with a corresponding published research paper.  Details of 

these publications are provided for each chapter below.  This approach does mean that 

some duplication occurs across multiple sections of the thesis.  However, rather than 

attempt to dissect and merge sections, which would otherwise form a neat and complete 

account of the experiment carried out, we have left these chapters whole.  The benefit of 

this approach is that each main chapter can be read as a single unit, together with 

overviews of the previous work necessary to fully understand the methods discussed.  

The reader can then refer to previous chapters for a more in-depth discussion, should 

they require a more thorough explanation. 

It should also be noted that a number of earlier investigations are carried out on 

different data sets, preventing a direct comparison of the results obtained.  The reason 

for this is that much of the research was being completed as data slowly became 

available throughout the research project (particularly for the 3D face models, which we 

gathered ourselves over a prolonged period).  Rather than delay experimentation until a 

standard fixed dataset could be established, we commenced with each investigation at 

the earliest opportunity.  It is only for this reason that we were able to progress as far as 

we have, resulting in the completion of fully functional 3D face recognition system.  

However, we recognised that the problem of incomparable results must be addressed in 

order to maximise the value of the research completed.  Therefore in section 8 we carry 
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out a final comparative evaluation of the different systems, when applied to a fixed 

standard dataset. 

Chapter 3 - Literature review 

We separate the literature review into three distinctive sections, focussing on Two-

Dimensional Face Recognition in section 3.1, 3D Face Recognition in section 3.2 and 

other related research in sections 3.3 and 3.4. 

Chapter 4 - Two-dimensional face recognition 

As a preliminary project we implemented three appearance-based face recognition 

systems: the direct correlation approach described in section 4.2; the eigenface method 

introduced by Turk and Pentland [ 48 ], detailed in section 4.3; and the Fisherface 

method discussed in section 4.4.  We tested the performance on a number of test sets 

and attempted to reduce error rates using the standard image processing methods 

described in section 4.5.  Our improvements to the eigenface and Fisherface systems 

were documented and presented at the International Conference on Image and Graphics 

and the International Conference on Digital Image Computing: Techniques and 

Applications respectively and published in the conference proceedings [ 14 ][ 15 ]. 

In these investigations we were able to show that the pre-processing methods we 

designed (specifically for difficult capture conditions), were able to improve the 

capability of standard face recognition systems, from a level at which they would not 

have been useful in a real world environment, to a point where they could be 

successfully applied in some commercial applications. 

Chapter 5 - Three-dimensional Face Recognition 

In this chapter we follow a similar line of research to that applied to two-dimensional 

approaches in exploring methods of 3D face recognition.  However, it was thought that 

due to the unfamiliar nature, an additional section was required discussing the 

intricacies of 3D face models.  These facial surfaces are discussed in section 5.1, 

followed by the alignment procedure in section 5.2.  We then present work investigating 

three 3D face recognition methods: a direct correlation method in section 5.4; the 

application of Principal Component Analysis (PCA), termed the eigensurface method is 

described in section 5.5; and the LDA extension leading to the Fishersurface method 

described in section 5.6.  Our eigensurface method has been presented at the 
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International Conference on Image Processing in Singapore in 2004 and later published 

in the conference proceedings [ 16 ].  Likewise, the Fishersurface investigations were 

documented and published in the Proceedings of the International Conference on Image 

Analysis and Recognition [ 17 ] . 

As with the two-dimensional systems, a range of image processing techniques has been 

applied in an attempt to improve recognition accuracy.  These are discussed in detail in 

section 5.3.  Finally, we introduce a fourth novel approach to 3D face recognition in 

section 5.7, derived from the knowledge and experience gained in production of those 

methods described in previous sections.  We term this technique the Iso-radius method. 

The investigations in this chapter have made a significant contribution to the relatively 

small area of 3D face recognition, showing that PCA based methods in 2D systems can 

also be applied to 3D face data.  Since our initial findings, other researchers have 

carried out similar investigations [ 6 ], drawing similar conclusions.  In addition to this 

adaptation of 2D appearance-based approaches to 3D data, we have also introduced an 

innovative method using Iso-radius contours. 

Chapter 6 - 2D-3D Face Recognition 

In this chapter we address an issue that has arisen from the introduction of 3D face 

recognition systems.  Due to the extent and availability of two-dimensional images 

currently in use within industry, there are significant advantages in being able to process 

two-dimensional images.  In section 6, we discuss an innovation that bridges the gap 

between two-dimensional and 3D systems, allowing two-dimensional images to be 

matched against 3D models. 

Chapter 7 - Combining Methods of Face Recognition 

Here we introduce a novel method of combining multiple face recognition systems.  

The concept being that the benefits offered by numerous image sub-spaces could be 

amalgamated into a unified composite subspace system with a reduced error rate.  

Combinations are computed post-PCA and LDA, avoiding the polynomial space-time 

complexity in training on multiple image representations. 

We begin by applying this combination algorithm to two-dimensional face recognition 

systems in section 7.1, before applying similar techniques to 3D systems in section 7.2, 

the results of which have been published in [ 21 ].  In section 7.3 we then go on to 
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discuss improvements over the combination method, by using a genetic algorithm.  

Finally, we apply this improved algorithm to the combination of two-dimensional and 

3D systems, creating a recognition methods based on shape and texture. 

In this chapter we were able to demonstrate that this combination method not only 

improves 2D and 3D face recognition systems, far beyond previous levels of 

performance, but may also be applied across 2D and 3D data together, producing error 

rates that are state-of-the-art. 

Chapter 8 - Final Comparative Evaluation 

As mentioned earlier, one problem that has arisen due to the unavailability of data on 

which to test face recognition systems, is the continual adjustment of our test sets from 

one investigation to another.  In this chapter we reconcile this issue by carrying out a 

final evaluation of the best systems from each chapter, compared on a common dataset. 

Therefore, this chapter provides a direct comparison of 2D, 3D and multi-subspace 

systems on a level which has not previously been possible: the various data types were 

captured in the same instant and therefore all results are a true comparison of 

performance across systems. 

Chapter 9 – Final Conclusions and Future Work 

In the final chapter we summarise the discoveries made throughout the research 

presented in this thesis.  We draw conclusions from the results obtained and predict 

their impact on the research field, before suggesting the most promising avenues of 

future research. 
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3 LL ii tteerr aattuurree  RReevviieeww 

In this section we explore some of the existing face recognition literature relevant to our 

own investigations.  Research in automated methods of face recognition are said to have 

begun in the 1960s with the pioneering work of Bledsoe [ 18 ], although the first fully 

functional implementation of an automated face recognition system was not produced 

until Kanade’s paper [ 19 ] in 1977.  Since then, the huge majority of face recognition 

research has focused on 2D images, with relatively little work exploring the possibilities 

offered by 3D data.  Although, as we near the completion of our thesis this area has 

become substantially more active, with some papers becoming available showing strong 

parallels to the work presented here and further reinforcing our own findings. 

Many of the methods of 3D facial surface recognition that do exist have been developed 

along very different lines of research to that of 2D images.  For these reasons, we 

explore 2D and 3D face recognition in two separate sections (3.1, and 3.2), before 

discussing the problems these systems must overcome in section 3.3, if any significant 

improvement is to be achieved and what steps have already been taken to combat these 

limitations.  In section 3.4 we then discuss some of the research carried out by Hancock, 

Burton and Bruce [ 12 ]  [ 13 ] that relate some of these 2D methods to the human visual 

system. 

33..11    22DD  AApppprr ooaacchheess  

We give a brief overview of 2D face recognition methods, including feature analysis, 

neural networks, graph matching and Support Vector Machines, as well as some of the 

more recent Bayesian approaches and Active Appearance Models.  For each category 

we discuss some of the most relevant papers and specific techniques used.  However, 

most focus is applied to the subspace methods because of the relatively simple 

implementation, which could be adapted to work with either 2D or 3D data.  For a more 

detailed insight into alternative methods of 2D face recognition we refer the reader to 

Zhao et al, who provide a very comprehensive literature survey in the ACM Computing 

Surveys [ 20 ] with additional elaboration regarding some key issues in face recognition 

by Zhao and Chellappa in their paper ‘Image-based Face Recognition:  Issues and 

Methods’. 
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Feature analysis techniques involve the localisation of facial features, followed by 

measurements of these features’ characteristics and relative positions.  Brunelli and 

Poggio [ 30 ] describe a face recognition system that uses the following 22 geometrical 

features to distinguish between faces. 

• Eyebrow thickness and vertical position. 

• Nose vertical position and width. 

• Mouth vertical position, width and height. 

• Eleven radii describing the chin shape. 

• Bigonial breadth (width of the jaw). 

• Zygomatic breadth (face width across the cheek-bone) 

 

Figure 3-1 - The 22 geometrical features used by Brunelli and Poggio [ 30 ] to distinguish faces. 

Horizontal gradient maps are used to detect the left and right boundaries of the face and 

nose, while vertical gradient maps are more useful for detecting the top of the head, 

eyes, nose base and mouth.  A template matching technique is used to locate the eyes.  

After which, knowledge of the average face structure (described by Brunelli and Poggio 

as anthropometric standards) is used to refine the search area for the remaining features.  

Once all the features have been detected and a 22-dimensional vector created to 

represent the face, recognition is carried out by means of a nearest neighbour classifier. 

Brunelli and Poggio conclude that this method of geometrical feature recognition is 

effective only when used to distinguish between a small number of people, or as a 
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preliminary screening step, before further classification is performed by another 

recognition algorithm.  By itself, there does not appear to be enough information within 

these 22 geometrical features to classify a large number of people. 

Localisation and analysis of these multiple facial features bares some similarity to a 

graph matching approaches, which require the construction of a face image graph 

representation.  Such graphs may encode information based on colour, texture, edge 

maps or feature location, but does not necessarily attempt localisation of a specific 

facial feature, instead relying on detection of more generic image features such as edge 

boundaries, corners and certain texture patterns.  The graphs should attempt to collapse 

any variance between images of the same person, while emphasising differences 

between different people.  Recognition is then performed using standard graph-

matching techniques.  There are two main difficulties encountered with graph matching 

approaches.  Firstly, deciding how to generate the nodes of the graph.  There are a 

limited number of robustly detected features on the face and too few nodes will cause 

different graphs to be indistinguishable.  Whereas trying to use too many features, some 

of which may vary in location size and colour, may cause two graphs of the same face 

to have very different structures.  Secondly, if the graph is being constructed from a 2D 

image of a face, a model may be required to predict the variations in graph structure 

caused by varying orientations of the face. 

Wiskott et al [ 37 ] present a face recognition method using ‘elastic bunch graphs’.  An 

attempt is made to recognise faces from a large database containing single images of 

people, despite differences in facial expression and head orientation.  These variances 

are collapsed by extraction of face descriptions in the form of image graphs.  The N 

nodes of an image graph are made up of a set of fiducial points defined on a face.  Some 

of which are easily located (e.g. pupils, corners of mouth, tip of nose etc.), while others 

are defined as the centre of gravity of these points (e.g. forehead, cheeks, chin etc.).  

Each of these nodes is labelled with a jet.  A jet being defined as a set of 40 complex 

coefficients describing a small patch of grey values around a single pixel, based on a 

Gabor wavelet transform.  The arcs of image graphs are labelled with two-dimensional 

distance vectors, describing the relative locations of the pixels described by the jets at 

the graph nodes. 

Wiskott et al represents the general face structure in the form of a face bunch graph.  

This structure is effectively a collection of image graphs as described above, taken from 
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a wide variety of face images (the training set).  Each node of a face bunch graph is 

defined as a set of jets (a bunch comprised of the jets from the various image graphs of 

the training set) and the arcs are labelled with the average distance vectors of the image 

graphs.  The problem of varying head orientation is tackled by providing a different face 

bunch graph for each possible orientation, with a set of pointers to indicate which nodes 

correspond to each other.  Matching is then performed by creating image graphs for the 

two face images being compared and applying a similarity function to these two image 

graphs.  Image graphs are generated by adaptation of the face bunch graph to suit the 

face in the given image.  Initially the averages of the jets in each bunch (each node of 

the face bunch graph) are used to estimate an area of the image that contains a face.  

The face bunch graph is then translated, scaled and distorted to find the best matching 

jets between the face image and the face bunch graph.  The best jets are selected 

according to a similarity function which takes into account both the similarity of the jets 

themselves and the level of distortion (variation in graph arcs) of the face bunch graph.  

These jets (one jet per graph node) are then taken to represent the face as an image 

graph.  The similarity of two image graphs is simply a measure of the difference 

between corresponding jets. 

Performing 250 identification operations against databases of 250 people evaluates the 

elastic bunch graph matching technique.  The results of which are impressive when 

comparing two frontal images or two side-profile images.  With 98% and 84% 

achieving rank 1 respectively.  However, the system has more difficulty in comparing 

half profile images or a front profile with a side profile image, scoring 57% and 18% 

respectively. 

Unfortunately, Wiskott et al do not tackle the problem of varying lighting conditions 

directly.  Although jets are fairly robust against changes in the brightness of an image, 

they could still be affected by changes in lighting direction and colour and as the 

algorithm relies heavily on comparing these jets, such conditions could cause a 

significant detrimental effect on the system.  However, no results are presented to test 

the system’s performance under varying lighting conditions.  From this paper, we can 

see that texture information alone is sufficient to produce a substantial level of 

classification. 

Neural network approaches use a training set of face images to create a neural network 

based classifier.  In the case of face verification or identification, the neural network is 
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used to classify a face as belonging to a specific person, whereas for face detection an 

image must be classified as either a face or non-face. 

Lawrence et al [ 36 ] describe a neural network approach for identification and 

verification of facial images.   A hybrid neural network system is implemented, 

comprised of local image sampling, a self-organising map (SOM) and a convolutional 

neural network.  The SOM neural network is used as a means of dimensionality 

reduction (as well as instilling some invariance to minor changes in the test image), 

prior to classification by the convolutional neural network, which is partially invariant 

to translation, rotation, scale, and deformation.  The local image sampling procedure is 

simply a matter of scanning the image with a local window and creating a vector of the 

pixel intensity values taken from the window.  As the window is passed over the image 

these vectors are built up to create a vector representation of the entire image. 

Each node of the SOM is assigned to a reference vector, mi, from the input space (a 

vector representation of an example image).  The SOM is trained by comparing each 

vector, x, of an input image in the training set to each of the node reference vectors, mi.  

The closest match is selected and the nodes updated according to the following 

equation. 

)]()()[()()1( tmtxthtmtm iciii −+=+  

Equ. 3-1 

Where t is the training iteration and h is a form of smoothing kernel, the neighbourhood 

function, for which the local neighbourhood region in the SOM is reduced over time t.  

The result is a topologically ordered set of nodes, in a much lower dimensional space 

(the optimum being three dimensions in these experiments).  Each dimension of the 

SOM can be thought of as a holistic feature, similar to the eigenfaces of principal 

component analysis (see section 4.3) and likewise can be represented as an image.  Each 

image in the training set is processed by the SOM, and hence represented as 3 images 

(feature maps), which are subsequently used to train the convolutional network using a 

back propagation gradient-descent learning algorithm.  The network is formulated with 

one output for each class in the training set (each output identifies a specific person), 

preceded by multiple hidden layers of manually connected nodes. 

The system is tested using a database of 40 individuals (ten images per person, 5 for 

training and 5 for testing), which includes images captured from various viewing angles 
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and lighting conditions.  Some impressive error rates are achieved, of just 3.8% 

(incorrect classifications for the 40 people queried), which compares to an error rate of 

10.5% for the eigenface system applied to the same database. 

By manually localising a set of facial landmarks on a training set of face images, Cootes 

et al [ 72 ] use PCA to generate a statistical model of shape and texture variation.  These 

active appearance models can then be used to predict face orientation accurately to 

within five degrees.  Once pose angle has been estimated and the best-fit model 

determined, Cootes et al are then able to use the same appearance model to synthesise 

predicted appearance at different viewing angles. 

Support Vector Machines use a training set of images to compute the Optimal 

Separating Hyperplane (OSH), minimising the risk of mis-classification between two 

classes of image in some feature space.  Guo et al [ 22 ] apply this method to face 

recognition, using a binary tree classification technique in which a face image is 

iteratively classified as belonging to one of two classes, propagating up a binary tree 

structure until the two classes denote individual subjects and a final classification 

decision can be made.  Testing this method on the ORL database of 400 images (40 

subjects ), they produce an average error rate of 3.0% compared with 5.25% error 

generated by the standard eigenface method.  Jonsson et al [ 23 ] investigate a similar 

approach using client-specific support vectors, attempting to uncover the inherent 

reasons why SVM methods seem superior to PCA based approaches.  The conclusion 

showed that when an LDA subspace representation is used, an SVM classifier in no 

more effective than simple Euclidean or normalised correlation metric. 

Moghaddam et al use a probabilistic measure of similarity derived from a Bayesian 

analysis of the differences between face images [ 24 ].  Separating training data taken 

from the FERET database into intra-person and extra-person classes and computing 

probability functions using the difference of image intensity values in the two sets of 

data, leads to a similarity score derived from Bayes rule.  This method was shown to 

produce greater match rates in the identification tests of the 1996 FERET competition 

than the other systems tested (including the eigenface method).  Later work by Wechsler 

[ 25 ] creates a face recognition framework that unifies subspace approaches with a 

Bayesian classifier.  The method hopes to minimise noise and enhance generalisation by 

application of PCA and LDA before a Maximum A Posteriori (MAP) decision rule is 

applied as the classifier in identification experiments on the FERET database.  Again, 
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the Bayesien classification improves the eigenface and Fisherface methods by 5% to 

achieve 96% rank 1 recognition accuracy. 

3.1.1 Appearance-Based Subspace Methods 

In this section we investigate methods of face recognition that use image subspace 

projection in order to compare face images by calculating image separation in a reduced 

dimensionality coordinate space.  Subspace methods use a training set of face images in 

order to compute a coordinate space in which face images are compressed to fewer 

dimensions, whilst maintaining maximum variance across each orthogonal subspace 

dimension.  These methods typically use some form of PCA (Principal Component 

Analysis, also referred to as the Karhunen-Loeve expansion), as in the eigenface method 

described here, but also in such techniques as the Fisherface method, which uses Linear 

Discriminant Analysis (LDA) to produce a subspace projection matrix, the Independent 

Component Analysis method and Client Specific LDA.  These techniques are powerful 

tools in the field of face recognition and PCA has become a de facto standard to which 

other systems are compared, as well as often being used as preliminary dimensional 

reduction in other methods of face recognition.  Therefore much of our research will 

focus in this area. 

Yambor [ 54 ] has published an in-depth analysis of the techniques applied in PCA and 

LDA recognition systems, providing useful mathematical examples for simple nine-

pixel images and experimentation on the FERET database, which the reader would find 

useful in furthering an understanding of the underlying mathematical processes 

involved.  Navarrete and Ruiz-Del-Solar [ 53 ] extends the comparison of appearance-

based approaches to include not only PCA and FLD (Fisher’s Linear Discriminant) 

methods but also an Evolutionary Pursuit method, in which a genetic algorithm is used 

to compute an optimal subspace.  These three methods are tested with a range of 

distance metrics, including Euclidean, cosine, SOM clusters and a fuzzy feature contrast 

technique.  Testing on the Yale and FERET databases, Navarrete and Ruiz-Del-Solar 

discover that FLD method has the highest recognition rate when used with the cosine 

distance metric (weighted such that moments are normalised). 

The eigenface based method of face recognition, as proposed by Turk and Pentland uses 

Principal Component Analysis (PCA) to identify the image space axis with the highest 

variance in facial characteristics [ 48 ][ 49 ].  The large dimensionality of image space is 
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reduced to these principal components, on which recognition is then performed using a 

simple Euclidean distance measure.  Here we give a brief overview of the concept of 

eigenface based face recognition.  For a more in-depth discussion we refer the reader to 

section 4.1. 

Figure 3-2 (left) shows how a 1x2 pixel image can be represented as a vector containing 

the two intensity values of the respective pixels.  These vectors are used to describe 

coordinates (x and y) of a point within a graph.  Hence, each image is mapped to a point 

within a two-dimensional image space as shown in Figure 3-2 (right).  Notice how 

similar images appear close together within this image space, whereas different images 

appear far apart. 

 

Figure 3-2 - Vector representations of images and there image space locations. 

This same principle can be applied to larger images.  A greyscale image of resolution 

256x256 pixels can be represented by a single vector of length 65,536 (the number of 

pixels in the image), with each element of this vector containing the intensity value of 

the corresponding pixel.  In the same way that a vector of length two describes a point 

in a two dimensional graph, the image vector describes a single point in 65,536-

dimensional space, in other words one instance from the set of every possible image.  

Again, similar images map to points close together within this high dimensionality 

image space, and hence a class of images, such as faces, occupy a small region of the 

total image space, in which most deviation is along a specific number of dimensions or 

subspace. 

However, the 65,536-dimensional space that represents all (256x256) images is too 

large to be of practical use.  In order to reduce the dimensions of the image space, 

principal component analysis is used to identify the vectors that best describe this 

localised subspace (the face space), while maximising the spread of face images 
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throughout this new reduced dimensionality space.  Computing the eigenvectors of the 

training set images extracts these characteristic elements of faces (the principal 

components) and ranks them in order of their eigenvalues.  The eigenvectors with the 

highest eigenvalues are said to best describe the characteristics of a face and therefore 

we choose the top k eigenvectors to define face space. 

 

Figure 3-3 – PCA applied to reduce image space dimensions while maintaining high image 

seperation. 

Turk and Pentland [ 48 ] test the eigenface system by measuring the accuracy on 16 

classification attempts, performed on people that were present in the training set.  The 

system scores 16 out of 16 correct classifications when the conditions are kept constant, 

but rapidly degrades to 15, 2, 12, 10 and 7 out of 16 when lighting, head size (scale), 

orientation, orientation and lighting, and size and lighting are varied, respectively. 

Bartlett et al [ 60 ] propose that much of the discriminatory information required for 

recognition is contained within the higher order statistics of the face images.  As PCA 

can only take into account second-order relationships between pixels, it is suggested 

that a generalised PCA algorithm such as Independent Component Analysis (ICA) 

could produce a more optimal subspace.  Tested on the FERET dataset using the cosine 

distance metric, the ICA method was shown to recognise subjects to a greater level of 

accuracy than PCA methods, when images were taken on different days. 

PCA may also be applied as a method of localising a face and eye positions for image 

alignment.  Providing, the approximate position of the face in the image is known prior 

to eye localisation, this method can be applied with some success.  However, for some 

applications it may be necessary to extract a facial image from a much larger scene, in 

which case a more reliable approach is to first detect the entire face, before limiting the 

search space for the eye locations.  In this section we describe a method of face 
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detection, as introduced by Turk and Pentland [ 48 ], which uses an a similar technique 

to the PCA face recognition approach described above. 

As well as each person's face occupying a different region of face space, images of 

faces generally occupy a local sub region of image space, which we term face space.  

Therefore, we can determine if an image is a face or not by measuring its distance from 

this face space.  Below we describe this procedure and display the results in Figure 3-4. 

Firstly, a region of the image scene must be extracted for testing.  This is typically done 

by passing a window over the image.  The extracted region may then be scaled and 

rotated if the system is to detect faces of various sizes and orientations (about the Z 

axis).  Once this region of the test image has been extracted, it is projected into face 

space as described in section 4.3, to produce a face key.  The face-key is then mapped 

back to the original image space, to reconstruct a facial image.  If this reconstruction is 

similar to the original image region, it means that the original image has a suitable 

representation in face space and hence is likely to contain a face. 

We therefore determine the likeness of an image region to a face, by calculating the 

mean squared error between the reconstructed face image and the original image region.  

This likeness value is assigned to the centre pixel of the region.  The result is a face map 

of the original image scene, with darker areas indicating regions containing faces. 

    

Figure 3-4 - Faces detected (left) by using the eigenface face-map (right). 

The likelihood of an image being a face can be determined by examining its position 

within the image space.  That is, its distance from the sub region containing images of 

faces.  If the point in image space represented by an image lies within face space, it is 

likely to be a face.  What’s more, face space can be sub divided further into 

classifications of faces (individual people).  The idea being that images of one person’s 

face will occupy one small area of face space, whereas another person’s face would 

occupy an entirely different area.  This allows identification to be made by calculating 
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the distance between image locations in face space with a known person’s location in 

face space. 

The Fisherface based method of face recognition as described by Belhumeur et al  [ 27 

], uses both PCA and LDA to produce a linear projection into a low dimensional 

subspace, similar to that used in the eigenface method.  However, the Fisherface method 

is able to take advantage of ‘within-class’ information to maximise class separation.  

This means that the training set for the Fisherface method can utilise multiple images of 

each person to determine within-class variation (whereas eigenface typically uses only 

one image per person), allowing any variation between images of the same person to be 

minimised in the classification process.  This is the Fisherface method’s main advantage 

over the eigenface method. We are able to specify (by providing examples in the 

training set) how a person’s face may change from one image to another, due to 

variations in lighting conditions facial expression and even small changes in orientation.  

The idea being, that by providing a set of images of each person taken under various 

lighting conditions and facial expressions, this method becomes more immune to such 

changes. 

Belhumeur et al  [ 27 ] point out that the eigenface method maximises the total scatter 

across all faces within face space, thus retaining some of the unwanted variations 

(caused by lighting and facial expression).  For example, if one of the faces within the 

training set had an open mouth, this 'feature' would contribute to the scatter of the face 

images within face space, meaning that an open mouth is identified as a discriminating 

characteristic between people.  Anyone with an open mouth would therefore begin to 

look similar (within face space).  Whereas the Fisherface method could use multiple 

images of a person with an open and closed mouth to enforce the fact that the 

appearance of a mouth can change from one image to another, in which case it will have 

little influence in the classification process. 
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Figure 3-5 - Two examples of dimensionality reduction.  On the left the projection causes the two 

classes to overlap, whereas the projection used on the right maintains the class separation. 

In the graphs shown in Figure 3-5, we can see that although some dimensionality 

reductions may maximise spread, they do not necessarily maximise class separation.  In 

the graph on the left, the two classes can be linearly separated in two dimensional space, 

whereas once they have been reduced to a single dimension, they become merged.  A 

better projection is shown on the right, where the instances of each class have a clear 

division, even after dimensionality reduction.  The matrix is formulated such that it will 

project any image of a face into a face space in which the ratio of between-class scatter 

to within-class scatter is maximised for all classes i.e. different people look very 

different and images of the same people look very similar. 

Martinez and Kak have uncovered an interesting phenomenon [ 55 ] regarding the 

performance of LDA and PCA systems and its dependency on adequate training data.  

Testing standard PCA and LDA face recognition on the AR face database [ 39 ], they 

were able to show that PCA can outperform LDA, if the training set is particularly small 

and present intuitive reasons for these results.  They suggest that if the training set is not 

representative of the image space regions occupied by individual subjects, then overall 

image variance can be a better discriminator than optimising the ratio of between-class 

and within-class variance.  We have witnessed similar results, when the training set for 

the 2D Fisherface method did not adequately represent the test set. 

For more detailed descriptions of the range of subspace approaches the reader would 

find that Shakhnarovich and Moghaddam [ 71 ] provide an excellent overview and 

comparative study of subspace approaches, with detailed explanations of the 
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mathematical techniques involved in PCA, LDA and ICA methods as well as Bayesian 

approaches and modular face recognition algorithms.  For performance evaluations, a 

comparison of results produced by many face recognition systems on a common 

database is provided in the documentation of the Face Recognition Vendor Tests [ 1 ].  

Although including systems implemented by commercial organisations (and therefore 

not disclosing exact details of the method used), the FRVT does give a good indication 

of the current error rates of state-of-the-art systems and provides a benchmark by which 

to gauge the potential of any new method. 
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Although limited when compared with the wealth of research applied to 2D face 

recognition, there are a number of investigations that demonstrate how geometric facial 

structure can be used to aid recognition.  Zhao and Chellappa [ 9 ] use a generic 3D face 

model to normalise facial orientation and lighting direction prior to recognition, 

increasing accuracy from approximately 81% (correct match within rank of 25) to 100% 

when applied to the Weizmann database.  A generic 3D face model is scaled and 

aligned to match a 2D target  image.  If the head is not orientated appropriately (frontal 

profile), Zhao and Chellappa use the generic 3D face model, together with light source 

direction and pose estimations, to compensate by producing a prototype image of the 

frontal pose equivalent.  Face recognition is then performed on this prototype image. 

Similar improvements are witnessed in the Face Recognition Vendor Test [ 1 ], showing 

that pose correction using Romdhani et al’s 3D morphable model technique [ 10 ] 

reduces error rates when applied to the FERET database.  This method is analysed and 

discussed in more detail by Blanz et al [ 11 ], using a 3D morphable face model to aid in 

identification of 2D face images.  Beginning with an initial estimate of lighting 

direction and face shape, Blanz et al iteratively alters shape and texture parameters of 

the morphable face model, minimising difference to the two-dimensional image.  These 

parameters are then taken as features for identification, resulting in 82.6% correct 

identifications on a test set of 68 people.    

This same technique of generating 3D morphable models from 2D images has been 

utilised in other experiments, such as Huang et al’s component based face recognition 

approach using 3D morphable models to improve recognition accuracy when pose and 

illumination are unknown [ 56 ].  Taking a Support Vector Machine (SVM) approach 

developed in previous work [ 58 ], in which a face image is decomposed into smaller 

components interconnected by a flexible geometric model, Huang et al tackle the 

problem of a large training set requisite by synthesising many 2D training images from 

3D face models under varying pose and virtual lighting conditions.  The 3D morphable 

model is initially generated from three 2D images as described in Blanz and Vetter’s 

earlier research [ 57 ], before numerous face images are synthesised.  These images are 

then separated into components and used to train a second-degree polynomial SVM 
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classifier.  Recognition accuracy is reported at 90%, compared with a comparable global 

face recognition method achieving 40%. 

Bronstein et al [ 59 ] uses photometric stereo techniques to compute facial surface shape 

from numerous 2D images, acquired under varying lighting conditions.  Surface 

gradient is used by a Fast Marching on Triangulated Domains (FMTD) algorithm to 

produce a map of geodesic distances across the facial surface without the need to 

reconstruct an actual 3D face model.    Moments of a cononical form of this geodesic 

map are extracted as a face signature and compared using the Euclidean distance metric.  

Taking images of seven subjects from the Yale Face Database, Bronstein et al were able 

to show that within-class and between-class standard deviations were improved by an 

order of magnitude, compared with the direct comparison of facial surface gradients. 

Although these methods show that knowledge of 3D face shape can aid normalisation 

for two-dimensional face recognition systems, none of the methods mentioned so far 

use actual geometric structure to perform recognition.  However, the research does 

demonstrate that 3D facial information can be used extremely effectively to eliminate 

some of the problems encountered with 2D recognition (i.e. pose and illumination), 

even when only a generic 3D model is used.  It is likely that if the actual geometric 

shape information of a subjects face contributed to the recognition process further 

improvements could be made. 

To test the use of geometric shape data for recognition a preliminary investigation was 

carried out at the University of York by Turner and Austin [ 46 ] exploring the 

possibilities of using AURA (Advanced Uncertain Reasoning Architecture) [ 46 ][ 47 ] 

technology in conjunction with a graph-matching algorithm to perform face recognition.  

AURA is an architecture based on a pattern-matching concept utilising correlation 

matrix memories, with the key advantage of an extremely efficient hardware 

implementation, in the form of the Presence PCI card (or more recently the Presence II 

card)  [ 62 ].  These devices are able to search onboard memory extremely quickly for 

matching patterns.  What’s more, because these devices are able to operate in parallel, a 

large database of face models may be distributed between several Presence II cards.  

The matching algorithm used the Relaxation By Elimination (RBE) graph matching 

techniques.  This algorithm has several properties that make it particularly suitable for 

face recognition.  Firstly, the neural network architecture (Correlation Matrix 

Memories) of the AURA system means that even noisy or incomplete data (e.g. caused 
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by wearing glasses, non-frontal head orientation or bright specula reflection) can still 

result in a successful match.  Anomalies are effectively ignored and performance 

degrades gracefully in the presence of increasing noise and occlusion. 

Although limited in terms of test data, the investigation demonstrated that the AURA 

graph matcher is capable of distinguishing between facial surfaces based on 3D 

geometry alone.  However, the research was not pursued much further, as error rates 

remained relatively high compared to the more promising avenues of the eigensurface 

and Fishersurface methods (see sections 5.5 and 5.6).  Despite this, because AURA 

architecture is able to operate independently of the CPU, it could be used to search a 

database of face models, pruning the most unlikely matches from the search space as an 

initial screening step.  A large database could then be reduced to a small set of possible 

matches before a more rigorous algorithm is applied.  Hence, allowing matching 

techniques that may not scale well to be applied to large databases.  We supply the 

results of this investigation in Appendix II. 

Beumier and Acheroy also make use of 3D surface information, by performing face 

recognition using a surface matching approach on the 3D facial structure [ 5 ][ 3 ].  

These 3D facial surfaces are generated from a single image taken of a person’s face, 

onto which structured light (stripes) are projected.  The 3D structure of the face is 

computed by measuring the deformation of the stripes across the face.  Some orientation 

normalisation is then required to ensure a consistent fronto-parallel view. This 

normalisation is performed by generating some initial parameters for the three angles of 

rotation and three directions of translation (based on nose detection, forehead and cheek 

angle), before refining the search until the minimum distance is found between the two 

facial surfaces being compared. 

The paper describes various methods of matching the 3D facial surfaces.  However, few 

methods were successful due to the nature of the 3D data obtained (which often 

contained high levels of noise).  Curvature analysis proved ineffective, (again due to the 

noise present in the 3D surface).  Feature extraction also proved difficult, probably due 

to the lack of detail in the model, resulting in the nose being the only reliably located 

feature.  Despite this, they still managed to produce some good results using two 

methods of surface matching by means of comparing profiles extracted from the 3D 

facial surface.  The first method extracts 15 profiles, by taking the intersection of the 

facial surface with evenly spaced vertical planes.  These profile curves are compared by 
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dividing the area between the curves by the arc length, giving a distance measure.  

Beumier and Acheroy carry out verification tests on a database of 30 people, giving an 

EER between 9% and 13% when using automatic alignment, but dropping to between 

3.25% and 6% if manual alignment is used. 

The second method is to take one central profile and two lateral profiles, which are 

converted into one-dimensional vectors of local curvature values.  The left and right 

lateral profiles are averaged to give a mean lateral profile.  Facial surfaces are then 

compared by calculating the difference between these curvature values of the central 

and mean lateral profile.  This method gives improved EERs of between 7.25% and 9% 

on the automatically aligned surfaces and between 6.25% and 9.5% on the manually 

aligned surfaces. 

Although the database used is too small to make any firm conclusions, Beumier and 

Acheroy’s research does suggest that: 

• There is enough information to achieve a high level of face recognition 

accuracy in the facial 3D geometrical structure alone. 

• A high level of accuracy (low levels of noise, missing data, spikes etc.) 

and precision (depth resolution) of the 3D data is essential for good 

performance. 

• Few features can be reliably localised based on the geometrical structure 

alone.  Therefore, a system that relies heavily on locating many features 

and measuring distances between them is likely to produce poor results. 

• The performance of the orientation normalisation procedure has a 

significant influence on the overall system performance. 

Another approach is taken by Chua et al [ 8 ], using point signature as a non-rigid object 

representation, on which recognition can then be performed.  Chua et al treats the face 

recognition problem as a 3D recognition problem of non-rigid surfaces.  By observing 

range data of various facial expressions, it is noted that certain areas of the face remain 

rigid while other areas are able to deform significantly.  An attempt is made to extract 

these rigid areas of the face for recognition, thus creating a system that is invariant to 

facial expression.  It is also hoped that by ignoring large areas of the face that are 
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unstable, the size of the models used for comparison will be greatly reduced, leading to 

a decrease in recognition time and space complexity. 

The characteristic used to identify these rigid areas of faces and ultimately to distinguish 

between faces is the point signature, which describes the depth values surrounding the 

local region of a specific point on the facial surface.  The point signature for any point p 

on a facial surface, is defined as a discrete set of values d(
�

i) where 0 < 
�

i < 360 and �� 

= 10.  Each value d(
�

i) is the distance from a point at angle 
�

i on a 3D curve C (defined 

as the intersection of a sphere of radius r, centred at point p, with the facial surface) to 

the corresponding point on the perpendicular projection of the 3D curve C`.  The 

comparison of two point signatures ds(
�

i) and dm(
�

i) is performed using the following 

equation. 

θθεθθ nidd itolimis ,...,1)()()( =∀<−  

Equ. 3-2 

Where �tol(
�

i) is a set of tolerance values configured to produce the best acceptance and 

rejection rates.  For a more in-depth discussion of point signature generation and 

comparison, we refer the reader to Chua et al's paper [ 8 ].  The first stage of point 

signature based recognition is the registration of 3D faces:  performed by finding 3 

points on each of two facial surfaces for which the following constraints hold: 

• The point signatures of corresponding points match. 

• The distances between the 3 points on one face, and the 3 points on the 

other face are within an error tolerance (possibly under various scales). 

Once the three corresponding points on each face have been found the two facial 

surfaces can be aligned.  Distances between the two facial surfaces are then measured 

according to a Gaussian distribution model and areas with a low distance measure are 

extracted as rigid areas.  Two facial surfaces are compared by extracting the rigid areas 

of the face then generating point signatures for all points on the remaining facial 

surface.  This set is reduced to a set of unique point signatures, which are then compared 

to the corresponding point signatures on the other facial surface. 

Chua et al gather results from a set of range images taken from 6 different people.  A 

total of 30 range images are used (four different expressions for each person, plus one 

probe image).  The probe image is identified correctly for all six people.  However, the 
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separation of scores is not particularly large.  With the correct scores ranging from 

93.75 % to 78.85% and the highest incorrect score being 76.92%. 

Coombes et al [ 32 ] present a method of mathematically describing facial surface 

shape, based on differential geometry.  Curvature analysis is performed on a depth map 

of the facial surface, to produce segmentation into one of eight fundamental surface 

types.  Coombes et al stress the need for the depth map of a facial surface to be created 

from a specific viewpoint, therefore giving the prerequisite of some 3D facial 

alignment.  They also describes several methods of computing the curvature of the 

facial surface and describe the advantages of a method developed by Coombes and 

Richards, which takes into account the possible error due to lack of detail when surfaces 

are at a sharp angle to the viewpoint. 

The facial surface can be segmented into the eight surface types, based on the sign of 

the curvature: peak, ridge, saddle ridge, minimal, pit, valley, saddle valley and flat.  

Coombes et al suggest that two faces may be distinguished by comparing which regions 

of the two faces are classified as the various surface types.  Prior to two facial surfaces 

being compared, they must first be registered.  This is done by manually selecting 

several corresponding feature locations on each face, which are then used to scale, 

translate and rotate, such that two facial surfaces are aligned.  Using this method, 3D 

facial surfaces have been produced for the average female and average male face, 

showing distinct differences in chin structure, nose shape, forehead shape and cheek 

bone position.  A quantitative analysis of the average male and average female facial 

surfaces shows that the main differences are of prominence or retrusion in specific areas 

of the face. 

Hesher et al [ 6 ] use PCA of depth maps and a Euclidean distance metric to perform 

identification with 94% accuracy on 37 face models (when training is performed on the 

gallery set).  Our own investigations of a similar method are presented in section 5.5  

(also published by Heseltine et al [ 16 ]), showing how different surface representations 

and distance measures affect recognition, reducing the EER from 19.1% to 12.7% when 

applied to a test set of 290 face models acquired under difficult capture conditions such 

as variations in head angle and expressions. 

Gordon [ 4 ] takes a feature based approach, based on both depth and curvature 

information.  It is stated that curvature data is easily derived from the range data, and 
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has substantial advantages.  It has the potential for higher accuracy in describing surface 

based events and it is better suited to describing properties around facial regions such as 

the cheeks, forehead and chin.  It is also viewpoint invariant.  Gordon uses facial feature 

localisation and absolute measurements (millimetres rather than pixels) to calculate a set 

of feature descriptors from the 3D data. 

The usefulness of a feature for the purpose of classification is dependent on its ability to 

discriminate between people.  To evaluate the set of features, a value is calculated 

indicating the level of discrimination for each feature, this property is Fishers linear 

discriminant (FLD), as shown in the equation below. 
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Equ. 3-3 

Where d describes the discriminating power of a feature �, between c different classes 

(people).  �i is the set (size ni) of feature values of class i, and mi and m are the means 

of �i and feature values of all classes respectively.  The features tested by Gordon are 

shown in Table 3-1. 

Gordon continues to create a face recognition system by means of a simple Euclidean 

distance measure in feature space.  Several combinations of features are tested using a 

database of 24 facial surfaces (8 different people), defining a correct recognition if the 

subject was selected as the top match from the database (lowest distance measure).  

Results range from 70.8% to 100% correct recognition, with the best score achieved by 

using the first 6 features of Table 3-1. A linear degradation was observed when using 

greater or fewer features. 

Bronstein et al have investigated the use of texture mapped 3D face models focusing on 

expression invariant face recognition [ 61 ] using geometric invariants of the face 

extracted from 3D face data for non-rigid surface comparisons.  By using isometric 

surface signatures known as bending-invariant cononical forms, generated by 

dimensionality reduction through multidimensional scaling, Bronstein et al compare 

signatures by a weighted Euclidean distance metric.  Testing the method on a database 
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of 147 subjects, the method was shown to outperform eigen-decomposition methods for 

10 identification operations. 

 

Feature Discriminating power 

Head width 24.9 

Nose height 16.6 

Nose depth 9.6 

Nose width 9.2 

Distance between the eyes 6.6 

Maximum curvature on nose ridge 6.2 

Average minimum curvature on nose ridge 4.4 

Total width of eyes (span) 4.2 

Curvature at nose bridge 3.3 

Right eye width 2.4 

Curvature at nose base 2.1 

Left eye width 1.3 

Table 3-1 Evaluation of the discriminating ability of features extracted from 3D facial data, as 

presented in Gordon’s paper  [ 4 ]. 

The Face Recognition Grand Challenge (FRGC) [ 2 ] has recently been launched, in 

which multiple face recognition systems are compared under a similar framework to 

that of the FRVT.  The test database provided with the FRGC includes a substantial 

amount of 3D face data with corresponding 2D texture images.  This initiative is likely 

to intensify research into 3D face recognition and greatly improve the ability to compare 

and contrast various 3D face recognition methods.  However, as the high resolution 3D 

models were acquired using the Minolta laser scanner any results presented are unlikely 

to be reproduced in a real-world environment where large laser scanning devices are not 

appropriate.  Chang et al have already made use of this multi-modal data [ 73 ] showing 

how both 2D and 3D data can be utilised to greater effect than using either sets of data 

separately. 
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33..33    RReeccooggnnii tt iioonn  DDii ff ff iiccuull tt iieess  

The problems caused by changes in lighting conditions have been well researched.  

Adini, Moses and Ullman suggest that the difference (mean square intensity difference 

on a pixel basis) between images of one face under different illumination conditions are 

greater than the differences between images of different faces under the same 

illumination conditions [ 26 ].  It has been attempted, with some success, to identify and 

compensate for the effect of lighting conditions in various face recognition systems.  

Zhao and Chellappa use a generic 3D surface of a face, together with a varying albedo 

reflectance model and a Lambertian physical reflectance model to compensate for both 

the lighting and head orientation [ 9 ], before applying a recognition system based on 

LDA. 

Much research has also been carried out to improve eigenface recognition systems.  

Cutler has shown that it can successfully be applied to infrared images [ 7 ], resulting in 

a much decreased error rate.  This shows that an artificial infrared light source could be 

used to reduce the effect of external light sources, producing an accurate system for use 

in security applications such as site access.  However, the use of such a light source is 

not always practical, particularly if the camera is far from the subject. 

Pentland, Moghaddam and Starner extended their eigenface system to include multiple 

viewing angles of a person’s face [ 40 ], improving the system performance when 

applied to faces of various orientations.  This was done by gathering several training 

sets, each containing images of people's faces from a specific angle.  When recognition 

is performed, the face image is projected into the appropriate face space (depending on 

the orientation of the face in the image determined according to the distance from face 

space).  Although this method does expand the systems capabilities, as the angle of 

orientation deviates from the fronto-parallel view, the system’s performance degrades. 

Pentland et al also incorporate a modular eigenface system [ 40 ], which significantly 

improves the overall performance, although it does not tackle the lighting problem 

directly.  Belhumeur, Hespanha and Kreigman use Fisher’s linear discriminant to 

capture similarities between multiple images in each class (per person)  [ 27 ], hoping to 

discount variations due to lighting from the defined subspace.  Their results show a 

significant improvement over the standard eigenface approach (from 20% to less than 
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2% error rate).  However, it does not overcome the problem of changes in lighting 

conditions. 

33..44    HHuummaann  FFaacciiaall   PPeerr cceepptt iioonn  

In this section we take a slight deviation from the computer science perspective and 

review some literature that focuses on the ability of the human visual system to perform 

face recognition.  Whether or not this line of investigation will prove useful in the quest 

to design an improved automatic face recognition technique remains to be seen, 

however we must remember that one of the main driving forces behind automated face 

recognition research is that we (humans) recognise people by a similar means.  

Automatic face recognition systems will always have this analogy to human perception, 

meaning a systems decision can easily be verified by a human operator.  In addition, 

this concept provides some comfort in that we are not trying to tackle an impossible 

problem, a system has already been created that can perform this task: the human brain.  

However, we must be cautious regarding this statement.  We are all aware of our 

impressive ability to recognise a close friend in a blurred image, partially occluded with 

dark glasses, at a glance across a crowded room, even if we have not seen them for 

several years (something that is far beyond the capability of any existing face 

recognition system).  On the other hand, our face recognition ability can be surprisingly 

poor, given just a single photograph of somebody we have never met we often fail to 

recognise another image if a small change in lighting has occurred, conversely we can 

easily misidentify somebody because of a similar moustache, hairstyle or other features.  

If we relate this to our expectation of an automated face recognition system (instant 

recognition from a single reference image when compared against thousands of images 

in unknown conditions), perhaps automated systems have already surpassed human 

recognition.  If so, this is a persuasive argument for adoption of a face recognition 

system in any scenario where identification is currently carried out by a human operator.  

For these reasons, this topic is worthy of some attention, in particular with regard to the 

following questions: 

• How do humans recognise faces? 

• Is there any correlation between human perception and automatic 

methods of recognition? 
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• Is there any value in attempting to emulate methods of human face 

recognition in order to improve existing systems? 

• How good is human face recognition and at what point does an 

automated method become more effective than a human operator? 

Burton et al [ 70 ] shows that familiarity of faces is very important for human facial 

recognition, especially when image quality is poor.  By testing the ability of humans to 

recognise faces in poor quality security videos it was shown that if a person is familiar 

with a subject they can be recognised to a high degree of success (even in very poor 

conditions), compared to people who were unfamiliar with the subject (including police 

officers experienced in forensic identification).  By performing two experiments, either 

obscuring the body of the subject (to eliminate cues from gait and clothing) or just the 

face region, Burton et al demonstrates that the face is by far the primary cue for 

recognition. 

Another paper by Burton et al [ 69 ] has shown that a cognitive model of face 

recognition in combination with PCA can be used to simulate computation of 

familiarity, perhaps suggesting some commonality between the holistic appearance-

based PCA methods of face recognition and the feature extraction of human facial 

perception.  Hancock, Bruce and Burton [ 12 ][ 13 ] extend this comparison, contrasting 

the capabilities of the human visual system to that of PCA methods of face recognition, 

focusing on the psychological plausibility of the approach.  They state that although 

PCA alone is not a plausible model of the processes involved in the human visual 

system, it does have many strong similarities due to its inherent global representation 

and the holistic nature of human facial perception.  It is also noted that a human’s ability 

to recognise faces does not rely on individual measurements of internal features, as we 

are still capable of recognising line drawings of faces, although it becomes significantly 

harder without the additional texture and shading information.  Likewise, our own 

research has demonstrated that it becomes extremely difficult to recognise people using 

geometric structure alone (see Figure 5-3 in which all 3D models are of the same 

person).  The human visual system also appears to be strongly adapted to distinguishing 

between (natural) faces to a much higher accuracy than other objects.  Error rates 

increase when trying to recognise faces from photographic negatives, even though all 

the structural and texture information is still present.  This suggests that a human’s 
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ability to recognise faces is heavily influenced by knowledge of the generic structure, 

orientation, colour and texture of faces.  This is reinforced by the illusion in Figure 3-6. 

 

Figure 3-6 -  When faces are not viewed in their natural state, the ability of the human visual 

system to distinguish between them is reduced.  The modifications to the image on the right are 

scarcely noticeable, until the images are rotated by 180°. 

In Hancock, Bruce and Burtons work, human participants are used to assign similarity 

and distinctiveness ratings to a database of facial images, by means of computer 

controlled questionnaires and recollection tests.  These ratings are then compared to the 

principal component values, reconstruction error and identification error of an eigenface 

based face recognition system [ 48 ][ 14 ].  If any correlation exists, it is assumed that 

faces appearing similar to humans should occupy near positions in PCA space and 

hence produce low distance measures.  The results show that PCA based identification 

does correlate, to some extent, with the human notion of similarity, giving average 

Kendall rank correlation values ranging from 0.12 to 0.22 for a number of different 

PCA systems [ 12 ].  Another interesting observation is that an increase in the 

performance of the PCA systems (Hancock et al experiment with various shape-free 

pre-processing and image filters) is accompanied by an increase in correlation to the 

human visual system.  Hancock et al also show a correlation with the most principal 

component (first eigenface) and false acceptance rate, suggesting a link between 

‘familiarity’ (resulting in the subject’s mistaken belief that they have encountered a face 

before) and the most discriminating holistic feature [ 13 ].  The research also shows that 

finer scales of face images relate to this notion of familiarity, while the more coarse 

scales contribute to distinctiveness and memorability. 

Another investigation into the correlation between human face recognition and 

automated systems is carried out by Coombes et al [ 32 ], this time focusing on the 

relationship between 3D facial surface information and the psychological 
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distinctiveness of a face.  Ten human judges were used to rate faces according to how 

distinctive the facial image appeared to them.  By comparing these distinctiveness 

ratings with the 3D facial surface data, it was discovered (as one may have assumed) 

that the more distinctive the face, the more the 3D facial surface deviated from the 

average facial surface.  In particular, the more distinctive faces were composed of fewer 

flat surfaces in the lower regions of the facial surface. 

33..55    SSuummmmaarr yy  ooff   PPeerr ffoorr mmaannccee  

From the various papers described above, it is apparent that 2D face recognition has 

achieved a reasonably high level of performance, particularly using the eigenface and 

Fisherface appearance-based approaches.  However, the error rates still being produced 

by these systems do not seem to compare to the level that the human visual system is 

able to discriminate between faces (although this statement is quite subjective).  The 

error rates are also still too high to be considered for many of the potential applications 

of face recognition.  We see that neural network approaches are well suited towards face 

detection, which is a critical preliminary step to successful face recognition, but no 

system has been presented which utilises the benefits offered by such a system prior to 

any further verification or identification procedures.  On a similar note, we have also 

seen how feature analysis, although not accurate enough to perform a high level of 

recognition of its own, could be used as a preliminary screening step. 

Many researchers suggest that the main problem to be overcome by 2D face recognition 

systems is that of lighting conditions.  If this were to be achieved, face recognition 

would become a much more attractive biometric for the purposes of verification for site 

access.  However, for face recognition to be used in a surveillance application, the 

problem of facial expression and facial orientation must also be solved.  Some attempts 

have been made to combat both of these problems, with limited success.  It is surprising 

that image pre-processing, colour normalisation and lighting correction as used with 

photo processing systems has not been applied more readily as a preliminary step to 

appearance-based approaches (at most those explored use simple histogram equalisation 

or brightness and contrast adjustment), as it is likely that such additional processing 

could improve both the eigenface and Fisherface methods.  Although Adini, Moses and 

Ullman point out that there is no image representation that can be completely invariant 

to lighting conditions, they do show that different representations of images, on which 
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lighting has less of an affect, can significantly reduce the difference between two 

images of the same face [ 26 ]. 

3D facial recognition has been identified as a viable biometric, with the potential for 

high performance classification.  However, very few 3D facial recognition systems have 

been implemented and those that have been tested have only been applied to small 

databases.  Nevertheless, the results have all been promising.  It is also evident that 

subspace approaches could be equally applicable to 3D facial surface information, 

although a large database of 3D face models is required to facilitate further research in 

this area.  The need for a common test database has been a recurring factor in many of 

the papers discussed here and although the FRVT [ 1 ] and FERET database [ 44 ] have 

gone some way to addressing these issues they are more often utilised in commercial 

tests rather than adopted in research investigations and this makes cross-method 

comparison very subjective.  Some of the more common databases currently used for 

2D face recognition are: 

• The FERET database [ 41 ] 

• The AR Face Database [ 39 ] 

• The XM2VTS database. [ 66 ] 

• The Psychological Image Collections at Sterling (PICS) [ 64 ] 

• The UMIST Face Database [ 65 ] 

• The Yale Face Database [ 67 ] 

Although more researchers are beginning to make use of such databases for 2D face 

recognition, the same problem can now be seen arising in the 3D field.  Further 

complicated by the greater variety of 3D data formats and the need for simultaneously 

acquired 2D images.  The Face Recognition Grand Challenge (FRGC) [ 2 ] does look 

set to address some of these points, providing a defined testing methodology and 3D 

face data with accompanying 2D images, although the database will not be available in 

sufficient time for our own investigations and therefore we have had to address this 

problem ourselves (see section 5.1). 
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44  TTwwoo--ddiimmeennssiioonnaall   FFaaccee  RReeccooggnnii tt iioonn  

In this chapter we investigate and compare three well-known methods of 2D face 

recognition, namely the direct correlation, eigenface and Fisherface methods.  The 

investigations documented serve as a necessary preface to the novel advances 

introduced in later chapters (particularly sections 7.1 and 7.4).  We begin in section 4.1 

with a brief description of face detection and feature localisation techniques used, 

before detailed descriptions of the three face recognition methods in sections 4.2, 4.3 

and 4.4.  In section 4.5 we introduce a range of image pre-processing methods used 

throughout this thesis, presenting the results of incorporating these techniques into the 

three face recognition systems in section 4.6. 

All three methods discussed in this chapter are considered to be ‘appearance-based’, in 

that the image pixel data is used as a whole to perform recognition, rather than detecting 

and analysing relationships between individual facial features.  Direct correlation is the 

term we use to describe a simple direct comparison of two facial images, producing a 

similarity score.  This differs from the two subspace methods (eigenface and Fisherface) 

in that the face images are compared directly, in the original image space, rather than 

attempting to reduce a facial image down to the few most discriminating components.  

The purpose of investigating the direct correlation method is primarily to provide an 

initial baseline comparison by which to gauge any advantage offered by the subspace 

methods and whether any additional improvement using image pre-processing 

techniques is applicable to all three systems. 

Two-dimensional face recognition systems use a standard 2D image (either colour or 

grey scale), often captured by means of a camera and frame-grabber, web-cam or 

scanned photograph, to perform recognition.  Such systems have been in use for a 

number of years; incorporated into biometric access systems in airports, used in 

identification procedures in police departments and CCTV surveillance systems.  

However, these two-dimensional approaches are held back by a few critical problems.  

Firstly, such systems are extremely sensitive to head orientation, meaning that in order 

to achieve a positive verification the subject must be facing directly towards the camera 

(fronto-parallel orientation).  The result is that throughput of site access systems is 

considerably reduced (subjects often have to attempt several verifications to achieve the 
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correct orientation) and surveillance systems rely on luck that the subject will face the 

camera.  The second major problem is lighting conditions.  If the subject is enrolled in 

an environment with different lighting conditions (including direction, intensity and 

colour) to that when verification is performed, the subject is often falsely rejected. 

In this chapter we explore three two-dimensional appearance-based methods of face 

recognition, describing the theory and mathematical concepts behind each in sections 

4.2, 4.3 and 4.4.  We perform some preliminary experimentation using each of the three 

methods on a small test set of facial images, providing an initial baseline indication of 

how each system performs and the level of results that may be expected from such 

experimentation.  A more thorough comparison of the three systems on a common data 

set is provided in section 4.6.  For completeness sake, we also briefly cover the 

necessary preliminary requirements of feature localisation in section 4.1.  However, we 

do not spend significant time researching or improving the method described, 

considering it to be another topic worthy of further study in a separate project. 
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44..11  FFeeaattuurr ee  LL ooccaall iizzaatt iioonn  

Before discussing the methods of comparing two facial images we now take a brief look 

at some at the preliminary processes of facial feature alignment.  This process typically 

consists of two stages: face detection and eye localisation.  Depending on the 

application, if the position of the face within the image is known beforehand (for a 

cooperative subject in a door access system for example) then the face detection stage 

can often be skipped, as the region of interest is already known.  Therefore, we discuss 

eye localisation here, with a brief discussion of face detection in the literature review 

(section 3.1.1). 

The eye localisation method is used to align the 2D face images of the various test sets 

used throughout this section.  However, to ensure that all results presented are 

representative of the face recognition accuracy and not a product of the performance of 

the eye localisation routine, all image alignments are manually checked and any errors 

corrected, prior to testing and evaluation. 

We detect the position of the eyes within an image using a simple template based 

method.  A training set of manually pre-aligned images of faces is taken, and each 

image cropped to an area around both eyes.  The average image is calculated and used 

as a template. 

 

Figure 4-1 - The average eyes.  Used as a template for eye detection. 

Both eyes are included in a single template, rather than individually searching for each 

eye in turn, as the characteristic symmetry of the eyes either side of the nose, provides a 

useful feature that helps distinguish between the eyes and other false positives that may 

be picked up in the background.  Although this method is highly susceptible to scale 

(i.e. subject distance from the camera) and also introduces the assumption that eyes in 

the image appear near horizontal.  Some preliminary experimentation also reveals that it 

is advantageous to include the area of skin just beneath the eyes.  The reason being that 

in some cases the eyebrows can closely match the template, particularly if there are 

shadows in the eye-sockets, but the area of skin below the eyes helps to distinguish the 
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eyes from eyebrows (the area just below the eyebrows contain eyes, whereas the area 

below the eyes contains only plain skin). 

A window is passed over the test images and the absolute difference taken to that of the 

average eye image shown above.  The area of the image with the lowest difference is 

taken as the region of interest containing the eyes.  Applying the same procedure using a 

smaller template of the individual left and right eyes then refines each eye position.  

This basic template-based method of eye localisation, although providing fairly precise 

localisations, often fails to locate the eyes completely.  However, we are able to 

improve performance by including a weighting scheme. 

Eye localisation is performed on the set of training images, which is then separated into 

two sets: those in which eye detection was successful; and those in which eye detection 

failed.  Taking the set of successful localisations we compute the average distance from 

the eye template (Figure 4-2 top).  Note that the image is quite dark, indicating that the 

detected eyes correlate closely to the eye template, as we would expect.  However, 

bright points do occur near the whites of the eye, suggesting that this area is often 

inconsistent, varying greatly from the average eye template. 

 

 

Figure 4-2 – Distance to the eye template for successful detections (top) indicating variance due to 

noise and failed detections (bottom) showing credible variance due to miss-detected features. 

In the lower image (Figure 4-2 bottom), we have taken the set of failed localisations 

(images of the forehead, nose, cheeks, background etc. falsely detected by the 

localisation routine) and once again computed the average distance from the eye 

template.  The bright pupils surrounded by darker areas indicate that a failed match is 

often due to the high correlation of the nose and cheekbone regions overwhelming the 

poorly correlated pupils.  Wanting to emphasise the difference of the pupil regions for 

these failed matches and minimise the variance of the whites of the eyes for successful 



Two-dimensional Face Recognition 

- Page 6666  -- 

matches, we divide the lower image values by the upper image to produce a weights 

vector as shown in Figure 4-3.  When applied to the difference image before summing a 

total error, this weighting scheme provides a much improved detection rate. 

 

Figure 4-3 - Eye template weights used to give higher priority to those pixels that best represent the 

eyes. 

44..22  TThhee  DDii rr eecctt   CCoorr rr eellaatt iioonn  AApppprr ooaacchh  

We begin our investigation into face recognition with perhaps the simplest approach, 

known as the direct correlation method (also referred to as template matching by 

Brunelli and Poggio  [ 29 ]) involving the direct comparison of pixel intensity values 

taken from facial images.  We use the term ‘Direct Correlation’ to encompass all 

techniques in which face images are compared directly, without any form of image 

space analysis, weighting schemes or feature extraction, regardless of the distance 

metric used.  Therefore, we do not infer that Pearson’s correlation is applied as the 

similarity function (although such an approach would obviously come under our 

definition of direct correlation).  We typically use the Euclidean distance as our metric 

in these investigations (inversely related to Pearson’s correlation and can be considered 

as a scale and translation sensitive form of image correlation), as this persists with the 

contrast made between image space and subspace approaches in later sections. 

Firstly, all facial images must be aligned such that the eye centres are located at two 

specified pixel coordinates and the image cropped to remove any background 

information.  These images are stored as greyscale bitmaps of 65 by 82 pixels and prior 

to recognition converted into a vector of 5330 elements (each element containing the 

corresponding pixel intensity value).  Each corresponding vector can be thought of as 

describing a point within a 5330 dimensional image space.  This simple principle can 

easily be extended to much larger images: a 256 by 256 pixel image occupies a single 

point in 65,536-dimensional image space and again, similar images occupy close points 

within that space.  Likewise, similar faces are located close together within the image 

space, while dissimilar faces are spaced far apart.  Calculating the Euclidean distance d, 
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between two facial image vectors (often referred to as the query image q, and gallery 

image g), we get an indication of similarity.  A threshold is then applied to make the 

final verification decision. 

gqd −=    )()( rejectthresholddacceptthresholdd ⇒>∧⇒≤  . 

Equ. 4-1  

 

4.2.1 Verification Tests 

The primary concern in any face recognition system is its ability to correctly verify a 

claimed identity or determine a person's most likely identity from a set of potential 

matches in a database.  In order to assess a given system’s ability to perform these tasks, 

a variety of evaluation methodologies have arisen.  Some of these analysis methods 

simulate a specific mode of operation (i.e. secure site access or surveillance), while 

others provide a more mathematical description of data distribution in some 

classification space.  In addition, the results generated from each analysis method may 

be presented in a variety of formats. 

Throughout the experimentations in this thesis, we primarily use the verification test as 

our method of analysis and comparison, although we also use Fisher’s Linear 

Discriminant to analyse individual subspace components in section 7 and the 

identification test for the final evaluations described in section 8. 

The verification test measures a system’s ability to correctly accept or reject the 

proposed identity of an individual.  At a functional level, this reduces to two images 

being presented for comparison, for which the system must return either an acceptance 

(the two images are of the same person) or rejection (the two images are of different 

people).  The test is designed to simulate the application area of secure site access.  In 

this scenario, a subject will present some form of identification at a point of entry, 

perhaps as a swipe card, proximity chip or PIN number.  This number is then used to 

retrieve a stored image from a database of known subjects (often referred to as the target 

or gallery image) and compared with a live image captured at the point of entry (the 

query image).  Access is then granted depending on the acceptance/rejection decision.  

The results of the test are calculated according to how many times the accept/reject 

decision is made correctly. 
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In order to execute this test we must first define our test set of face images.  Although 

the number of images in the test set does not affect the results produced (as the error 

rates are specified as percentages of image comparisons), it is important to ensure that 

the test set is sufficiently large such that statistical anomalies become insignificant (for 

example, a couple of badly aligned images matching well).  Also, the type of images 

(high variation in lighting, partial occlusions etc.) will significantly alter the results of 

the test.  Therefore, in order to compare multiple face recognition systems, they must be 

applied to the same test set.  However, it should also be noted that if the results are to be 

representative of system performance in a real world situation, then the test data should 

be captured under precisely the same circumstances as in the application environment.  

On the other hand, if the purpose of the experimentation is to evaluate and improve a 

method of face recognition, which may be applied to a range of application 

environments, then the test data should present the range of difficulties that are to be 

overcome.  This may mean including a greater percentage of ‘difficult’ images than 

would be expected in the perceived operating conditions and hence higher error rates in 

the results produced. 

Below we provide the algorithm for executing the verification test.  The algorithm is 

applied to a single test set of face images, using a single function call to the face 

recognition algorithm: CompareFaces(FaceA, FaceB).  This call is used to compare two 

facial images, returning a distance score indicating how dissimilar the two face images 

are: the lower the score the more similar the two face images.  Ideally, images of the 

same face should produce low scores, while images of different faces should produce 

high scores.   

Every image is compared with every other image, no image is compared with itself and 

no pair is compared more than once (we assume that the relationship is symmetrical).  

Once two images have been compared, producing a similarity score, the ground-truth is 

used to determine if the images are of the same person or different people.  In practical 

tests this information is often encapsulated as part of the image filename (by means of a 

unique person identifier).  Scores are then stored in one of two lists: a list containing 

scores produced by comparing images of different people and a list containing scores 

produced by comparing images of the same person.  The final acceptance/rejection 

decision is made by application of a threshold.  Any incorrect decision is recorded as 

either a false acceptance or false rejection.  The false rejection rate (FRR) is calculated 
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as the percentage of scores from the same people that were classified as rejections.  The 

false acceptance rate (FAR) is calculated as the percentage of scores from different 

people that were classified as acceptances.   

 

For IndexA = 0 to length(TestSet) 

   For IndexB = IndexA+1 to length(TestSet) 

      Score = CompareFaces(TestSet[IndexA], TestSet [IndexB]) 

      If IndexA and IndexB are the same person 

         Append Score to AcceptScoresList 

      Else 

         Append Score to RejectScoresList 

 

For Threshold = Minimum Score to Maximum Score: 

   FalseAcceptCount, FalseRejectCount = 0 

   For each Score in RejectScoresList 

      If Score <= Threshold 

         Increase FalseAcceptCount 

      For each Score in AcceptScoresList 

         If Score > Threshold 

            Increase FalseRejectCount 

   FalseAcceptRate = FalseAcceptCount / Length(Acce ptScoresList) 

   FalseRejectRate = FalseRejectCount / length(Reje ctScoresList) 

   Add plot to error curve at (FalseRejectRate, Fal seAcceptRate) 

 

Figure 4-4  Algorithm for computing false acceptance rates and false rejection rates for a typical 

one-to-one verification application. 

These two error rates express the inadequacies of the system when operating at a 

specific threshold value.  Ideally, both these figures should be zero, but in reality 

reducing either the FAR or FRR (by altering the threshold value) will inevitably result 

in increasing the other.  Therefore, in order to describe the full operating range of a 

particular system, we vary the threshold value through the entire range of scores 

produced.  The application of each threshold value produces an additional FAR, FRR 

pair, which when plotted on a graph produces the error rate curve shown below. 
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Figure 4-5 - Example Error Rate Curve produced by the verification test. 

The equal error rate (EER) can be seen as the point at which FAR is equal to FRR.  This 

EER value is often used as a single figure representing the general recognition 

performance of a biometric system and allows for easy visual comparison of multiple 

methods.  However, it is important to note that the EER does not indicate the level of 

error that would be expected in a real world application.  It is unlikely that any real 

system would use a threshold value such that the percentage of false acceptances were 

equal to the percentage of false rejections.  Secure site access systems would typically 

set the threshold such that false acceptances were significantly lower than false 

rejections: unwilling to tolerate intruders at the cost of inconvenient access denials.  

Surveillance systems on the other hand would require low false rejection rates to 

successfully identify people in a less controlled environment.  Therefore we should bear 

in mind that a system with a lower EER might not necessarily be the better performer 

towards the extremes of its operating capability. 

There is a strong connection between the above graph and the receiver operating 

characteristic (ROC) curves, also used in such experiments.  Both graphs are simply two 

visualisations of the same results, in that the ROC format uses the True Acceptance 

Rate(TAR), where TAR = 1.0 – FRR in place of the FRR, effectively flipping the graph 



Two-dimensional Face Recognition 

- Page 7711  -- 

vertically.  Another visualisation of the verification test results is to display both the 

FRR and FAR as functions of the threshold value.  This presentation format provides a 

reference to determine the threshold value necessary to achieve a specific FRR and 

FAR.  The EER can be seen as the point where the two curves intersect. 

 

Figure 4-6 - Example error rate curve as a function of the score threshold. 

The fluctuation of these error curves due to noise and other errors is dependant on the 

number of face image comparisons made to generate the data.  A small dataset that only 

allows for a small number of comparisons will results in a jagged curve, in which large 

steps correspond to the influence of a single image on a high proportion of the 

comparisons made.  A typical dataset of 720 images (as used in section 4.2.2) provides 

258,840 verification operations, hence a drop of 1% EER represents an additional 2588 

correct decisions, whereas the quality of a single image could cause the EER to 

fluctuate by up to 0.28. 
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4.2.2 Results 

As a simple experiment to test the direct correlation method, we apply the technique 

described above to a test set of 720 images of 60 different people, taken from the AR 

Face Database [ 39 ].  Every image is compared with every other image in the test set to 

produce a likeness score, providing 258,840 verification operations from which to 

calculate false acceptance rates and false rejection rates.  The error curve produced is 

shown in Figure 4-7. 

 

Figure 4-7 - Error rate curve produced by the direct correlation method using no image pre-

processing. 

We see that an EER of 25.1% is produced, meaning that at the EER threshold 

approximately one quarter of all verification operations carried out resulted in an 

incorrect classification.  There are a number of well-known reasons for this poor level 

of accuracy.  Tiny changes in lighting, expression or head orientation cause the location 

in image space to change dramatically.  Images in face space are moved far apart due to 

these image capture conditions, despite being of the same person’s face.  The distance 

between images of different people becomes smaller than the area of face space covered 

by images of the same person and hence false acceptances and false rejections occur 

frequently.  Other disadvantages include the large amount of storage necessary for 
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holding many face images and the intensive processing required for each comparison, 

making this method unsuitable for applications applied to a large database.  In section 

4.3 we explore the eigenface method, which attempts to address some of these issues. 
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44..33  TThhee  EEiiggeennffaaccee  AApppprr ooaacchh  

We now turn our attention to the eigenface method of face recognition as introduced by 

Turk and Pentland [ 48 ].  This method has become one of the most well known 

methods of face recognition due to it relatively simple nature, strong mathematical 

foundation and reasonably successful results.  The method attempts to reduce a facial 

image down to the most variant features, such that recognition can be performed in a 

substantially reduced image space than that of the direct correlation method.  However, 

rather that detecting and measuring a set of specific features on a facial image, the 

method maintains a holistic representation, discarding any need for feature detection 

other than that required for the initial image alignment.  It requires the application of 

Principal Component Analysis (PCA), also known as the Karhunen- Loeve transform, 

to a training set of facial images.  For the purpose of these experiments we take a 

training set of 60 images. 

Consider our training set of images of 75 by 112 pixels.  These images could be 

represented as two-dimensional (75 by 112) arrays of pixel intensity data.  Similarly, 

vectors of 8400 (75x112) dimensions could represent the images.  Interpreting these 

vectors as describing a point within 8400 dimensional space means that every possible 

image (of 75 by 112 pixels) occupies a single point within this image space.  What’s 

more, similar images (for example images of faces) should occupy points within a fairly 

localised region of this image space.  Taking this idea a step further, we assume that 

different images of the same face map to nearby points in image space and images of 

different faces map to far apart points.  Ideally, we wish to extract the region of image 

space that contains faces, reduce the dimensionality to a practical value, yet maximise 

the spread of different faces within the image subspace.  Here we apply Principal 

Component Analysis to define a space with the properties mentioned above. 

We take the set of M training images (in our case M = 60): {�1, �2, �3, … �M} and 

compute the average image ∑
=

Γ=Ψ
M

n
nM

1

1 , followed by the difference of each image 

from the average image Ψ−Γ=Φ nn .  Thus we construct the covariance matrix as, 

T

M

n

T
nnM
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=
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1                
]...[ 321 MA

where

ΦΦΦΦ=
 

Equ. 4-2 



Two-dimensional Face Recognition 

- Page 7755  -- 

The eigenvectors and eigenvalues of this covariance matrix are calculated using 

standard linear methods.  These eigenvectors describe a set of mutually orthogonal axes 

within the image space, along which there is the most variance in the face images and 

the corresponding eigenvalues represent the degree of variance along these axes.  The M 

eigenvectors are sorted in order of descending eigenvalues and the M` greatest 

eigenvectors (in our system M` = 30) are chosen to represent face space.  The effect is 

that we have reduced the dimensionality of the space to M`, yet maintained a high level 

of variance between face images throughout the image subspace.  Each eigenvector 

contains 8400 elements (the number of pixels in the original bitmap) and can be 

displayed as images, as shown in Figure 4-8. 

         

Figure 4-8  - Average face image and the first 5 eigenfaces defining a face space with no image pre-

processing. 

Due to the likeness to faces, Turk and Pentland to refer to these vectors as eigenfaces, 

and the space they define, face space.  Once face space has been defined, we can project 

any image into face space by a simple matrix multiplication: 

)( Ψ−Γ= T
kk uω             

`,...1 Mk

for

=
 

Equ. 4-3 

where uk is the kth eigenvector and �k is the kth weight in the vector 
�T = [�1, �2, �3, 

… �M`].  Each element of the vector 
�

, describes the magnitude of the respective 

principal component (in other words the coordinate placement of the face image along 

that eigenvector dimension).  Therefore, these M` weights represent the contribution of 

each respective eigenface and by multiplying the eigenfaces by their weight and 

summing, we can view the face image as mapped into face space (shown in Figure 4-9). 

The vector, 
�

, is taken as the ‘face-key’ for a person’s image projected into face space.  

We compare any two ‘face-keys’ by a simple Euclidean distance measure, 

ba Ω−Ω=ε .  An acceptance (the two face images match) or rejection (the two 
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images do not match) is determined by applying a threshold.  Any comparison 

producing a distance below the threshold is a match. 

 

 

Figure 4-9  - Test images and their face space projections. 

4.3.1 Preliminary Experimentation 

We conduct experiments using a database of 960 bitmap images of 120 individuals (60 

male, 60 female), extracted from the AR Face Database provided by Martinez and 

Benavente [ 39 ].  We separate the database into two disjoint sets: i) The training set, 

containing 60 images of different people of various gender, race and age taken under 

natural lighting conditions with neutral expression; ii) the test set containing 900 images 

(15 images of 60 people of various gender, race and age).  Each of the 15 images were 

taken under the conditions described in Table 4-1. 

Lighting 
Expression \ Covering 

Natural From the left From the right From left and right 

Neutral expression Day 1, Day 2 Day 1, Day 2 Day 1, Day 2 Day 1, Day 2 

Happy expression Day 1, Day 2    

Angry expression Day 1, Day 2    

Mouth covered Day 1 Day 1 Day 1  

Table 4-1 - Image capture conditions. 

All the images are stored as bitmaps (converted into vectors for PCA).  After initial 

investigations to determine an appropriate resolution, we find there is no significant 

change in the EER for resolutions of 100 pixels between the eyes down to just 15 pixels.  

As a compromise between test execution time and some pre-processing techniques 

possibly working better with higher resolutions, we select 25 pixels distance between 
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the eyes to conduct further experiments.  All images are scaled and rotated such that the 

centres of the eyes are aligned 25 pixels apart, using our eye detection algorithm (not 

described here).  Each image is cropped to a width and height of 75 and 112 pixels 

respectively. 

        

 

Figure 4-10 - Example test set images for a single person (first 6 repeated on two days). 

To gather results for the False Rejection Rate, each of the 15 images for a single person, 

is compared with every other image of their face.  No image is compared with itself and 

each pair is only compared once (the relationship is symmetric), giving 

)( 2
2

1
iipc nnnn −=  = 6300 comparisons to test false rejection, where np is the number 

of people and ni is the number of face images per person. 

False acceptance results are gathered using only images of the type “Day1, neutral 

expression, natural lighting” and “Day 2, neutral expression, natural lighting.”  Other 

comparisons are unlikely to produce false acceptances (due to the combination of 

different lighting, expression and obscuring), resulting in an initial low ERR, hence any 

effect of image processing on the more problematic comparisons would be seemingly 

reduced.  Using these images, every person is compared with every other person.  This 

gives 4 comparisons per pair of people, with no person compared to themselves and 

each pair only compared once.  Thus, a total of )(2 2
ppc nnn −=  = 7080 comparisons 

are made between different people to test false acceptance, where np is the number of 

people (60). 

Hence, each equal error rate is based on 13380 verification attempts, using a set of 

comparisons under a range of conditions, such that the FRR and the FAR are 

maximised.  For each threshold value we produce a FAR and a FRR.  By applying a 

range of threshold values we produce a range of FAR and FRR pairs that are plotted on 
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a graph.  The results for our benchmark system (no pre-processing) can be seen below.  

The EER of 34.0% can be seen as the point where FAR equals FRR (Figure 4-11). 

 

Figure 4-11 - Error rates from various thresholds using an eigenface system with no image pre-

processing. 

4.3.2 Image Resolution and Crop Region Investigation 

It is known that the image resolution and crop region can have a significant effect on the 

performance of a face recognition system.  In this section, we perform a series of 

investigations to determine an appropriate resolution and image crop for further 

investigations regarding other image processing techniques.  We expect there to be a 

trade-off between image size (resolution and crop) and performance of the eigenface 

system (in terms of both processing time and recognition accuracy).  Using the same 

evaluation method as described in section 4.3.1, we produce error rate curves at various 

image resolutions and image crops. 
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Figure 4-12 - Error rate curves for the 2D eigenface system, when applied to faces images of various 

crop regions.  The legends indicate the upper-left and lower-right coordinates of the crop regions, 

relative to the original image size. 

We see that cropping areas off the top of the image results in a reduction of the system’s 

performance (Figure 4-12 top).  This may be due to the discriminating properties of the 

hairline, forehead shape and head size.  Whereas removing the lower regions of the 
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image seems to have a positive impact on the systems error rates (Figure 4-12 bottom).  

This is most likely due to the mouth area being the most flexible part of the face, which 

changes most dramatically with different facial expressions.  Despite these 

improvements, we decide to keep the original area of the image, without applying any 

cropping.  Although we have demonstrated that the crop region significantly affects the 

error rates, and indeed the error rate could be improved by removing the lower regions 

of the face, it is our goal to overcome these problems by creating a more discriminating 

image representation.  If such a representation is found, the lower regions of the face 

may begin to provide a positive contribution to the system performance.  Once the best 

image pre-processing method has been found, we can then test various crop regions 

again, for any further improvement in performance (see section 5.1.2). 
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Figure 4-13 - Error rate curves for the 2D eigenface system, when applied to faces images of various 

resolutions.  The graph on the right shows the region between 33.5% and 34.5% error rates of the 

graph on the left. 
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We find there is no significant change in the EER for resolutions of 100 pixels between 

the eyes down to just 10 pixels (from 34.1 percent, down to 33.9 percent).  Even more 

surprising, is that the reduction in resolution appears to actually improve the system’s 

performance (although only by a small degree).  This may be due to the smoothing and 

noise reduction side effects of the sub-sampling algorithm.  As a compromise between 

test execution time and some pre-processing techniques possibly working better with 

higher resolutions, we select 25 pixels distance between the eyes to conduct all further 

experiments.  All images are scaled and rotated such that the centres of the eyes are 

aligned 25 pixels apart, using our eye detection algorithm (see section 4.1.1).  Each 

image has a width and height of 75 and 112 pixels respectively. 

4.3.3 Image Pre-processing Results 

Various image pre-processing methods are often said to aid face recognition by 

normalising various environmental influences, reducing noise or making distinguishing 

features more explicit.  For example edge detection techniques are thought to improve a 

face recognition systems ability to cope with variations in lighting conditions (by 

reducing an image to the shape and position of edges alone, rather than the colour and 

texture of the face).  On the other hand, colour normalisation methods may improve 

recognition by trying to extract the ‘true colour’ of facial regions, regardless of lighting 

conditions.  Smoothing and blurring techniques can help by reducing noise from the 

camera CCD and may also offer some resistance to small movements, rotations and 

expression changes. 

All of these image pre-processing techniques produce very different effects on face 

images, and depending on the circumstances in which a system is expected to operate, 

may either help or hinder performance.  What’s more, there is surprisingly little 

literature exploring how image-processing effects differ across the three variations of 

appearance-based approaches discussed here.  With such a variety of image processing 

methods and a variety of reasons why each may improve performance, we are motivated 

to test a large range of standard techniques. 

Having tested the baseline eigenface system on raw image data and identified a suitable 

resolution at which to conduct further investigations, in order to ascertain the effects of 

image pre-processing, we now present results for a range of image processing 
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techniques, before applying PCA.  Figure 4-14 shows the resulting images, after 

application of the various processing techniques described in detail in section 4.5. 

 

 

Figure 4-14 - Example results of the image pre-processing methods applied to a face image. 

The recognition results produced by each system, using the range of processing 

methods, are presented as a bar chart of verification EERs (Figure 4-15).  The baseline 

eigenface system (no image processing) is displayed in the chart as a dark red bar.  It 

can be seen that the majority of image processing methods did produce some 

improvement to the eigenface system.  However, what is surprising is the large increase 
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in error rates produce by some of the colour normalisation methods of image 

processing, most notably the BGI Hue introduced by Finlayson and Schaefer  [ 33 ].  

We believe that the reduction in effectiveness when using such methods is due to the 

loss of information during these procedures.  Edges become less defined and some of 

the shading due to geometrical structure is lost (see Figure 4-14).  An increase is also 

witnessed using the blurring filters, where one can easily see that structural information 

is being lost.  It is therefore not surprising to see that the edge-enhancing methods had a 

positive impact on the EERs (the ‘find edges’ and ‘contour’ filters were particularly 

effective), as did the statistical methods, which normalise intensity moments (increasing 

the shading gradient in many areas). 

 

 

Figure 4-15 - EER Results for various image processing methods (13,380 verification operations). 

Having identified the most successful image processing method of those evaluated, as 

normalising intensity moments within local regions of the image, then applying a 

convolution contour filter, we continue to improve the system by testing different 

cropping of images to find the optimum for this image processing method, reaching an 

EER of 22.4% (Figure 4-16). 
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Figure 4-16 - Error rates for baseline system, most successful pre-processing and image crop 

4.3.4 Conclusion 

We have shown that the eigenface-based method of face recognition can be significantly 

improved by means of simple image pre-processing techniques.  Without any alterations 

to the eigenface technique itself, an EER of 22.4% percent can be achieved (a reduction 

of 11.6%) using a data set containing a majority of extremely difficult images (20% of 

the images are partially obscured and 40% of the images have extreme lighting 

conditions). 

There are some factors that may be the cause of the remaining 22.4% error, which were 

not compensated for by the image pre-processing techniques.  Firstly, the eye detection 

algorithm was be no means perfect and although an attempt was made to manually 

correct any misaligned images, it is clear (from browsing the database) that some 

images are not aligned well.  It would be relatively simple to implement a system in 

which several small translations and scales of the original image were projected into 
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face space for each recognition attempt (taking the lowest distance value returned), 

hence compensating for any inaccuracies in the alignment procedure. 

Comparable EER reductions have been witnessed in similar PCA methods of face 

recognition, such as Pentland et al’s modular eigenspace system [ 40 ] and in 

Belhumeur et al’s comparison to Fisher faces  [ 27 ].  It is likely that the image pre-

processing methods described could be of similar benefit to these algorithms, and result 

in a greatly improved face recognition system. 
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44..44  TThhee  FFiisshheerr ffaaccee  AApppprr ooaacchh  

The Fisherface method of face recognition as described by Belhumeur et al  [ 27 ] uses 

both principal component analysis (PCA) and linear discriminant analysis (LDA) to 

compute an image subspace in which face image variance is maximised, similar to that 

used in the eigenface method.  However, the Fisherface method is able to take 

advantage of ‘within-class’ information, minimising variation within each class relative 

to between-class class separation.  To accomplish this we expand the training set to 

contain multiple images of each person, providing examples of how a person’s face may 

change from one image to another due to variations in lighting conditions, facial 

expression and even small changes in orientation.  We define the training set τ as, 
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Equ. 4-4 

Where Γi is a facial image and the training set is partitioned into c classes, such that all 

the images in each class Xi are of the same person and no single person is present in 

more than one class.  We begin by computing three scatter matrices, representing the 

within-class (SW), between-class (SB) and total (ST) distribution of the training set 

throughout image space. 
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Where ∑
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1 , is the average image vector of the entire training set, and ∑
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1 , 

the average of each individual class Xi (person).  By performing PCA on the total scatter 

matrix St, and taking the top M-c principal components, we produce a projection matrix 

Upca. 
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Equ. 4-6 
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This projection matrix is used to reduce the dimensionality of the within-class scatter 

matrix, ensuring it is non-singular, before computing the top c-1 (in our case 59) 

eigenvectors of the reduced scatter matrices, Ufld as shown below. 
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Equ. 4-7 

Finally, the matrix Uff is calculated as shown in Equ. 4-8, such that it will project a 

facial image into a reduced image space of c-1 dimensions, in which the ratio of 

between-class scatter to within-class scatter is maximised for all c classes. 

pcafldff UUU =
 

Equ. 4-8 

Once the Uff matrix has been constructed it is used in much the same way as the 

projection matrix in the eigenface system (see Equ. 4-3), reducing the dimensionality of 

the image vectors from 5330 to just 59 (c-1) elements.  Again, like the eigenface 

system, the components of the projection matrix can be viewed as images, referred to as 

Fisherfaces. 

         

Figure 4-17 - The first five Fisherfaces, defining a face space with no image pre-processing
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44..55  II mmaaggee  PPrr ee--pprr oocceessssiinngg  TTeecchhnniiqquueess  

The problems caused by changes in lighting conditions have been well researched.  

Adini, Moses and Ullman suggest that often the differences between images of one face 

under different illumination conditions are greater than the differences between images 

of different faces under the same illumination conditions [ 26 ] .  It has been attempted, 

with some success, to identify and compensate for the effect of lighting conditions in 

various face recognition systems.  Zhao and Chellappa use a generic 3D surface of a 

face, together with a varying albedo reflectance model and a Lambertian physical 

reflectance model to compensate for both the lighting and head orientation [ 9 ], before 

applying a recognition system based on linear discriminant analysis.  Much research has 

also been carried out to improve eigenface recognition systems.  Cutler has shown that 

it can successfully be applied to infrared images [ 7 ], resulting in a much decreased 

error rate.  This shows that an artificial infrared light source could be used to reduce the 

effect of external light sources, producing an accurate system for use in security 

applications such as site access.  However, the use of such a light source is not always 

practical, particularly if the camera is far from the subject. 

Pentland, Moghaddam and Starner extended their eigenface system to include multiple 

viewing angles of a persons face [ 40 ], improving the systems performance when 

applied to faces of various orientations.  They also incorporate a modular eigenspace 

system [ 40 ], which significantly improves the overall performance, although it does 

not tackle the lighting problem directly.  Belhumeur, Hespanha and Kreigman use 

Fisher’s linear discriminant to capture the similarities between multiple images in each 

class (per person)  [ 27 ], hoping to discount the variations due to lighting from the 

defined subspace.  Their results show a significant improvement over the standard 

eigenface approach (from 20% to less than 2% error rate).  However, as both the 

eigenface and Fisherface methods are both appearance-based approaches, it’s likely that 

additional image processing could improve both methods.  Although Adini, Moses and 

Ullman point out that there is no image representation that can be completely invariant 

to lighting conditions, they do show that different representations of images, on which 

lighting has less of an affect, can significantly reduce the difference between two 

images of the same face [ 26 ]. 
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In this section we describe a range of image processing techniques that may affect the 

performance of the two-dimensional appearance-based methods of face recognition 

described in this chapter.  The set of image processing techniques consist of well-known 

image manipulation routines, altering image brightness, contrast and colour.  Note that 

the terms intensity, brightness and lightness are often used interchangeably, although 

intensity generally refers to the actual value of an individual pixel colour component, 

whereas brightness and lightness describe a more global characteristic of the whole 

image. 

We separate the methods in four categories: Colour normalisation, statistical methods, 

convolution and method combinations.  For each technique we present the average face 

image, a visual representation of the discriminant value for each pixel and the first five 

eigenvectors, as can be seen below for the original image with no pre-processing. 

    

Figure 4-18  - No image processing 

 

4.5.1 Colour Normalisation Methods 

Intensity 

We use a well-known image intensity normalisation method, in which we assume that, 

as the intensity of the lighting source increases by a factor, each RGB component of 

each pixel in the image is scaled by the same factor.   We remove the effect of this 

intensity factor by dividing by the sum of the three colour components according to 

Equ. 4-9. 
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Equ. 4-9 

Since the pixels of the resulting image have equal intensity, summing the three colour 

channels would result in a blank image.  Therefore, to create an image with single scalar 

values for each pixel (creating the one dimensional image vector as required by our 
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PCA and LDA systems) we can either take a single colour channel, or sum just the red 

and green components (the chromaticities, effectively the inversion of the blue 

component). 

    

Figure 4-19  - Blue component of intensity normalisation (Intensity) 

    

Figure 4-20 -  Sum of red and green components (Chromaticities) 

Grey world 

Here we take a similar approach to the above normalisation, but compensating for the 

effect of variations in the colour of the light source.  Different colours of light cause the 

RGB colour components of an image to scale apart, by factors �, 
�
 and � respectively, 

),,(),,( bgrbgr newnewnew γβα= , which can then be normalised using the equation below, 

where N is the number of pixels in the image and r, g and b are the intensity values of 

the red, green and blue colour components respectively. 
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Equ. 4-10 

 

    

Figure 4-21 - Grey world normalisation 
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Comprehensive 

We use an algorithm proposed by Finlayson [ 34 ], which normalises an image for 

variations in both lighting geometry and illumination colour.  The method involves the 

repetition of intensity normalisation followed by grey world normalisation (as described 

above), until the resulting image reaches a stable state (i.e. the change in pixel values 

from one cycle to another is sufficiently small). 

    

Figure 4-22 - Blue component of comprehensive normalisation (Comprehensive) 

    

Figure 4-23 - Sum of the red and green components of a comprehensive normalised image 

(Comprehensive chromes) 

Finlayson shows that any two images of a scene taken under varying light colours and 

intensities will iterate down to the same pixel values.  In practice this usually occurs 

within five or six iterations.  Again, to create a one-dimensional vector we either take 

the blue component or sum the red and green components. 

Hsv hue 

The hue of an image is calculated using the standard hue definition, such that each pixel 

is represented by a single scalar value H, as shown in Equ. 4-11. 

( ) ( )[ ]
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Equ. 4-11 

Hue is often described as perceptual colour irrespective of lightness or saturation.  

Therefore, this representation may have beneficial effects in normalising skin tone and 

hair colour. 
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Figure 4-24 - Image hue 

Bgi hue 

Finlayson and Schaefer introduce a definition of hue that is invariant to brightness (the 

scaling of each colour channel by a constant factor) and gamma (raising the colour 

channels to a constant power)  [ 33 ] , which are often caused by variations in scene 

environment and capture equipment. 
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Equ. 4-12 

    

Figure 4-25 - Brightness and gamma invariant hue 

4.5.2 Statistical Methods 

We introduce some statistical methods that apply transformations to the image intensity 

values in order to make the brightness and contrast constant for all images.  The effect is 

that every image appears to be equally as bright (as a whole) and span across an equal 

range of brightness. 

These statistical methods can be applied in a number of ways, mainly by varying the 

areas of the image from which the statistics are gathered.  It is not necessarily the case 

that lighting conditions will be the same at all points on the face, as the face itself can 

cast shadows.  Therefore, in order to compensate for the variations in lighting 

conditions across a single face, we can apply these methods to individual regions of the 

face.  This means that, we are not only compensating for a difference in lighting 

conditions from one image to another, but also for different lighting conditions from 

one area of the face to another. 
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Brightness 

Global transformation of brightness, such that intensity moments are normalised.  The 

mean and standard deviation of pixel intensity is calculated.  Each pixel is then 

multiplied and offset, such that the resultant mean and standard deviation become 

specific set values. 

    

Figure 4-26 - Normalised intensity moments (Brightness) 

Brightness mean 

Global transformation of brightness, such that the intensity mean becomes a constant 

specified value.  The difference between the average pixel intensity and a specific set 

brightness value is used as an offset to adjust image brightness, without altering the 

intensity deviation. 

 

    

Figure 4-27 - Normalised image brightness (Brightness mean) 

Horizontal brightness 

Application of the brightness method to individual rows of pixels.  Effectively 

normalising each horizontal row independently.  This technique will help to compensate 

for variations in brightness levels between the upper and lower facial regions (caused by 

overhead lighting for example). 

    

Figure 4-28 - Normalisation of intensity moments of pixel rows (Horizontal brightness) 
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Vertical brightness 

Application of the brightness method to individual columns of pixels.  Like the 

horizontal brightness technique, this method can account for varying lighting levels 

from the left to the right side of the face. 

    

Figure 4-29 - Normalisation of intensity moments of pixel columns (Vertical brightness) 

Local brightness 

Application of brightness method to individual local regions of an image.  Following a 

similar line of reasoning to the horizontal brightness and vertical brightness techniques, 

we apply brightness normalisation to smaller regions of the face.  This allows for all 

regions to be normalised to mid-level intensity values with even deviation, regardless of 

the lighting levels incident on other areas of the facial surface. 

    

Figure 4-30 - Normalisation of intensity moments of individual local regions (Local brightness) 

Local brightness mean 

Transformation of brightness, such that the mean becomes a constant specified value 

within local regions of the image.  Again, similar to the reasoning behind the local 

brightness technique, but this method does not normalise the intensity deviation. 

 

    

Figure 4-31 - Normalisation of pixel brightness for individual local regions (Local brightness mean) 



Two-dimensional Face Recognition 

- Page 9966  -- 

4.5.3 Convolution Methods 

Convolution methods involve the application of a small template to a window, moved 

step-by-step, over the original image.  These templates can be configured to enhance or 

suppress features, reduce noise and extract edges.  Each filtering techniques is described 

below, with the filter kernel template shown on the left of the example images for each 

technique. 

Smooth  

Standard low-pass filtering using a 3x3 pixel template, with an � value of 0.788. 

1  1  1 

1  5  1 

1  1  1 
    

Figure 4-32 - Smooth filtering 

Smooth more 

Similar to the above, only with a larger 5x5 pixel neighbourhood and a � value of 1.028. 

1   1   1   1  1 

1   5   5   5  1 

1   5  44  5  1 

1   5   5   5  1 

1  1   1   1   1 

   

 

Figure 4-33 - Application of the ‘smooth more’ image filter 

Blur 

An extreme blurring effect using a large 5x5 template. 

 

1   1   1   1   1 

1   0   0   0   1 

1   0   0   0   1    



Two-dimensional Face Recognition 

- Page 9977  -- 

1   0   0   0   1 

1   1   1   1   1 

 

Figure 4-34 - Application of the ‘blur’ image filter 

Edge 

Enhances the edges of an image using a 3x3 template. 

-1  -1  -1 

-1  10 -1 

-1  -1  -1 

   

 

Figure 4-35 - Application of the ‘edge’ image filter 

Edge more 

Same as the above only with less prominence on the centre pixel, hence creating a 

greater amplification of edge boundaries. 

-1  -1  -1 

-1   9  -1 

-1  -1  -1 

   

 

Figure 4-36 - Application of the ‘Edge more’ image filter 

Find edges 

Application of a 3x3 edge enhancement template, followed by a threshold to  

segment an image to include only those pixels that lie on strong edge boundaries. 
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-1  -1  -1 

-1   8  -1 

-1  -1  -1 

   

 

Figure 4-37 -  Application of the ‘find edges’ image filter 

Contour 

Similar to Find edges, only more sensitive to changes in contrast. 

-1  -1  -1 

-1   8  -1 

-1  -1  -1 

   

 

Figure 4-38 - Application of the ‘contour’ image filter 

Detail 

Enhance areas of high contrast using a 3x3 template. 

 0  -1   0 

-1  10  -1 

 0  -1   0 

   

 

Figure 4-39 - Application of the ‘detail’ image filter 

Sharpen 

Reduces image blur by application of a 3x3 template. 
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-2  -2  -2 

-2  32 -2 

-2  -2  -2 

   

 

Figure 4-40 - Application of the ‘sharpen’ image filter 

Emboss 

A simple derivative filter that enhances edges with a shadow casting affect. 

 

-1   0   0 

 0   1   0 

 0   0   0 

   

 

Figure 4-41- Application of the ‘emboss’ image filter 

 

4.5.4 Method Combinations 

In an attempt to capture the advantages of multiple image processing methods, we 

combine some of those techniques that produce the best improvement in EER (Figure 

4-15). 

Contour -> Smooth 

Contour filtering followed by smoothing. 

    

Figure 4-42 Application of the ‘contour’ and ‘smooth’ image filters 
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Smooth->Contour 

Smoothing followed by contour filtering. 

    

Figure 4-43  Application of the ‘smooth’ and ‘contour’ image filters. 

Local brightness -> Smooth 

Local brightness transformation followed by smoothing. 

    

Figure 4-44  Application of the ‘local brightness’ and ‘smooth’ image processing techniques 

Local brightness -> Contour 

Local brightness transformation followed by contour filtering. 

    

Figure 4-45  Application of the ‘local brightness’ and ‘contour’ image pre-processing techniques 

Contour + Local brightness 

The summation of the resulting images from the Contour filter and the Local Brightness 

transformation. 

    

Figure 4-46  Summation of the ‘contour’ and ‘local brightness’ image pre-processing techniques 

C->S + LB 

Contour filtering followed by smoothing, summed with the Local Brightness 

transformation. 
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Figure 4-47  Application of the ‘contour’ and ‘smooth’ image filters summed with the ‘local 

brightness’ transformation 

S->LB->C 

Smoothing followed by the Local Brightness transformation, followed by Contour 

filtering. 

    

Figure 4-48  Application of ‘smooth’, ‘local brightness’ and ‘contour’ image pre-processing 
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In this section we apply the three appearance-based face recognition methods described 

in sections 4.2, 4.3 and 4.4, to a common test set.  We pre-process the images prior to 

training and testing using one of the image processing techniques described in section 

4.5 and compare the resulting error rates with those produced by using no pre-

processing. 

We conduct experiments using a database of 960 bitmap images of 120 individuals (60 

male, 60 female) of various race and age, extracted from the AR Face Database 

provided by Martinez and Benavente [ 39 ].  The database is separated into two disjoint 

sets: i) The training set, containing 240 images of 60 people under a range of lighting 

conditions and facial expressions; ii) the test set containing 720 images (60 people of 

various gender, race and age, 12 images each).  The six examples shown in Table 4-2 

were repeated on two days, making up the 12 images of each subject in the test set. All 

the images are pre-aligned with the centres of the eyes 25 pixels apart.  Each image is 

cropped to a width and height of 65 and 82 pixels respectively. 

Lighting Natural Left Right Both Natural Natural 

Expression Neutral Neutral Neutral Neutral Happy Angry 

Example 
 

      

Table 4-2.  Image capture conditions included in the database test set. 

4.6.1 Test Procedure 

Effectiveness of the face recognition methods is evaluated using error rate curves (FRR 

against FAR) for the verification operation.  The 720 images in the test set are compared 

with every other image using one of the face recognition methods, producing a distance 

value for each comparison.  No image is compared with itself and each pair is compared 

only once (the relationship is symmetric).  A threshold is applied in order to derive the 

rejection/acceptance decision.  Hence, each FRR (percentage of incorrect rejections), 

and FAR (percentage of incorrect acceptances) pair is calculated from 258,840 

verification operations.  By varying the threshold we produce a set of FRR FAR plots, 
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forming the error rate curve, as shown in Figure 4-49.  We then take the EER (point at 

which FRR equals FAR) as a single comparative value. 

 

 

Figure 4-49 Error Rates of face recognition methods using the best performing image pre-

processing techniques 

Having tested the full range of image pre-processing techniques, we present the EERs in 

Figure 4-50, identifying the best performing image processing techniques for each of 

the three face recognition methods.  Both the direct correlation and eigenface methods 

perform best when used with intensity normalisation, achieving an EER of 18.0% and 

20.4% respectively.  The Fisherface method achieves the lowest EER of 17.8%, when 

used with the “slbc” pre-processing technique. 

We also see that only a slight improvement is gained by the Fisherface method, from 

20.1% to 17.8% EER, whereas direct correlation has a much more significant 

improvement, from 25.1% down to 18.0%.  In fact, when using the best image pre-

processing technique the Fisherface method is only marginally better than direct 

correlation, although it still maintains the advantage of a reduced processing time, due 

to the shorter length of the projected image vectors. 
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Figure 4-50  Equal Error Rates of face recognition methods used with a range of image pre-

processing techniques 

4.6.2 Conclusion 

Initial comparison of the baseline systems produced results that are contradictory to 

other experiments carried out on the eigenface and Fisherface methods  [ 27 ].  Further 



Two-dimensional Face Recognition 

- Page 110055  -- 

investigation identified that the training set used for the Fisherface method did not 

include sufficient examples of all conditions represented in the test data.  In order for 

the Fisherface method to perform recognition effectively, it is vital that the training set 

is an adequate representation of the real application data.  If such training data is not 

available, or the real world image capture conditions cannot be predicted, the eigenface 

and direct correlation methods are a better alternative.  However, providing a suitable 

training set is available, the Fisherface method has significantly lower error rates 

(20.1%) than both the eigenface (25.5%) and direct correlation methods (25.1%), which 

are comparable in terms of recognition accuracy. 

Both methods have a space and time complexity of the same order, O(ni), where n is the 

dimensionality of the face key data (or pixels in the image) and i the number of images 

stored for comparison. However, with image vectors of 5330 elements (n), the 

processing time and storage requirements of the direct correlation method are 

significantly higher than the eigenface method, which uses vectors of only 59 elements.  

Although the eigenface method has the additional training time of PCA, O(Mn2+n3), 

where M is the number of items in the training set and n the dimensionality (pixels) of 

the face images, the increased complexity at training is usually preferred over the 

increased recognition time. 

We have shown that the use of image pre-processing is able to significantly improve all 

three methods of face recognition, reducing the EER of the eigenface, Fisherface and 

direct correlation methods by 2.3, 5.1 and 7.1 percentage points respectively.  However, 

it has also become apparent that different image pre-processing techniques affect each 

method of face recognition differently.  Although some image processing techniques are 

typically detrimental (blurring, smoothing, hue representations and comprehensive 

normalisation) and others are generally beneficial (slbc, sharpen, detail, edge enhance) 

to recognition, there are also techniques that will decrease error rates for some methods 

while increasing error rates for others.  The most prominent example of this is intensity 

normalisation, which is evidently the best technique for both direct correlation and 

eigenface methods, yet increases the EER for the Fisherface method. 

This result suggests that although intensity normalisation is able to improve system 

performance (supposedly by normalising lighting conditions), the LDA applied in the 

Fisherface method is able to make better use of the non-normalised data.  Therefore, it 

must either be the case the intensity normalisation removes information that is useful for 
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recognition (and utilised by the Fisherface method) or that the Fisherface method is able 

to compensate for lighting variation more effectively than the intensity normalisation 

algorithm. 

Taking the best image pre-processing technique shows that the Fisherface method has 

the lowest EER (17.8%), yet its lead over the other two methods is considerably 

reduced.  In this case, although much more computationally efficient, it is only 

marginally better than direct correlation (EER 18.0%), but still maintains a significant 

improvement over the eigenface method (EER 20.4%). 

Further experimentation is required in order to identify which specific features are 

enhanced by which pre-processing method and in what circumstances a given pre-

processing method is most effective.  In addition, it may be the case that using a 

different number of principal components will reduce error rates further, but this may 

also be dependent on the pre-processing method used. 
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Despite significant advances in face recognition technology, it has yet to achieve the 

levels of accuracy required for many commercial and industrial applications.  This is 

mainly due to the inaccuracies caused by the environmental circumstances under which 

images are captured.  Variation in lighting, facial expression and orientation all 

significantly increase error rates, making it necessary to maintain consistent conditions 

between query and gallery images for the system to function adequately.  However, this 

approach eliminates some of the key advantages offered by face recognition: a passive 

biometric in the sense that it does not require subject co-operation.  

The use of 3D face models is motivated by a number of factors.  Firstly, by relying 

purely on geometric shape, rather than colour and texture information, we render the 

system invariant to lighting conditions.  Secondly, the ability to rotate a facial structure 

in 3D space, allowing for compensation of variations in pose, aids those methods 

requiring alignment prior to recognition.  Finally, the additional discriminatory depth 

information in the facial surface structure, not available from two-dimensional images, 

provides supplementary cues for recognition.  As an example, eye separation can be 

recovered from both sets of data, but nose depth can only easily be recovered from 3D 

data. We do recognise however, that two-dimensional colour-texture information 

provides a rich source of discriminatory information, which is forfeit if 3D data alone is 

used.  Therefore, the focus here is to first determine the ability of 3D data alone to form 

the basis of a face recognition system, as compared to 2D systems.  Additional research 

can then identify methods of reintroducing normalised two-dimensional texture data in 

order to reduce error rates further (see chapter 7.4). 

We investigate the use of facial surface data, taken from 3D face models, as a substitute 

for the more familiar two-dimensional images.  In section 5.1 and 5.2 we discuss the 3D 

face models used in systems development and how we achieve model alignment prior to 

analysis and recognition.  We then begin to explore 3D face recognition as we began 

with 2D systems in section 4, using the simplest of recognition approaches: the direct 

correlation method.  In section 5.5 we continue the research pattern applied to 2D face 

recognition, by taking the well-known eigenface method of face recognition, introduced 
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by Turk and Pentland [ 48 ] and adapt it for use on 3D data.  Testing a range of surface 

representations and distance metrics, we identify the most effective methods of 

recognising faces using 3D surface structure.  This experimentation is then extended to 

use Linear Discriminant Analysis in section 5.6, before introducing a completely novel 

approach (section 5.7), as a product of the experience gained from application of the 

previous methodologies. 

55..11  33DD  FFaaccee  MM ooddeellss  

In order to evaluate and experiment with methods of 3D face recognition, we require a 

large database of 3D face models.  However, until recently, 3D capture methods have 

been slow and cumbersome, requiring the subject to remain perfectly still.  For these 

reasons, 3D face recognition has remained relatively unexplored, when compared to the 

wealth of research focusing on two-dimensional face recognition.  Although some 

investigations have experimented with 3D data, [ 3 ] [ 4 ][ 5 ][ 6 ][ 7 ][ 8 ]   they have 

had to rely on small test sets of 3D face models or used generic face models to enhance 

two-dimensional images prior to recognition  [ 9 ][ 10 ][ 11 ].  However, this research 

demonstrates that the use of 3D information has the potential to improve face 

recognition well beyond the current state of the art.  With the emergence of new 3D 

capture equipment, the population of a large 3D face database has now become viable.  

Therefore, we have undertaken a project at The University of York to provide a database 

of over five thousand 3D face models to facilitate research into 3D face recognition 

technology [ 50 ].  The following section contains extracts from the requirement 

specification used for acquisition of the 3D face database. 

5.1.1 Data Acquisition 

In this section we discuss the specifications of a database of 3D face models, intended 

for use by Cybula Ltd, The University of York Computer Science, Electronics and 

Psychology Departments. The University of York 3D Face Database (UOY3DFD) will 

be used to facilitate research into such fields as automated face recognition, facial image 

encoding and human facial perception.  All data collected will be owned and managed 

by Cybula Ltd. and made freely available to the other participants (mentioned above) for 

academic research.  It is intended that other researchers and companies will also be 

granted access to the data for free or otherwise, if agreed by Cybula Ltd. 
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Multiple 3D models of each person are captured and stored in the Wavefront OBJ file 

format [ 63 ] while corresponding texture images are stored in the bitmap file format.  

The database is separated into two disjoint subsets: 

• Set A is included to provide fast and efficient database population, 

incorporating only the 15 most desired capture conditions. 

• Set B is intended to provide some flexibility to the data acquisition 

procedure.  It has the option of containing a fewer or greater number of 

models per person.  This allows for more in-depth investigations or 

capture sessions that may arise at exhibitions and conferences, where we 

would be unable to capture all the models required in Set A, but could 

take the opportunity to capture just a couple of models per person. 

Software was written to facilitate a highly automated acquisition procedure for data Set 

A.  This software provides an electronic form to be filled out prior to each subject model 

set acquisition.  The information gathered is stored in a text file alongside each 3D 

model and corresponding texture image.  Face models are captured in a specific order 

(following a predetermined script of capture conditions), as prompted by the acquisition 

software.  A consent agreement form was signed by each subject, prior to any image 

acquisition.  Files are automatically named and stored according to the criteria described 

in Appendix I and II.  The following information is stored about each subject: 

• Gender 

• Ethnicity 

• Date of birth 

• Age 

• External features present 

• Whether or not permission has been given by the subject to reproduce 

their image in publications. 

5.1.2   Capture Conditions 

The database represents a range of age, gender, race and external features under a range 

of controlled capture conditions, accepting the following limitations: 
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• The majority of subjects will be within the 18 to 60 years age range. 

• We aim for an equal number of male and female subjects, although in the 

interest of data quantity, some majority will be acceptable. 

• For diversity of race we will initially rely on the diversity of the natural 

population.  However, should it be decided that a suitable representation 

has not been obtained additional capture sessions will be undertaken. 

• To capture 3D models of subjects with beards, glasses and other external 

features, we will rely on the diversity of natural population and presence 

of these features will be recorded in the database. 

• No effort will be made to control lighting conditions other than ensuring 

that lighting levels are within the operating capabilities of the 3D camera. 

In order to generate face models at various head orientations, subjects were asked to 

face reference points positioned roughly 45° above, below, to the left and right of the 

camera, but no effort was made to enforce a precise angle of orientation. 

Data Set A 

Standard data set.  Specified to encourage consistency of useful capture conditions. 

Limited number of conditions to reduce capture time and increase throughput. 

ID Description 

01 Front facing, neutral expression, optimum distance from camera (1.7m 

from unit to nose tip) 

02 Neutral expression, (whole body) facing roughly 45 degrees left 

03 Neutral expression, (whole body) left side profile (90 degrees left) 

04 Neutral expression, (whole body) facing roughly 45 degrees right. 

05 Neutral expression, (whole body) right side profile (90 degrees right) 

06 Neutral expression, facing roughly 45 degrees up. 

07 Neutral expression, facing roughly 45 degrees down. 

08 Front facing, smiling. 
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09 Front facing, eyes closed. 

10 Front facing, angry expression. 

11 Front facing, neutral expression. 

12 Front facing, eyebrows raised. 

13 Front facing, mouth slightly parted. 

14 Front facing, neutral expression, no glasses. 

15 Front facing, neutral expression, no glasses, further away from the 

camera (1.9m from unit to nose tip). 

Table 5-1  All image capture conditions included in the UOY 3D Face Database. 

 

Data Set B 

Flexible data set.  Specified to allow a broader range of capture conditions or data 

acquisition sessions with very limited time and resources. 

Set B is comprised of any conditions described in Set A.  At least two models of each 

person must be captured, but there is no limit on the maximum number of models per 

person.  In addition to the conditions described in Set A, additional conditions may be 

included, in which case the condition details are recorded. 

Table 5-2  Definition of data set B of the UOY 3D Face Database. 

5.1.3   3D Face Data 

In this section we now discuss the nature of the 3D face models being used in these 

experiments.  We describe the 3D-face model structure, multiple representations and 

limitations in terms of resolution, noise and precision. 



Three-Dimensional Face Recognition 

 

- Page 111122  -- 

  

Figure 5-1  3D Camera and example 3D face data formats 

The 3D models are generated in sub-second processing time from a single shot with a 

3D camera, provided by Cybula Ltd., which operates on the basis of stereo disparity of a 

high-density projected light pattern.  The unit consists of two monochrome progressive 

scan cameras, from which greyscale images are captured and used to produce a 3D point 

cloud of the facial surface.  A third camera is used to capture texture information in the 

form of a greyscale bitmap image, which is subsequently mapped onto the model 

surface, as seen in Figure 5-1 (bottom right).  Once all three cameras are permanently 

fixed into position, a calibration operation is performed to determine the relative angles 

of the three cameras.  Corresponding points on each of the two greyscale images are 

found, allowing the position in 3D space to be calculated using triangulation.  Each 

point in 3D space is also associated with a pixel in the colour texture image.  The 3D 

facial surfaces are generated and output in the Wavefront OBJ file format. 

In its simplest form, the 3D face model is merely a set of points in 3D space, with each 

point lying on some object surface visible in both of the stereo images.  This means that 

the point cloud actually describes the nearest surface to the 3D camera.  Any areas that 

are occluded from either of the cameras or projector will result in gaps in the point 

cloud, as can be seen in Figure 5-2 around the nostril and ear regions. 
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Figure 5-2 Example point cloud of 3D face model 

In addition to this point cloud data the OBJ file format also includes polygon 

information.  Each polygon is defined as a reference to three neighbouring points (or 

vertices), hence describing a 3D triangular faceted face.  This data allows for production 

of smooth polygon visualisations (and ultimately full texture mapping) as well as wire-

mesh representations, which become useful for navigating between locally connected 

vertices in surface processing techniques. 

It is likely that the resolution of these 3D models is to have a significant effect on the 

performance of a 3D face recognition system, due to the level of detail represented in 

model.  However, the resolution of such 3D models cannot be stated as a simple value as 

with 2D images and it is important to consider some of the factors that effect 3D point 

cloud resolution.  Firstly, there is no simple relationship between the resolution of the 

stereo images and that of the point cloud.  Rather, the stereo image resolution affects the 

precision of each point in the point cloud.  It is not unless the stereo image resolution is 

increased sufficiently to expose additional features, that we introduce additional points 

to the 3D surface and hence increase the resolution.  Therefore, it would seem that we 

are really interested in the point cloud density and its influence on recognition accuracy.  

However, using this measurement also has its problems.  Firstly, the point density is not 

uniform across the 3D surface: it is dependent on the number of features detected in 

each area and the surface orientation relative to the camera (in Figure 5-2 we see a much 

lower density down the side of the nose than on the cheek areas).  If we consider the 

average point density over the entire model, this figure can be greatly influenced by 

gaps due to nostrils, open mouths and glasses or additional surface areas such as the 
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shoulders, chest and neck.  Therefore, we define the resolution of a face model simply in 

terms of the number of points on the surface of the face.  This typically numbers in the 

five thousand to six thousand range, but should only be taken as a general guide to point 

resolution. 

In these investigations we use the University of York 3D Face Database, recently made 

available as part of an ongoing project to provide a database of 3D face models [ 50 ].  

As stated in section 5.1.2, the standard data set contains fifteen capture conditions per 

person, examples of which can be seen in Figure 5-3.  The University of York 3D Face 

Database now consists of over 5000 models of over 350 people, making it the largest 3D 

face database currently available, although the Face Recognition Grand Challenge [ 2 ] 

has announced the imminent release of a 3D face database and the Max Planck Institute 

also provides a smaller database of high resolution 3D face models. 

 

Figure 5-3  All capture conditions collected in the UOY 3D Face Database. 
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The research described in this thesis has been conducted as an ongoing series of sub-

projects running alongside the data collection efforts for the University of York 3D Face 

Database.  Because of this parallel progress, not all of the face data was available at the 

beginning of the research and therefore different training and test sets have been used in 

some of the experimentation.  In particular, the earlier experiments were conducted 

using a smaller test set.  Although these experiments can be compared on a qualitative 

basis, it does not provide the direct comparison necessary for a rigorous quantitative 

scientific evaluation.  Therefore, we address this issue in chapter 8, by performing a 

final evaluation which compares the face recognition systems when applied to a 

consistent set of test data. 

55..22      OOrr iieennttaatt iioonn  NNoorr mmaall iissaatt iioonn  

As discussed earlier, 3D face recognition has the potential to compensate for variations 

in head orientation from one face model acquisition to another.  Unlike 2D images, 3D 

face models can be rotated in 3D space, such that two facial surfaces become aligned 

prior to recognition.  Just as a 2D face recognition system could be made invariant to 

scale and rotation around the z-axis by aligning two points on the face image, a 3D 

system becomes invariant to scale and all directions of rotation by aligning three points 

on the facial surface.  However, for this to be successful, we must be able to consistently 

localise these three points regardless of the orientation of the face at the time of capture.  

This has proven to be a particularly difficult task worthy of further study as a separate 

project and therefore we do not concentrate on the development of this process in any 

great detail, choosing to focus on the recognition algorithm applied post-alignment.  

However, rather than ignore the topic completely, we have developed a reasonably 

robust 3D face model alignment algorithm, which functions adequately, given the 

following assumptions: 

• The tip of the nose is visible. 

• The nose tip is the most protruding object on the 3D surface. 

• The face is within 45 degrees of a front facing pose. 

We apply the 3D orientation normalisation algorithm in a similar manner to the 2D 

image alignment used in 2D face recognition systems.  After localising facial landmarks, 



Three-Dimensional Face Recognition 

 

- Page 111166  -- 

we translate and rotate all face models into a front-facing orientation prior to any 

training, enrolment, and verification and identification procedures.  In 2D systems, 

localising the eye centres allows for image alignment.  In terms of colour and texture, 

the eyes are well-defined, unique areas of the face with precise and easily detected 

centres (the pupils), but with the absence of texture information (when using purely 

geometric information) this is not the case.  As seen in Figure 5-4, when texture 

information is not available, pinpointing the centre of the eyes is particularly difficult, 

even for the human vision system. 

 

Figure 5-4 - 3D facial surface data viewed with and without texture mapping. 

Theory suggests that we require a minimum of three points on the facial surface to align 

a 3D model.  However, we are faced with the problem that there are few facial 

landmarks that are easily detected to a high degree of precision when using surface 

shape alone.  Therefore, we have developed an algorithm that uses many more points, 

creating a more robust solution, relying on multiple redundancy and majority voting.  

The algorithm consists of four stages, which we now describe, in detail. 

5.2.1 Nose Tip Localisation 

Perhaps the most easily located facial feature is the nose tip, and it is for this reason that 

we begin orientation normalisation by locating this feature.  Once it has been located, 

we can then use a-priori knowledge of local face shape to search for additional features.  

However, before locating the nose tip, we can gain some advantage by removing regions 

of the 3D surface that are unlikely to contain the nose.  By assuming that the head is not 

rotated more than 45 degrees from a vertical alignment about the z-axis, we use a simple 

method of cropping the upper and lower regions of the 3D surface: removing the 
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forehead and chin regions.  This is done by forming two horizontal cylinders of radius P 

and Q, centred about the uppermost vertex on the 3D model as shown in Figure 5-5.  

Any vertex falling within the smaller cylinder (radius P) is assumed to be part of the 

forehead, where as all vertices falling outside the larger cylinder (radius Q), are 

attributed to the chin, shoulders and neck.  The radii P and Q are adjusted to 

accommodate various head sizes, rotation about the z-axis and the presence of 

headwear.  Note that we do not crop regions to the left and right of the surface.  This is 

to prevent cropping the nose, should the head be rotated about the y-axis to face left or 

right. 

 

Figure 5-5  3D face cropping 

Once the search space has been limited to the mid-region of the 3D surface we can begin 

locating the nose tip.  The approach we take is to identify the most protruding point on 

the surface.  If the head is in a fronto-parallel orientation, the nose can be identified as 

the most forward vertex (the vertex with the smallest z coordinate).  However, as we 

don’t know which way the subject will be facing, we must iteratively rotate the surface 

about the x and y axis, identifying the most forward vertex on each iteration.  Providing 

each increment in rotation angle is sufficiently small, the result is that the nose tip has 

the smallest z coordinate on more occasions than any other vertex. 
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Centre of rotation = mean vertex 

For x-rotation from –45 to 45, step 5: 

 For y rotation from –45 to 45 step 5: 

   Flag most forward vertex 

Nose tip = vertex with most flags 

 

Figure 5-6  Nose tip localisation algorithm. 

Having located the nose tip, we translate the 3D surface such that the nose tip is located 

at the origin of the coordinate space.  Thus normalising the x, y and z position of the 

face in 3D space. 

5.2.2 Roll Correction 

The next stage is to locate the bridge of the nose.  Having already localised the nose tip 

and assuming the head is within 45 degrees of a vertical orientation, this becomes a 

relatively simple procedure.  We search for the most forward vertices within a 90-degree 

arc of concentric radii above the nose tip, as shown in Figure 5-7 left.  This provides a 

set of points (one on each radii) along the bridge of the nose, from which we take the 

least squares line of best fit as a vector indicating the nose bridge direction.  We then 

rotate the 3D model about the z-axis, such that the nose bridge vector becomes vertical 

in x-y plane, thus normalising rotation about the z-axis. 

 

Figure 5-7 3D orientation normalisation about the z-axis 
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5.2.3 Tilt Correction 

Initially, one may suggest that the bridge of the nose could also be used to normalise 

rotation about the x-axis (by ensuring that a point on the noise bridge is located directly 

above the nose tip.  However, we have found this method to produce imprecise 

alignment, as just a small mis-localisation along the nose bridge can result in large 

discrepancies in the degree of corrective rotation applied.  A much more suitable point 

to use in normalising tilt about the x-axis would be located on the forehead, due to the 

relatively flat surface structure (and hence little impact through mis-location).  

Therefore, the next step is to locate a point on the facial surface intersecting with the 

plane x = 0, at a distance F (typically 90mm) from the nose tip. 

 

Figure 5-8  3D orientation normalisation about the x-axis 

Rotating the 3D model, such that this point on the forehead is directly above the nose 

tip, normalises orientation about the x-axis. 

5.2.4 Pan Correction 

The final step in the alignment procedure is to correct head turn, by rotating about the y-

axis.  This is done by locating points of intersection between the facial surface, an 

arbitrary horizontal plane and a vertical cylinder, centred about the nose tip.  For a given 

horizontal plane and cylinder of radius W there will be two points of intersection: one on 

the left side of the face and one on the right, as shown in Figure 5-9 (left).  By adjusting 
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the y-coordinate of the horizontal plane, we produce a set of intersection point pairs on 

the facial surface (Figure 5-9, right). 

 

Figure 5-9  3D orientation normalisation about the y-axis 

To achieve a fronto-parallel alignment, the left and right points of each pair should have 

the same z-coordinates.  We calculate the required angle of rotation about the y-axis to 

achieve this balance and then repeat the calculation for a set of even spaced horizontal 

planes.  If no point of intersection exists (due to an incomplete 3D surface), then that 

horizontal plane is ignored.  If few point pairs are detected then the radius of the 

cylinder can be adjusted and the process repeated.  This is often necessary if the head is 

particularly small (i.e. a child’s head), meaning that the face is wholly contained within 

the cylinder. 

The final degree of rotation (about the y-axis) is calculated as the average of all 

corrective angles for the point pairs.  This averaging method helps to compensate for 

noise, facial distortion (due to expression) or small non-face protrusions (headwear). 

5.2.5 Fine Tuning and Back-Checking 

Certain steps in the orientation normalisation procedure are dependant on the initial 

angle of the head and it was found that repeating the process can result in a different 

final orientation.  Experimentation has shown that the nearer the initial angle to a fronto-

parallel orientation, the more successful the orientation procedure is likely to be.  
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However, even if a successful alignment is not initially achieved, repeating the process 

will usually improve the angle towards a more fronto-parallel orientation.  This raises 

the question of how to test for a correct alignment.  Our chosen method is to compare 

the depth map of an aligned 3D surface with the average face depth map.  If the sum of 

the square difference exceeds a given threshold, then the orientation normalisation 

procedure can be repeated. 

This method was chosen due to the quick and easy implementation and it is likely that 

with a little more thought a much more robust method could be produced.  One such 

method could be to project the aligned face depth map into surface space (see section 

4.1) and then compute the residual error, as described by Turk and Pentland [ 48 ].  This 

would help with facial surfaces that may be substantially different from the average 

face, yet still be face-shaped (and therefore represented in surface space).  Another 

orientation method may incorporate some of the IRAD techniques described in section 

5.7, in which all three rotations are effectively detected simultaneously. 
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55..33  33DD  SSuurr ffaaccee  RReepprr eesseennttaatt iioonnss  

In this section we describe the various representations of 3D surfaces used throughout 

this thesis.  We begin with a description of how depth maps are generated from the 3D 

face models in section 5.3.1, before discussing the pre-processing techniques used to 

generated other surface representations in section 5.3.2. 

5.3.1 Depth Map Generation 

3D surfaces can be stored in a variety of formats, including point clouds, meshes, 

polygons, curve-splines etc., but it is the depth map representation that we choose as our 

standard format for storage and processing.  This is mainly due to its implementation as 

a one-dimensional array, to which we can directly apply the direct correlation, PCA and 

LDA algorithms used in the two-dimensional systems.  Hence allowing a direct 

comparison of the two approaches with little adaptation of the algorithms themselves.  

In addition, the depth map representation can be conveniently stored as a greyscale 

bitmap image, allowing for thumbnail browsing, cropping, scaling and filtering using 

standard graphics packages and image processing libraries. 

Prior to depth map generation it is often necessary to perform some form of smoothing 

and noise reduction on the original 3D face model.  A slight ripple effect is often 

witnessed due to small inaccuracies in computation of point depth and areas of specula 

reflection can result in spikes and pits.  Such anomalies are easily removed using a two-

pass noise reduction procedure: 

 

For each vertex in point cloud: 

   spike = maximum difference in depth to neighbour ing vertices 

   If absolute(spike) > N: 

       New vertex depth = average depth of neighbou ring vertices 

For each vertex in point cloud: 

   New vertex depth = weighted average depth of nei ghbouring  

   vertices, where weighting is inversely proportio nal to  

   distance in the xy plane. 

 

Figure 5-10  3D face model smoothing algorithm  
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After smoothing, conversion from the OBJ file format into a depth map is a relatively 

simple procedure that we now describe in detail. 

 

Orientate 3D model 

Scale 3D model 

Translate 3D model (0.5*width, 0.5*height, 0) 

For each vertex in point cloud: 

 X, y, z = coordinates of vertex 

 If x>=0 and x < width and y>= 0 and y < height: 

 index = width*int(y) + int(x) 

  Depth[index] += z 

 Count[index]++ 

For index =0 to length(depth): 

  Depth[index] /= count[index] 

Interpolate missing depth values 

 

Figure 5-11  OBJ to depth map conversion routine. 

We begin by performing orientation normalisation, such that the 3D face model is facing 

forwards and centred about the origin (see section 5.2) and scaled by a fixed pre-defined 

value, such that the horizontal and vertical distances between vertices is approximately 

one unit.  We then translate the model to centre in the middle of the depth map area.  For 

each vertex in the point cloud we then use the x and y components of the coordinates to 

determine the index of the depth map array, before assigning the z coordinate as the 

depth value.  If multiple vertices should fall within the same array index, the final depth 

value is calculated as an average.  The initial scaling should have meant that few gaps 

are produced in the depth map array, but to ensure a smooth and complete surface we 

then interpolate any missing depth values.  However, we do not interpolate across large 

holes (such as may be caused by glasses, open mouths or other occlusions) or beyond 

the outer edges of the facial surface. 
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Figure 5-12  Original 3D face model (left two), orientation normalised 3D face model and depth 

map representation (right two). 

5.3.2 3D Surface Processing 

It is well known that the use of image processing techniques can significantly reduce 

error rates of pattern matching applications for two-dimensional images by removing 

unwanted effects caused by environmental capture conditions, as demonstrated in 

sections 4.3.3 and 4.6 experimenting with two-dimensional face recognition methods 

(published in [ 14 ][ 15 ]).  Much of this environmental influence is not present in the 

3D face models, but pre-processing may still aid recognition by making distinguishing 

features explicit and/or reducing noise content as shown in section 5.5 and 5.6 

(published in [ 16 ]).  In this section we discuss the pre-processing techniques used to 

produce alternative representations of the 3D surface structure.  These methods are 

applied to depth map images prior to any further analysis in either the training or test 

procedures.  Typically, pre-processing algorithms are applied to training and test sets as 

a batch process and the resulting images stored on disk, ready for eigenvector analysis 

or face space projection later, such that a separate surface space is generated for each 

surface representation and hence creates a separate face recognition system.  We test a 

number of surface representations throughout the experiments described in this thesis, 

for which results can be found in sections 5.4, 5.5.3, 5.6.2 and the final evaluation in 

section 8.  Below, we describe the variety of surface representations, derived from 

aligned 3D face models. 
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Depth map 

The depth map is generated using the procedure 

described in section 5.3.1 and is used as the standard 

image from which all other surface representations are 

derived.  This representation is highly susceptible to 

small translations and rotations in all directions. 

 

 

Horizontal Gradient 

Applies the 2x1 kernel to compute the horizontal 

derivative describing the change in depth with respect 

to the x-axis.  The resultant gradient map is invariant 

to translations along the z-axis and therefore also more 

stable with regard to small rotations about the x-axis.  

However, the small kernel size means surface noise is 

amplified. 

 

 

 

Vertical Gradient 

Applies the 1x2 kernel to compute the vertical 

derivative describing the change in depth with respect 

to the y-axis.  Like the horizontal gradient it is 

invariant to translations along the z-axis, but still 

susceptible to noise. 

 

 

Horizontal Gradient Large 

To create this representation we apply a similar kernel 

to that of the horizontal gradient representation, but 

calculating the change in depth over a greater 

horizontal distance.  Using a larger kernel size reduces 

the filters susceptibility to small amounts of noise, yet 

maintains the other advantages of gradient features. 
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Vertical Gradient Large  

Another version of the vertical gradient, using a larger 

1x4 kernel to reduce the influence of noise. 

 

 

Laplacian  

An isotropic measure of the second spatial derivative, 

calculating the depth change with respect to the x y 

plane.  This surface representation is invariant to 

translation along the z-axis and may also offer 

improved stability regarding small rotations about the 

z-axis, as it is less reliant on the vertical and horizontal 

direction.  However, this representation is likely to 

significantly amplify the surface noise, creating a 

highly speckled texture. 

 

 

Sobel X 

Application of the horizontal Sobel derivative filter, 

calculating the horizontal gradient with the added 

benefit of local reinforcement, producing a much 

smoother (and potentially more robust) gradient map. 
 

 

Sobel Y  

Application of the vertical Sobel derivative filter, with 

similar advantages to the other gradient 

representations, plus greatly reduced noise.  

 

Sobel Magnitude  

The magnitude of Sobel X and Y combined, creating 

an absolute measure of gradient magnitude with no 

directional bias.  
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Horizontal Curvature 

Applies the Sobel X kernel twice to calculate the 

second horizontal derivative, creating a curvature map 

of the 3D surface with respect to the x-axis.  Any noise 

present on the surface will have been amplified by 

each application on the Sobel X filter, meaning this 

representation will have a high noise content. 

 

 

Vertical Curvature 

Applies the Sobel Y kernel twice to calculate the 

second vertical derivative, creating a curvature map of 

the 3D surface with respect to the y-axis.  Again, this 

representation will have a high noise content, due to 

the cascaded noise amplification. 

 

 

Curvature Magnitude 

The magnitude of the vertical and horizontal curvature 

values, providing an absolute measure of curvature 

magnitude with no directional bias.  

 

Curve Type 

Segmentation of the surface into the eight discreet 

curvature types: peak, ridge, saddle ridge, minimal, 

pit, valley, saddle valley and flat.  

 

Min Curvature  

The minimum value of the horizontal & vertical 

curvature maps.  This representation can be thought of 

as a measure of surface convexity:  the more convex 

the surface point the darker the pixel. 
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Max Curvature 

The maximum value of horizontal & vertical curvature 

maps.  Hence, creating a representation of the surface 

concavity: the more concave the surface point, the 

brighter the image pixel. 

 

 

Abs Min Curvature 

The minimum value of the absolute horizontal & 

absolute vertical curvatures.  The resulting 

representation highlights those areas that are highly 

curved with respect to both the x-axis and y-axis. 

 

 

Abs Max Curvature 

The maximum value of the absolute horizontal & 

absolute vertical curvatures.  The resulting 

representation provides an indication of the magnitude 

of ridge curvature in either the horizontal or vertical 

directions. 

 

 

Table 5-3  3D face surface representations 
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55..44  DDii rr eecctt   CCoorr rr eellaatt iioonn  

The direct correlation approach is applied to 3D images (in the form of depth maps) as 

for two-dimensional images: a simple direct comparison of the query and target images, 

producing a difference value.  However, in this case rather than using two-dimensional 

intensity images of surface texture, we use 3D depth maps of the facial surface.  Firstly, 

3D face models are orientated to face directly forwards using our orientation 

normalisation algorithm described in section 5.2, before being converted into a depth 

map representation and compared using some distance metric and verified by 

application of a threshold value.  By altering this threshold value we are able to bias the 

system towards either a low FAR (with a high FRR) or a low FRR (with a high FAR).  

We experiment on a database of 290 depth maps, taken from the University of York 3D 

Face Database, consisting of subjects of various race, age and gender with varying pose 

and expression.  No training set is required, as we do not perform any weighting or 

image space analysis.  Instead, this experimentation will provide an indication of the 

effectiveness of a very rudimentary 3D face recognition system in its simplest form: 

direction comparison of facial depth maps.  We also demonstrate how various surface 

representations result in different error rates, while referring the reading to section 5.3 

for a detailed explanation of the various surface representations tested. 
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Figure 5-13  Error rate curves of the best three performing surface representations 

Figure 5-13 above shows the error rate curve for the three best performing surface 

representations.  Surprisingly, out of the seventeen surface representations tested the 

original depth map representation still features in the top three representations.  

Although some improvement is witnessed when derivatives relative to the x-axis of the 

depth map are compared.  Figure 5-14 below shows the EER generated for each surface 

representation using the direct correlation method of three dimensional face recognition.  

It is interesting to note that the majority of representations degrade performance.  This is 

most likely due to the noise amplification side effects of the first and second order 

derivatives. 
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Figure 5-14  Bar chart of the EER for each surface representation 
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55..55  TThhee  EEiiggeennssuurr ffaaccee  AApppprr ooaacchh  

We define surface space by application of PCA to the training set of facial surfaces, 

taking a similar approach to that described by Turk and Pentland [ 48 ].  Consider our 

training set of facial surfaces, stored as orientation normalised 60x105 depth maps, 

represented as vectors of length 6300.  We begin by reducing dimensionality to a 

practical value, while maximising the variance of facial surfaces within the subspace, by 

application of PCA to the training set of M (40) depth maps {
�

1, 
�

2, … 
�

M}, computing 

the covariance matrix, 

 

Equ. 5-1 

Where Φn
 is the difference of the nth depth map from the average ψ.  Eigenvectors and 

eigenvalues of the covariance matrix are calculated using standard linear methods.  The 

resultant eigenvectors describe a set of axes within the depth map space, along which 

most variance occurs and the corresponding eigenvalues represent the degree of this 

variance along each axis.  The M eigenvectors are sorted in order of descending 

eigenvalues and the M`(40) greatest eigenvectors chosen to represent surface space.  We 

term each eigenvector an eigensurface, displayed as range images in Figure 5-15. 

   

Figure 5-15  Average face surface depth map and first seven eigensurfaces 

5.5.1 Verification of Facial Surfaces 

Once surface space has been defined, we project any face into surface space by a simple 

matrix multiplication, using the eigenvectors calculated from covariance matrix C. 

)( Ψ−Γ= T
kk uω  for k = 1…M  ̀. 

Equ. 5-2 
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Where uk is the kth eigenvector and �k is the kth weight in the vector 
�T = [�1, �2, … �M`].  The vector 

�
 is taken as the ‘face-key’ representing a person’s facial structure in 

surface space and is compared by either Euclidean or cosine distance metrics. 

 

Equ. 5-3 

In addition, we can also divide each face-key by the vector of its respective eigenvalues 

λ, prior to distance calculation, removing any inherent dimensional bias and introducing 

two supplementary metrics, the Mahalanobis distance and weighted cosine distance. 

λλ
bad

Ω−Ω=smahalanobi              
λλ

λλ
ba

b
T
a

d ΩΩ

ΩΩ

−= 1wcosine  

Equ. 5-4 

An acceptance (facial surfaces match) or rejection (surfaces do not match) is determined 

by applying a threshold to the calculated distance. 

 

5.5.2 Evaluation Procedure 

For the purpose of these experiments, we will be using a subset of the 3D face database, 

acquired during preliminary data acquisition sessions.  This set consists of 330 models 

taken from 100 people under the ten conditions shown in Figure 5-16. 

 

Figure 5-16.  Face models taken from the UOY 3D face database 
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During capture no effort was made to control lighting conditions.  In order to generate 

face models at various head orientations, subjects were asked to face reference points 

positioned roughly 45° above and below the camera, but no effort was made to enforce a 

precise angle of orientation.   

3D face models are orientated to face directly forwards using our orientation 

normalisation algorithm (see section 5.2) before being converted into depth maps.  The 

database is then separated into two disjoint sets: the training set consisting of 40 depth 

maps (type 1, Figure 5-16) and a test set of the remaining 290 depth maps.  Both sets 

contain subjects of various race, age and gender and nobody is present in both the 

training and test sets. 

In order to evaluate the effectiveness of the face recognition methods, we compare each 

of the 290 surfaces in the test set with every other surface (41,905 verification 

operations).  False acceptance rates (FAR) and false rejection rates (FRR) are calculated 

as the percentage of incorrect acceptances and rejections after applying a threshold.  

Varying the threshold produces a series of FAR, FRR pairs, which plotted on a graph 

produces an error rate curve (Figure 5-17), from which the EER (where FAR equals 

FRR) is taken as a single comparative value. 

5.5.3 Results 

Figure 5-17 presents the results for a 3D face recognition system using the standard 

depth map representation as described in section 5.4.  The error rate curve shows the 

FAR and FRR for a range of threshold values.  The results clearly show that dividing by 

eigenvalues to normalise vector dimensions prior to distance calculations, significantly 

decreases error rates for both Euclidean and cosine distance, with the Mahalanobis 

metric providing the lowest EER for the depth map representation. 
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Figure 5-17. Error rate curves for the base line depth map system. 

Repeating the experiment for each of the surface representations described in section 

5.3, we produce a bar chart of EERs (Figure 5-18), taken as the point where FAR is 

equal to FRR on the error rate curve.  The EERs produced show that surface gradient 

representations provide the most distinguishing information, with horizontal derivatives 

giving the lowest EERs of all, using the weighted cosine distance metric.  In fact, the 

weighted cosine distance returns the lowest EER for the majority of surface 

representations.  However, the most effective surface representation seems to be 

dependent on the distance metric used for comparison. 
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Figure 5-18. EERs of all 3D face recognition systems using a variety of surface representations and 

distance metrics (right) 

5.5.4 Conclusion 

We have shown that a well-known two-dimensional face recognition method, namely 

the eigenface method, can be adapted for use on 3D face models, which we name the 

eigensurface method.  Tests have been carried out on a large database of 3D facial 

surfaces, captured under conditions that present typical difficulties when performing 

recognition.  The error rates produced from the 3D baseline system (19.1% EER using 

Euclidean distance) are notably lower that those gathered in similar experiments using 

two-dimensional images (25.5% EER) [ 15 ].  Although a more direct comparison is 

required, using a common 2D/3D test database, in order to draw any quantitative 

conclusions, initial results suggest that 3D face recognition has distinct advantages over 

conventional two-dimensional approaches. 

Experimenting with a number of surface representations, we have discovered that facial 

surface gradient is more effective for recognition than depth and curvature 

representations.  In particular, horizontal gradients produce the lowest error rates, 

seeming to indicate that horizontal derivatives provide more discriminatory information 

than vertical.  Another advantage is that gradients are likely to be more robust to 

inaccuracies in the alignment procedure, as the derivatives will be invariant to 

translations along the Z-axis. 

Curvature representations do not seem to contain as much discriminatory information as 

other surface representations.  We find this surprising, as second derivatives should be 
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less sensitive to inaccuracies of orientation and translation along the Z-axis.  However, 

this could be a reflection of inadequate 3D model resolution and high noise content. 

Testing four distance metrics has shown that the choice of method for face-key 

comparisons has a considerable affect on resulting error rates.  The Euclidean and cosine 

metrics seem tailored to specific surface representations, suggesting that some create a 

surface space in which between-class deviation is predominantly angular, whereas 

others produce more radial deviation.  It is also evident that dividing each face-key by 

respective eigenvalues, normalising dimensional distribution, usually improves results 

for both Euclidean and cosine distances.  This indicates that the distribution along one 

surface space dimension is not necessarily proportional to its discriminating ability and 

that face-keys become more discriminative when all dimensions are weighted evenly.  

However, this is not the case for some surface representations with higher EERs, 

suggesting that these representations incorporate only a few dominant useful 

components, which become masked when weighted evenly with the majority of less 

discriminatory components. 

Error rates of the best performing 3D eigensurface system (12.7% EER) are 

substantially lower than the best two-dimensional systems (20.4% EER and 17.8% 

EER) tested under similar circumstances in our previous investigations [ 14 ][ 15 ].  

Although we recognise the differences between these experiments (most notably the 

lack of a common 3D/2D test set), the results do show that geometric face structure is 

useful for recognition when used independently from colour and texture and capable of 

achieving high levels of accuracy.  Given that the data capture method produces models 

invariant to lighting conditions and provides the ability to recognise faces regardless of 

pose, makes this system particularly attractive for use in security and surveillance 

applications.  However, more testing is required to identify the limitations of the 

eigensurface method, although one obvious issue is the system’s reliance on accurate 

orientation normalisation.  Improved orientation normalisation techniques would likely 

produce lower error rates or an alternative approach, in which an orientation invariant 

representation was produced (removing the need to normalise orientation) may lead to 

an improved recognition capability, as discussed in section 5.7. 
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55..66  TThhee  FFiisshheerr ssuurr ffaaccee  AApppprr ooaacchh  

Having achieved reasonable success from the PCA-based eigensurface system [ 14 ], we 

now continue this line of research, experimenting with another well-known method of 

face recognition, namely the Fisherface approach as described by Belhumeur et al  [ 27 

], adapted for use on 3D face data.  Testing a range of surface representations and 

distance metrics, we identify the most effective methods of recognising faces using 3D 

surface structure. 

We apply PCA and LDA to surface representations of 3D face models, producing a 

subspace projection matrix, as with Belhumier et al’s Fisherface approach  [ 27 ], taking 

advantage of ‘within-class’ information, minimising variation between multiple face 

models of the same person, yet maintaining high class separation.  To accomplish this 

we use a training set containing several examples of each subject, describing facial 

structure variance (due to influences such as facial expression), from one model to 

another.  From the training set we compute three scatter matrices, representing the 

within-class (SW), between-class (SB) and total (ST) distribution from the average surface �
 and classes averages 

�
n, as shown in Equ. 5-5. 

 

Equ. 5-5 

The training set is partitioned into c classes, such that all surface vectors Γni in a single 

class Xn are of the same person and no person is present in multiple classes.  Calculating 

eigenvectors of the matrix ST, and taking the top 250 (number of surfaces minus number 

of classes) principal components, we produce a projection matrix Upca.  This is then 

used to reduce dimensionality of the within-class and between-class scatter matrices 

(ensuring they are non-singular) before computing the top c-1 eigenvectors of the 

reduced scatter matrix ratio, Ufld, as shown in Equ. 3-2. 
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Equ. 5-6 

Finally, the matrix Uff is calculated, such that it projects a face surface vector into a 

reduced space of c-1 dimensions, in which the ratio of between-class scatter to within-

class scatter is maximised for all c classes.  Like the eigenface system, components of 

the projection matrix Uff can be viewed as images, as shown in Figure 5-19 for the depth 

map surface space. 

 

Figure 5-19  The average surface (left) and first five Fishersurfaces (right) 

Once surface space has been defined, we project a facial surface into reduced surface 

space by a simple matrix multiplication, as shown in Equ. 5-7. 

ff
TU)( Ψ−Γ=Ω  . 

Equ. 5-7 

 

 The vector �T=[�1,�2,…,�c-1] is taken as a ‘face-key’ representing the facial structure 

in reduced dimensionality space.  Face-keys are compared using either Euclidean or 

cosine distance measures as shown in Equ. 5-8. 

 

Equ. 5-8 

An acceptance (facial surfaces match) or rejection (surfaces do not match) is determined 

by applying a threshold to the distance calculated.  Any comparison producing a 

distance value below the threshold is considered an acceptance. 
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5.6.1 Evaluation Procedure 

For the purpose of these experiments we select a sample of 1770 face models (280 

people), from the University of York 3D Face Database (UOY-3DFD) captured under 

the conditions shown in Figure 5-20.  During data acquisition no effort was made to 

control lighting conditions.  In order to generate face models at various head 

orientations, subjects were asked to face reference points positioned roughly 45° above 

and below the camera, but no effort was made to enforce precise orientation. 

 

Figure 5-20  Example face models taken from The University of York 3D face database 

3D models are aligned to face directly forwards before conversion into depth map 

representation.  The database is then separated into two disjoint sets: the training set 

consisting of 300 depth maps (6 depth maps of 50 people) and a test set of the 

remaining 1470 depth maps (230 people), consisting of all capture conditions shown in 

Figure 5-20.  Both the training and test set contain subjects of various race, age and 

gender and nobody is present in both the training and test sets.  The training set of 300 

surfaces is then used to calculate the projection matrices as described in section 5.6. 

In order to evaluate the effectiveness of a surface space, we project and compare the 

1470 face surfaces with every other surface in the test set, no surface is compared with 

itself and each pair is compared only once (1,079,715 verification operations).  The 

false acceptance rate (FAR) and false rejection rate (FRR) are then calculated as the 

percentage of incorrect acceptances and incorrect rejections after applying a threshold.  

Varying the threshold produces a series of FAR FRR pairs, which plotted on a graph 

produce an error curve as seen in Figure 5-23.  The equal error rate (EER, the point at 

which FAR equals FRR) can then be taken as a single comparative value. 
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Figure 5-21  Flow chart of system evaluation procedure 

 

5.6.2 Results 

In this section we present results gathered from performing 1,079,715 verification 

operations on the test set of 1470 face models, using the surface representations 

described in section 3.  Systems are tested separately using Euclidean and cosine 

distance measures.  In addition we provide a direct comparison to the eigensurface 

method [ 16 ] trained and tested using the same face models, distance metrics and the 

same number of (c-1) principal components. 

 

Figure 5-22  EERs of Fishersurface and eigensurface systems using two distance metrics 

Figure 5-22 shows the diversity of error for eigensurface and Fishersurface methods, 

using cosine and Euclidean metrics for the range of surface representations.  The initial 
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depth map produces an EER of 23.3% (Euclidean distance) and 15.3% (cosine 

distance).  This trend is common for all Fishersurface systems, with the cosine distance 

producing significantly less error than the Euclidean distance.  In all cases the EERs of 

the Fisherface system are lower than the equivalent eigensurface method.  Surface 

gradient representations are the most distinguishing, with horizontal derivatives 

providing the lowest error of 11.3% EER.  

 

Figure 5-23  Fishersurface system error curves using two distance metrics and surface 

representations 

5.6.3 Conclusion 

We have applied a well-known method of two-dimensional face recognition, namely the 

Fisherface method, to 3D face models using a variety of facial surface representations, 

which we name the Fishersurface method.  The error rates produced using the initial 

depth map representation (15.3% and 23.3% EER) show a distinct advantage over the 

previously developed eigensurface method (32.2% and 24.5% EER).  This is also the 

case for the best surface representations, producing 11.3% EER for the Fishersurface 

system and 24.5% EER for the eigensurface method.  We also note an increase in the 
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eigensurface EERs compared to those reported in section 5.5 (published in [ 16 ]).  This 

could be attributed to the different training and test data, or possibly the different 

number of principal components used. 

Experimenting with a number of surface representations, we have discovered common 

characteristics between the eigensurface and Fishersurface methods: facial surface 

gradients provide a more effective representation for recognition, with horizontal 

gradients producing the lowest error rate (11.3% EER).  Another observation, also 

common to the eigensurface method is that curvature representations seem to be least 

useful for recognition, although this could be a product of inadequate 3D model 

resolution and high noise content.  In which case smoothing filters and larger 

convolution kernels may produce better results. 

The Fishersurface method appears to produce better results than corresponding two-

dimensional Fisherface systems (17.8% EER) tested under similar conditions in 

previous investigations [ 15 ], although a more direct comparison is required, using a 

common test database, in order to draw any quantitative conclusions. 

Testing two distance measures has shown that the choice of metric has a considerable 

effect on resultant error rates.  For all surface representations, the cosine distance 

produced substantially lower EERs.  This is in stark contrast to the eigensurface 

method, in which Euclidean and cosine measures seem tailored to specific surface 

representations.  This suggests that incorporating LDA produces a surface space with 

predominantly radial between-class variance, regardless of the surface representation, 

whereas when using PCA alone, this relationship is dependant on the type of surface 

representation used. 

In summary, we have managed to reduce error rates from 15.3% EER using initial depth 

maps, to an EER of 11.3% using a horizontal gradient representation.  This 

improvement over the best eigensurface system shows that incorporation of LDA 

improves performance in 3D as well as two-dimensional face recognition approaches.  

Given that the 3D capture method produces face models invariant to lighting conditions 

and provides the ability to recognise faces regardless of pose, this system is particularly 

suited for use in security and surveillance applications. 
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55..77  II RRAADD  FFaaccee  CCoonnttoouurr ss  

In this section we propose a new technique for comparing 3D face models, which is 

distinct from the appearance-based subspace methods discussed throughout the rest of 

this thesis.  This new approach is fuelled by our appreciation that subspace methods 

require accurate alignment prior to recognition and the incentive to obviate this 

requirement. 

The goal was to create a representation of the face, capable of storing both geometric 

shape and colour information, that is invariant to rotation and translation in 3D space, 

requiring as little feature localisation and pre-registration as possible.  In working 

towards this goal we have produced a technique capable of recognising not only faces, 

but any 3D object with at least one easily located feature.  We call this technique the 

Isoradius contours method, and we abbreviated this to the IRAD method. 

The method is most effective when there is a distinctive and easily identified feature on 

the surface of a 3D object that can be localised with high precision.  In the case of the 

human face, one such feature is the tip of the nose.  We have already discussed 

techniques for localising this feature in section 5.2.1 and we use those same procedures 

to detect the required feature for the IRAD contours method.  However, we will not 

require the subsequent steps of locating the nose bridge and forehead or balancing the 

left and right sides of the face (in other words orientation normalisation is not required) 

before performing recognition: the IRAD contours method reduces the orientation 

problem to a simple signal correlation at a later stage in the process. 

Once the nose has been located we produce the IRAD contours.  We define an IRAD 

contour as the intersection of a sphere (radius r, centred at the nose tip), with the facial 

surface.  Hence, an IRAD contour forms a space curve, often in a closed loop on the 3D 

surface for which each point is a distance r from the nose tip.  By altering the radius r of 

the intersecting sphere we are able to produce an IRAD contour passing through any 

point of the object surface.  Therefore, it is possible to represent the entire facial surface 

as a set of IRAD contours, relative to the nose tip.  By selecting several discreet radii, 

we produce a set of IRAD contours from which signals are extracted.  There may be one 

signal from the IRAD contour, for example describing contour shape, or there may be 

many signals, describing shape, texture, colour etc.  
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We discuss the details of generating the IRAD contours in section 5.7.3, before 

describing the recognition component in terms of cross-correlating signal ensembles 

extracted from these contours in section 5.7.5. 

The use of the sphere is an important concept, as the spheres infinite rotational 

symmetry means that the shape of the IRAD contour is independent of surface 

orientation and hence invariant to subject pose.  We are able to perform pose invariant 

recognition, by reducing the alignment search space to a simple one-dimensional cross-

correlation process, with the potential to incorporate both geometric structure as ell as 

colour and texture information.  In addition there is also the potential for overcoming 

the problems associated with facial expression (although this is yet to be tested), which 

we discuss in section 5.7.7. 

IRAD contours are not restricted to object recognition alone, but may also be used in 

the registration process of a 3D object (such as a face) by determining the orientation 

and facilitating alignment procedures prior to other methods of 3D face recognition as 

discussed in this thesis. 

5.7.1 Previous Work 

Many methods of analysing and encoding 3D structure have been presented in the 

literature.  However, relatively little of this research has been applied to the problem of 

face recognition.  Gordon’s work [ 4 ], comprised the localisation of multiple 3D facial 

features, such as the bridge of the nose, eye corners etc. before a comparison is made 

based on the depth and curvature feature space.  Other papers [ 61 ] [ 51 ] also use 3D 

surfaces combined with 2D intensity information, although again these required the 

localisation of multiple features before some form of registration takes place (i.e. image 

alignment and 3D orientation). 

In this thesis we have used 3D model object files consisting of interconnected vertices 

as well as encoding this as normalised surface information in the form of depth maps.  

Beumier and Acheroy [ 3 ] take profile contours as 3D features, Coombes et al [ 32 ] 

extract segments based on curvature classification, whereas Heseltine [ 16 ] [ 17 ] (see 

section 5.5 and 5.6) and Hesher [ 6 ] use principal components of surface shape as 

features.  The IRAD contour approach described here has some similarities to the splash 

representations of Stein and Medioni [ 68 ], in which normal deviation across a small 
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3D surface patch is used for 3D object recognition.  Stein and Medioni liken the surface 

normal representation to the pattern produced by a ‘milk splash’ radiating out from a 

central point of collision, as normals radiate out respective to a central reference normal.  

Stenin and Medioni note that such representations are dependant on accurate 

localisation of the central reference point, in the same way that our IRAD contours 

method required the accurate localisation of the nose tip.  However, the closest related 

work to the our approach is the research carried out by Chua et al [ 8 ], using a 3D point 

signature to recognise human faces.  The concept of point signature was initially 

discussed by Chau and Jarvis [ 31 ], investigating new approaches of recognising 3D 

objects. 

Chua et al produce a point signature for a point p on the 3D surface by intersecting a 

sphere of radius r (centred at point p) to form a curve C.  A plane of best-fit P, is then 

approximated to this curve C, passing through point p.  The signature is extracted as the 

orthogonal distance from plane P to curve C, sampled at regular intervals for the full 

range of 360 degrees about p.  Because C is unlikely to be planar, the orthogonal 

distance varies around the circumference: being positive when C is above the plane and 

negative when below. 

The approach taken by Chua et al varies from the IRAD contours method by two key 

factors: 

• Firstly, Chua et al generate a single signature for a specific point on the 

facial surface.  To perform recognition, many of these points are required 

and hence multiple features must be detected.  In contrast the IRAD 

contours method generates multiple contours relative to a single point on 

the 3D surface. 

• In the point-signature method, the signature is measured according to the 

orthogonal distance from the 3D surface to a best-fit plane.  In contrast, 

the IRAD contours methods extracts a signal describing the surface 

normal variance across the surface contour. 

Chua et al’s method suffers from the problem that any missing or deformed parts of the 

surface can severely disrupt the signature extracted.  This is because each signature is 

measured relative to a best-fit plane passing through the point of interest.  Any noise, 
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such as spikes or holes will effect the orientation of the best-fit plane and hence alter the 

entire signature for that point.  Such an effect will also occur due to changing surface 

shape due to facial expressions and ageing.  In contrast, the signal generated for one 

area of the surface by the IRAD contours method, is not dependant on the surface shape 

of the rest of the face.  For example, the signal extracted across the rigid forehead area 

will remain consistent, despite changes in the signal extracted from the same contour 

across the more malleable mouth and cheek areas. 

5.7.2 The IRAD Contour Representation 

In these investigations we use the University of York 3D face database as described in 

section 5.1.3.  In particular we make use of the wire-mesh representation, in which each 

vertex in the point cloud is connected to a number of neighbouring vertices on the facial 

surface.  We separate IRAD contour signal extraction into three conceptual stages: 

• Nose tip detection. 

• IRAD contour generation. 

• Signal extraction. 

We now discuss the contour generation and signal extraction stages in the sections 

below, while referring the reader to section 5.2.1 for a discussion on localizing the nose 

tip. 

5.7.3 Isoradius Contour Generation 

We define an ‘Isoradius Contour’ (or IRAD for short) as the locus across a 3D surface 

that is at a constant distance from some point of interest (typically the tip of the nose for 

face recognition) on the same 3D surface.  One may think of this locus as the 

intersection of a sphere (radius r, cantered at a point of interest p) with the 3D surface.  

If the surface is planar, then this locus will be a circle in 3D space, also centred about p.  

However, a non-planar surface will generate an irregular contour that meanders across 

the surface at a constant distance r from p. 
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Figure 5-24  Contour generation using the intersection of a sphere on the face surface 

By varying the radius r, we generate a series of concentric contours on the 3D surface, 

as shown in Figure 5-24.  We may select any arbitrary density of IRADs on the surface, 

although a suitable density would be to increment the radius by a similar amount to the 

average inter-point distance in the 3D mesh representation. 

Unless the 3D surface is of sufficiently high density, it is unlikely that many of the 

vertices in the 3D mesh will lie precisely on the surface of the sphere.  Therefore, the 

points along the IRAD are generated according to the facets that straddle the surface of 

the sphere.  For an IRAD of radius r, centred about point p, we generate IRAD points 

along the contour using the algorithm described Figure 5-26. 

 

For each vertex v of the 3D surface: 

 For each neighbouring vertex n: 

  If (|| v – p || < r and || n - p || >= r): 

   Calculate IRAD point as intersecting  

                  vector vn at a distance r from p 

Figure 5-25  IRAD contour generation algorithm. 
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Figure 5-26  Interpolation of contour points between vertices in the original 3D point cloud 

Note that the information as to which points are neighbouring is provided within the 

surface mesh data.  Once these IRAD points are generated it is fairly simple to order the 

points according to their position around the contour by sorting them by the angle 

formed to the vertical axis through p.  However, before a signal can be extracted there 

are a few more practical issues that need addressing. 
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Figure 5-27  Generation of an IRAD contour relative to the nose tip 

Firstly, due to the uneven nature of the 3D mesh the IRAD points will not be evenly 

spaced around the contour, as can be seen in Figure 5-28.  In particular, the points will 

be sparse in areas where the surface is near orthogonal to the viewing plane of the 3D 

capture camera.  This problem can be solved by simply interpolating points around the 

contour at specific increments along the circumference. 

 

Figure 5-28  Irregular contour points interpolated from existing vertex mesh 
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The second issue of concern is that if there are holes in the 3D surface (due to 

occlusions or specular reflection causing problems with the 3D reconstruction 

algorithm) than this can result in a broken IRAD contour.  We have two options for 

dealing with this problem.  We could simply interpolate over the holes, just as we do in 

generating evenly spaced IRAD points or we can maintain a fragmented IRAD contour, 

sections of which must be recognised separately in the comparison stage.  A sensible 

approach is to interpolate over any small holes, whilst allowing the larger holes to break 

the contour, leading to matching fragmented signals as described in section 5.7.6. 

To conclude this section, we have devised a method of generating consistent loci on a 

3D facial surface, relative to the nose tip, which we term IRADs.  The shape and 

location of these surface contours are invariant to rotation and translation in 3D space, 

providing the nose tip can be detected accurately. 

 

 

Figure 5-29  IRAD contours invariant to rotation in 3D space 

 

5.7.4 Signal Extraction 

We now described the signal extraction phase of the IRAD contour method of face 

recognition.  Having generated the IRAD contours in the previous section we have 

identified areas of the 3D surface that can be consistently and accurately located, 

regardless of  the orientation of the 3D facial surface.  What remains is to extract some 

features from these contours that can be used for recognition.  We have two sources of 

information from which to extract these features.  Firstly, there is the shape of the 3D 

surface itself and secondly we have the texture information (in terms of greyscale 
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intensity) of the surface.  Using the intensity information is relatively simple as this is 

an independent scalar value, which can simply be read for each point on the IRAD.  

However, as discussed in previous chapters, in order to maximise one of the key 

advantages of 3D face recognition we must rely on the 3D shape alone (thus making the 

system invariant to lighting conditions).  Therefore, given that incorporation of the 

texture information would be a relatively simple process at a later stage, we now 

concentrate on extracting a signal to represent the surface shape alone. 

Any shape information that we extract from the IRAD contour must be relative to the 

tip of the nose in order to maintain a representation that is invariant to translation and 

reduce the orientation problem to a cross-correlation of a one-dimensional signal.  One 

such feature, which we can measure relative to the contour direction, is the curvature of 

the facial surface.  The curvature of any point on an IRAD contour may be represented 

by the local variance of the surface normal, which can be computed by a simple 

difference operation between the normal of one IRAD point and the next IRAD point 

(or nth point along to measure the variance over a greater distance). 

 

Figure 5-30  Surface normals used as an measurement of contour shape 

Figure 5-30 above shows the normals of the facial surface for each point along the 

IRAD.  A similar IRAD can be seen in the image on the right, represented on the sphere 

defining the IRAD radius, centred about p.  Note that the shape of the contour itself 

could be encoded for recognition, but instead we take the difference between facial 

surface normals (n1 and n2 shown above).  The signal extracted is the cosine of α, as 
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shown in Figure 5-31.  Obviously, the difference between normals cannot be calculated 

over any holes in the surface, rather, such an occurrence is flagged as a break in the 

signal. 

 

 

Figure 5-31  Example signal extracted from an IRAD contour 

Figure 5-31 shows the cosine of angle α for each point along the IRAD of radius 21mm 

from the nose tip.  It can be seen that the signal varies greatly as the normals span the 

nose bridge and tip of the chin (the most curved areas along the contour).  The signal 

generated is dependant on the arc length between IRAD points and by varying the arc 

length between IRAD points we are able to generate signals with quite different 

features, as seen in Figure 5-32 for delta values of 5 and 25. 
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Figure 5-32  Two IRAD contour signals generated from the same contour using different delta 

(step) values 

As alternative (or additional) cues we can also extract any of the following data from 

the IRAD: 

• The contour shape itself encoded as the change in contour direction from 

one IRAD point to the next. 

• The greyscale intensity of each IRAD point. 

• The components of some (possibly normalised) colour space for each 

IRAD point.  

Each of these signals can be used in unison, creating an ensemble of one-dimensional 

signals representing surface shape, contour shape, colour and texture of the 3D face, 

with each value associated with a specific IRAD point. 

The next step is to extract multiple signals to describe a greater area of the 3D facial 

surface.  Each IRAD only describes a single contour across the surface of the face, but 
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by generating multiple IRADs at various radii, we produce a larger ensemble of signals, 

such as those shown in Figure 5-33 for radii of 8, 16, 24 and 48 respectively. 

 

Figure 5-33  An IRAD contour signal ensemble, describing the shape of a 3D face surface 

5.7.5 IRAD Comparison 

In this section, we described how two 3D face models may be compared by correlating 

the IRAD signals extracted from each facial surface.  Figure 5-34 shows three signals 

extracted from an IRAD of radius 21.  The red and black signals are from two different 

models of the same person, whereas the dashed line is an IRAD signal of the same 

radius extracted from a 3D face model of a different person.  Clearly the two different 

people have greatly differing face shapes as can be seen by the different signals in 

Figure 5-34.  It is also clear that there are some small differences in the two signals 

from the same person.  These are likely due to the variations introduced by changes in 

facial expression and perhaps slight variance in the localisation of nose tip.  However, 
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the two signals from the same person correlate to a much higher degree than those from 

different people. 

 

Figure 5-34  Three contour signals generated from different nose tip locations on the same 3D face 

model 

Figure 5-35 shows a number of IRAD signals extracted from the same face model, 

highlighting the effects of varying the detected position of the nose tip and rotating the 

face model in 3D space.  We see that varying the location of the nose tip results in 

minor deformation of the signal shape, whereas rotating the 3D model results in a phase 

shift of the signal along the x-axis. 
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Figure 5-35  Variations in IRAD contour signal due to nose tip locations and rotations in 3D space 

Signal comparison is done by a cross-correlation approach, measuring the correlation of 

any two signals across the full range of phase shifts.  The highest correlation achieved is 

taken as the similarity score for that IRAD signal.  The process of one dimensional 

signal correlation is well documented and it is this process that forms the final stage of 

the matching process.  However, the power of the IRAD method is not in the cross-

correlation itself, but in the method of signal extraction, which reduces the problem of 

translation and orientation in 3D space to a simple one-dimensional shift in the 

correlation process.  What’s more, because we are able to extract numerous signals from 

a 3D model (forming a signal ensemble) we are able to represent colour, texture and 

shape from all areas of the facial surface using the same method.  Cross-correlation can 

then be repeated for each signal, and the correlation scores combined (by a weighted 

sum for example) to produce a final score.  However, a more effective method would be 

to include a constraint to ensure that each signal in the ensemble could not correlate out  

of synchronisation with the other signals, thus enforcing the same shift (and hence the 

same rotational orientation) for each individual signal.  We implement the correlation 

function by storing the query (q) and target (t) signals in two buffers for comparison 
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using the standard normalised cross correlation formula shown below, while we 

iteratively increment an offset on one buffer, recording the maximum correlation value 

for each rotation r, until the offset is equal to the length of the buffer. 

ttqq
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C

TT

T

r
+

=  

Equ. 5-9 

This process has a high time complexity and some speed optimisations would be 

required in order to search very large datasets.  One such technique would be to 

increment the offset in larger steps, then repeat the calculation for offsets close to the N 

best correlation scores from the first pass.  It may also be worthwhile implementing the 

function using specialised hardware, allowing extremely fast comparisons or making 

use of the Fast Fourier Transform.  Finally, a number of pre-filters could be used to 

eliminate unlikely matches, prior to performing the full correlation procedure.  Such a 

technique would mean computing a set of features from an IRAD signal.  These features 

may include such values as the maximum and minimum amplitude of signal peaks and 

troughs, signal frequencies and surface path length, as well as using functions across 

multiple IRADs, such as the ratio of IRAD lengths.  These pre-filtering criteria should 

be applied as weak constraints, before computing the full signal correlation.  The 

tolerance thresholds on the criteria may be set according to the maximum expected 

within-class deviation, in order to ensure that no possible matches are eliminated. 

The final step in computing some likeness score between to IRAD signal ensembles is 

to combine the correlation scores from multiple signals into a single unified score.  In 

this chapter we investigate four of the simplest methods of combination: 

• The sum of correlation scores from all IRADs. 

• The sum of normalised (such that moments are equal) scores. 

• The sum of scores from a subset of the most discriminatory IRADs. 

• A weighed sum of scores (inversely proportional to the IRAD radius). 

However, we do note that these combination functions are relatively unsophisticated 

and that much more effective methods of combination may be found with further 

investigation.  Such methods may include a weighting based on the frequency and 
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amplitudes of the signal, or perhaps a discriminant analysis of the IRAD regions most 

useful for recognition.  It may also be the case that other signals, such as those 

representing colour and texture are combined using another method.  

5.7.6 Dealing with Noise 

There are several common types of noise that are likely to be present in the IRAD signal 

ensembles.  In this section we discuss some methods of coping with these unwanted 

artefacts, in order to improve recognition accuracy and increase operating capability.  

The types of noise we expect to encounter are: 

• Spikes and pits on the 3D surface. 

• Surface holes. 

• Shape deformation. 

Firstly, spikes and general surface noise can be eliminated using standard smoothing 

algorithms, such as Gaussian smoothing and point averaging.  Selectively applying 

these techniques on a first pass to the large spikes (and pits), identified by measuring the 

distance along the z-axis to neighbouring points, can reduce these spikes before 

application of a more global smoothing to remove the lower amplitude surface noise. 

 

Figure 5-36  Example effect of noise reduction on the 3D face surface using a simple local averaging 

technique 
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Small holes in the surface resulting from missing polygons (typically due to failure in 

finding a stereo correspondence) can easily be filled by computing an average central 

point and connecting the mesh.  However, larger holes occurring on one side of the 

nose, because the subjects were facing to the left or right, or missing areas around the 

eyes and forehead due to hair or glasses require a different approach.  Our signal 

matching procedure must be able to cope with partial signals, which do not complete a 

loop on the surface.  In Figure 5-37 below it can be seen how a complete signal would 

be reduced to a partial signal as two unconnected surface areas.  It is clear that the 

partial signal would not fully correlate with the original signal.  However, by splitting 

the partial signal into two sub-signals at the point of the surface break, it is possible to 

match the two sub-signals to a larger complete signal by correlating each one 

individually.  The rule applied in this scenario is to correlate partial signals in order of 

signal length.  Once a correlation is achieved, further correlations are performed using 

any remaining sections of the signal not yet correlated.   
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Figure 5-37  Method of combating the problem of partial IRAD contour signals 

 

5.7.7 IRAD Variance Due to Facial Expression 

One issue with the IRAD method that we have not yet touched upon is the ability to 

cope with variations in facial expression.  The IRAD signal representation of the facial 

shape is susceptible to changes in facial expression and we have not incorporated any 

attempt to compensate for this in the results presented in section 5.7.8.  However, it is 

possible to model variations in signal shape due to expression by modelling the variance 

in signal amplitude as expression changes.  This would allow a tolerance ‘buffer-zone’ 

in which a signal correlation would be expected to vary.  Any part of the signal falling 
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outside these tolerance zones would be weighted so as to result in a sharp decrease in 

correlation score.  This method has the side effect of prioritising rigid areas of the face 

that do not alter with expression, such as the bridge of the nose and forehead areas. 

 

Figure 5-38  Possible modelling of IRAD contour variation due to changes in facial expression 

5.7.8 Results 

In this section we present the results gathered from testing the IRAD contours method 

on the 3D face test set B taken from the University of York 3D Face Database, as 

described in section 5.1.3.  Firstly, we perform face recognition using each of the IRAD 

contours individually, as a sole feature for recognition.  Figure 5-39 shows the error 

curves for six of the IRAD contours at a radius of 5, 21, 37, 53, 69 and 85 millimetres 

from the tip of the nose.  We see that the EER varies from 21.91% for the IRAD 

contour of radius 21 millimetres, to 36.74% for the IRAD at a radius of 85 millimetres.  

Repeating this experiment for radii at increments of 2millimetres from 3 to 87 

millimetres, we produce a bar chart of EERs comparing the effectiveness of each 

individual IRAD, as seen in Figure 5-40. 
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Figure 5-39  Error curves for six individual IRAD contour signals 

It is clear from the bar chart below, that the smallest and largest radii are the worst 

performing.  This is likely due to the very short length of the smaller IRADs and hence 

very little discriminatory information on which to base recognition, whereas the largest 

of the IRADs often extend beyond the boundaries of the side of the face and hence only 

represent a small segment of contour across the forehead (a relatively flat and non-

distinctive part of the face).  The most effective IRADs are those around the nose area, 

which tend to pass over the nose bridge, between 9 and 49 millimetres radius from the 

nose tip.  The lowest EER achieved is 21.91%, which although substantially higher than 

some of the EERs produced by the Fishersurface systems, considering the method only 

utilises the shape information from a very small area of the face, it is surprisingly low 

i.e. 78% accurate from just one contour. 
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Figure 5-40  Bar chart of EER for each individual IRAD contour signal at various radii from the 

nose tip 

The next step is to combine the scores using the four methods described earlier, to base 

the recognition on correlation of a signal ensemble (rather than a single IRAD).  

However, to produce the results shown in Figure 5-41, we have not implemented the 

rotational constraint that all IRADs must correlate ‘in-phase’.  That is, the rotational 

shift has been allowed to vary between signals i.e. the face is not considered as a rigid 

body. 

We see that summing the correlation scores from all IRADs produced, results in a 

higher EER (25.40%) than using the best of the IRADs individually (21.91%).  This 

result is only marginally improved (to an EER of 23.12%) by normalising the scores 

such that the average and standard deviation are equal for all signals prior to 

combination.  However, we have been successful in improving the EER (down to 

20.56%) by summing only those scores from the best performing IRADs (at radii 

between 9mm and 49mm).  Finally, weighting the scores based on the inverse of the 
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IRAD radius produces another marginal improvement (dropping the EER to 20.02%), 

which is no doubt due to the negative correlation between the IRAD radius on the 

recognition accuracy of individual IRADs, as seen in Figure 5-41. 

 

Figure 5-41  Error curve generated from combining multiple IRAD contour signals 

 

5.7.9 Summary 

We have developed a novel approach to 3D face recognition, capable of recognising 

faces based on cues extracted from both the colour and geometric shape data available 

in 3D face models.  Unlike other face recognition algorithms, the IRAD contours 

method use relatively little registration in terms of feature detection and image 

alignment: requiring detection of a single point of interest, to which all extracted 
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features are relative.  In particular, the method reduces the problem of head orientation 

to a one-dimensional shift in a simple cross-correlation process.  The method is not only 

applicable to faces, but can be used to recognise and register any 3D object.  It may also 

prove useful in providing the 3D model alignment required by other face recognition 

methods, such as the Fishersurface method described in section 5.6. 

Utilising the nose tip detection algorithm developed in previous sections, we have 

demonstrated the application of the IRAD contours method to face recognition, using 

geometric shape information alone, to produce signal ensembles from a range of 

contours on the facial surface.  The effectiveness of each contour for recognition is 

dependant on the distance from the point of interest (in this case the nose tip), with 

contours in the region between the nostrils and cheekbone being the most effective. 

Experimentation with combining the scores from each signal in a signal ensemble has 

shown that recognition accuracy can be improved by utilising signals extracted from 

multiple IRAD contours.  However, we have only applied very simple weighted sums in 

order to achieve this improvement and it is likely that much greater reductions in error 

rate could be achieved by using a more sophisticated weighting technique (perhaps 

having been trained using an additional set of 3D face data).  In addition to these 

improvements, a further increase in accuracy is likely to occur when addition 

information is extracted from the IRAD contours, such as colour and texture data.
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66      22DD--33DD  FFaaccee  RReeccooggnnii tt iioonn  

As we have seen in previous chapters the use of 3D face models for recognition can 

provide significant advantages over two-dimensional systems, in particular by reducing 

error rates in applications where head angle and lighting conditions are not easily 

controlled.  However, we do not suggest that 3D face recognition will supplant two-

dimensional face recognition systems completely, as two-dimensional systems do have 

a number of advantages over 3D systems for some specific applications.  Not only are 

3D cameras significantly more expensive than existing standard 2D cameras, but 2D 

images are already used in a great range of systems: they are captured by CCTV 

cameras; used on official identification documents such as passports and driving 

licenses; and they are acquired and stored in video and photograph for a variety of 

reasons.  For these reasons there will always be a need to search and identify two-

dimensional face images. 

However, there are also many applications in which 3D face recognition would offer 

significant advantages, but the existing legacy databases contain two-dimensional 

images only.  One such example is the UK police mug-shot databases.  The UK police 

forces already use 2D face recognition to search these databases for potential matches to 

an image acquired as part of an investigation or when a suspect is held in custody his 

image may be searched for.  It is easy to envisage the police swapping the 2D cameras 

for a 3D equivalent, allowing for a 3D face recognition system to be used with much 

greater accuracy (especially when the subjects are not very cooperative), however 

without the ability to search an existing 2D database.  These circumstances give rise to 

the need for a 3D-2D matching capability.  This would allow for the gradual 

introduction of a 3D recognition system, capturing 3D face models yet still allowing 

searching of an existing 2D database.  As 3D face models are acquired and a new 

database of 3D face models begins to grow, this database can be searched at the same 

time as the legacy 2D databases.  To match 3D face models against 2D images is a 

fairly simply procedure, although it requires a texture mapped 3D face model to 

undergo an orientation normalisation procedure before the 2D texture map is projected 

back into a two-dimensional plane.  This 2D projection can then be scaled and aligned 
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according to the eye locations and matched against a standard 2D image using the 

techniques already discussed in section 4. 

66..11        RReeccooggnnii tt iioonn  UUssiinngg  33DD  TTeexxttuurr ee  MM aapp  PPrr oojj eecctt iioonnss  

In this section we explore another approach to face recognition that falls somewhere 

between the two-dimensional and 3D approaches discussed so far, in that is uses the 3D 

face model in order to perform orientation normalisation, before performing recognition 

based on the two-dimensional texture data.  Whereas the 3D systems explored in section 

5 have all been intentionally applied to geometric structure alone (in order to become 

invariant to lighting conditions).  It may be that if the lighting conditions can be 

controlled to some extent, then by ignoring the two-dimensional colour data held in the 

texture map we are discarding a wealth of highly discriminatory information that could 

be useful for recognition.  We do address these issues in section 7.4, by reintroducing 

the 2D texture information in combining two-dimensional and 3D systems.  However, if 

an existing 2D face recognition system is already in place, perhaps highly optimised for 

specific circumstances (for a certain race under specific lighting conditions for 

example), it may be preferential to continue using the two-dimensional system, rather 

than gathering the necessary training data to optimise a new 3D system.  Under these 

circumstances it is still possible to gain some of the advantages offered by a 3D system 

by utilising the 3D camera, without necessarily performing recognition on the surface 

shape, but rely purely on the 2D texture map.  Such a system would become more 

resistant to variations in head orientation, yet still use the underlying 2D recognition 

algorithm. 

In order to implement such a system, the 3D camera would generate a texture mapped 

3D face model, which would then undergo the orientation normalisation procedure 

described in section 5.2.  The texture of the resultant fronto-parallel 3D face model can 

then be projected onto a 2D plane, creating a standard 2D image of the face.  As well as 

having the advantage of normalising head orientation this system also introduces two 

other significant advantages.  Firstly, the resultant image is to scale, meaning that the 

actual size of the head and distance between the eyes can be used as features for 

recognition.  Secondly, because the orientation normalisation algorithm has already 
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aligned the image there is no need to align by the eye locations (providing it is being 

compared with other 2D projections and not standard 2D images). 

 

Figure 6-1 Two-dimensional face images (left), the equivalent 3D texture mapped models before 

orientation normalisation (centre) and after normalisation (right) 

Figure 6-1 shows how the 3D face model can be used to create a 2D projection suitable 

for recognition by a two-dimensional face recognition system, from an original image in 

which head orientation would have prevented a successful identification.  Once the 

orientation normalised 2D image has been created it may be subjected to the same pre-

processing techniques as used in the other two-dimensional systems.  Hence we can 

create the range of face recognition systems as produced in section 4.4.  Using the 

University of York 3D face database we train and test twenty-four 2D Projection face 

recognition systems using all pre-processing techniques (see section 4.5) applicable to 

grey-scale images.  Testing these systems on test set A (as described in section 4.2.1), 

we produce the following EERs, shown below alongside the EERs for the 

corresponding 2D face recognition systems tested on the 2D images of the same data 

set. 
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Figure 6-2  Bar chart of EERs produced by various 2D face recognitions systems and the equivalent 

2D projection systems. 

Clearly, the 2D projection systems have a significant advantage over the standard 2D 

systems.  In almost all cases the error rates are significantly lower.  As the test set 

contained faces of various orientations, this drop in error rate is most likely due to the 

orientation normalisation of these images.  However, it is also likely that the slight 

adjustment of orientation, even for faces that appear to face directly forwards still aids 

recognition by producing a more robust angle of orientation.  Finally, the use of 

absolute size as a feature for recognition will also have provided some additional 

discriminatory information.  It is interesting to note that the system in which no image 

pre-processing is carried out (‘none’ in the figure above) performs significantly better in 

these experiments than in previous investigations.  This is perhaps due to the fact that 

no lighting variation is included in this test set and hence lighting conditions may 

actually be providing some discriminatory information between multiple subjects in 

these experiments. 
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77      CCoommbbiinniinngg  MM eetthhooddss  ooff   FFaaccee  RReeccooggnnii tt iioonn  

Up to this point we have discussed various approaches to face recognition and methods 

of improving the performance of these systems by applying such things as image pre-

processing techniques and various distance metrics.  We have also shown that the use of 

3D face models can offer significant advantages over the 2D face images, thus 

producing a new generation of face recognition systems, again using a variety of pre-

processing techniques to produce a variety of surface representations.  These face 

recognition systems has each been evaluated by producing the EER for a given test set, 

resulting in a large range of error rates.  What we have not considered, until this point, 

is that each system may have its own advantages under certain conditions, or that 

although one system may not perform well in terms of EERs, it may contain, within its 

extracted feature space, some discriminating factor not considered in other systems that 

use a different image (or surface) representation. 

In this section we introduce methods of combining multiple face recognition systems, 

hoping to consolidate the advantages of numerous systems into a single unified system 

that outperforms any of its individual components.  We begin by combining two-

dimensional face recognition systems in section 7.1, computing the best combinations 

of eigenface and Fisherface systems, when applied to the AR face database of 2D 

images.  We then apply a similar strategy to 3D Fishersurface systems, testing both the 

cosine and Euclidean distance measures in section 7.2.  These two investigations lead 

naturally to the combining of two-dimensional and 3D systems, creating a unified face 

recognition method that utilises both 3D geometric structure as well as colour and 

texture information.  Such a system is presented in section 7.4. 

We introduce some new terminology in this section that deserves some clarification.  

We describe the method of amalgamating multiple face recognition systems as 

‘subspace combination’ and the resultant combined subspace as a ‘composite subspace.’  

When referring to a complete face recognition system that utilises a composite subspace 

it is often termed a ‘multi-subspace system’ in contrast with the ‘single-subspace 

systems’ described in previous chapters.  Note that in many of the charts and figures we 

use the abbreviation ‘combo X’ to denote a multi-subspace system in which 
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combination has been applied across systems of type X (3D, 2D or 2D Projections).  

Unless a method is not explicitly stated to be a multi-subspace system it is assumed to 

be a single-subspace system. 

77..11      CCoommbbiinniinngg  22DD  FFaaccee  RReeccooggnnii tt iioonn  

It has been shown that the application of image processing techniques as a pre-

processing step to methods of face recognition, such as the eigenface and Fisherface 

methods, can significantly improve recognition accuracy (sections 4.3 and 4.4 and 

published in [ 14 ][ 15 ]).  Such image processing techniques work on several principles, 

such as reducing noise, enhancing features or normalising environmental conditions.  

Therefore, each technique provides unique advantages, specifically suited to different 

conditions.  For example, colour normalisation techniques may aid recognition by 

making such features as skin-tone and hair colour consistent despite the effect of 

lighting conditions.  Another system may incorporate edge detection filters, focusing 

purely on facial structure, while a third may blur an image, reducing inaccuracies 

introduced by the feature alignment stage.  Unfortunately, often incorporated with these 

beneficial characteristics are surplus side effects, which can actually degrade system 

performance: normalising colour and removing the effect of lighting conditions will 

reduce the geometric information encapsulated within the facial surface shading; edge-

detection or gradient based filters preserve structural cues, but remove skin-tone 

information. 

We analyse and evaluate a range of face recognition systems, each utilising a different 

image processing technique, in an attempt to identify and isolate the advantages offered 

by each system.  Focusing on appearance based methods of face recognition we propose 

a means of selecting and extracting components from the image subspace produced by 

each system, such that they may be combined into a unified face space.  We apply this 

method of combination to the eigenface approach (section 4.3) and Fisherface approach 

(section 4.4).  The benefit of using multiple eigenspaces has previously been examined 

by Pentland et al [ 40 ], in which specialist eigenspaces were constructed for various 

facial orientations and local facial regions, from which cumulative match scores were 

able to reduce error rates.  Our approach differs in that we extract and combine 

individual dimensions, creating a single unified face space. 
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In section 7.1.1 we begin with a brief explanation of the eigenface and Fisherface 

methods.  We describe the database of face images used for testing and training in 

section 7.1.2, which are then analysed in section 7.1.3, discussing the image processing 

techniques evaluated in sections 4.3.3 and 4.6, the rationale for combining multiple 

systems and the criteria used to identify the most discriminatory components of each 

system.  The algorithm used for combining these components is then described in 

section 7.1.4.  After applying this combination process to the eigenface and Fisherface 

methods, we compare the effectiveness of the resultant face space combinations with 

the best systems produced in our earlier work (section 4.6).  The evaluation procedure is 

described in section 7.1.5, by which we perform verification operations on a large test 

set of facial images that present typical difficulties when performing recognition, such 

as variations in illumination direction and facial expression.  We present the results in 

the form of error rate curves in section 7.1.6, generated by varying a decision threshold 

in the verification operations. 

7.1.1    The Eigenface and Fisherface Methods 

In this section we give a brief explanation of the eigenface and Fisherface methods of 

face recognition, while referring the reader to sections 4.3 and 4.4 for more detailed 

explanations.  Both approaches work on the same principle of analysing the image 

space of a given training set of face images Γni, of c different people, attempting to 

reduce image space dimensionality down to the most discriminating components.  This 

is accomplished by computing eigenvectors of one or more scatter matrices (Equ. 4-2 

and Equ. 4-5) using standard linear methods, ultimately producing subspace projection 

matrices, Uef and Uff, of the top c-1 components with the highest eigenvalues for the 

eigenface and Fisherface systems respectively. 

The two approaches differ in the scatter matrices from which the eigenvectors are 

calculated.  The eigenface method applies principal component analysis (PCA) using 

the covariance matrix SC, constructed from single examples of each person in the 

training set, whereas the Fisherface method is able to take advantage of multiple 

examples of each person, minimising within-class scatter (SW), yet maintaining high 

between-class scatter (SB).  In addition, the Fisherface approach applies PCA to the total 

scatter matrix ST, producing a preliminary projection matrix Upca, used to reduce the 
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dimensionality of the scatter matrices SB and SW, ensuring they are non-singular, before 

computing the eigenvectors (Ufld) of the reduced scatter matrix ratio (Equ. 4-6, Equ. 4-7 

and Equ. 4-8). 

   

Figure 7-1  The average face (left) and first four eigenfaces (right) computed with no image pre-

processing. 

 

Figure 7-2  The first five Fisherfaces, defining a face space with no image pre-processing. 

 

7.1.2   Test Data 

We conduct experiments using a database of 960 bitmap images of 120 individuals (60 

male, 60 female) of various race and age, extracted from the AR Face Database 

provided by Martinez and Benavente [ 39 ].  From this database we take a training set of 

240 images (60 people under a range of lighting conditions and facial expressions), used 

to compute the scatter matrices described in section 2 and ultimately produce the face 

space projection matrices.  The remaining 720 images (60 people, 12 images each) are 

then separated into two disjoint sets of equal size (test set A and test set B).  We use test 

set A to analyse the face-key variance throughout face space, calculate discriminant 

weightings (see section 7.1.3) and compute the optimum face space combinations.  This 

leaves test set B as an unseen set of data to evaluate the final multi-subspace system. 

This use of dual data sets for training followed by analysis and combination may 

initially seem to needlessly use two different sets of data in the preliminary training 
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processes.  Why not compute scatter matrices and system combinations on the same set 

of data?  After testing this approach, producing disappointing results (error rates 

increase after combining systems), we hypothesise that significant over-training in the 

first PCA stage prevents any further optimisation by combination, as the resulting 

projection typically results in perfect classification of the training set.  The reason for 

two training sets is effectively a scheme to prevent over-training.  Because it is often 

necessary to use far fewer training images than the dimensionality (number of pixels) of 

the images themselves, it is often the case that PCA achieves perfect class separation on 

the training set.  Hence discriminant values become artificially high, criteria for 

combination becomes biased towards very few dimensions and combination does not 

reflect an improvement outside of the initial training data. 

Table 7-1 shows six examples of the images used for training and test sets, repeated on 

two days, making up the 12 images of each subject in the test sets.  All images are pre-

aligned with the eye centres 25 pixels apart, before being cropped to a width and height 

of 65 and 82 pixels respectively. 

Lighting Natural From left From right Left & right Natural Natural 

Expression Neutral Neutral Neutral Neutral Happy Angry 

Example 
 

      

Table 7-1. Image capture conditions included in the database training and test sets. 

7.1.3   Analysis of face recognition systems 

In this section we analyse image subspaces produced when various image pre-

processing techniques are applied to both the eigenface and Fisherface methods.  We 

begin by reproducing the results obtained in previous investigations (see section 4.3), 

shown in Figure 7-3, showing the range of error rates produced when using various 

image processing techniques.  Continuing this line of research we persist with these 

same image processing techniques, referring the reader to section 4.5 for 
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implementation details, while here we focus on the effect and methodologies of 

combining multiple systems, rather than the image processing techniques themselves. 

Figure 7-3 clearly shows that the choice of image processing technique has a significant 

effect on the performance of both the eigenface and Fisherface approaches, with detail 

enhancement filters providing the lowest EER when used in conjunction with the 

Fisherface approach.  However, we find it surprising that some image processing 

techniques give such poor performance, especially when designed specifically to 

compensate for conditions known to be a source of error in face recognition systems.  

For example, we see that intensity normalisation increases error rates for Fisherface-

based systems, despite being the best performing image processing technique for 

eigenface-based recognition.  Hence, it is apparent that this processing technique is able 

to preserve discriminatory information, while normalising lighting effects, yet is 

unsuitable for Fisherface-based recognition.  We now carry out further investigation 

into the discriminating ability of each face recognition system by applying Fisher’s 

Linear Discriminant (FLD), as used by Gordon [ 4 ] to analyse 3D face features, to 

individual components (single dimensions) of each face space.  Focusing on a single 

face space dimension we calculate the discriminant d, describing the discriminating 

power of that dimension, between c people in test set A. 
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Equ. 7-1 

Where m is the mean value of that dimension in the face-keys of test set A, mi the 

within-class mean of class i and �i the set of vector elements taken from the face-keys 

of class i. 
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Figure 7-3  EERs of eigenface and Fisherface systems using a range of image processing techniques. 
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Applying Equ. 7-1 to each dimension of the eigenface face space (using no image pre-

processing), provides a set of discriminant values as shown in Figure 7-4.  Looking at 

the range of discriminant values, we note that the higher discriminants appear at the 

lower end of the face space.  This is exactly as we would expect, showing that the order 

of principal components, in terms of eigenvalues, is broadly related to that dimensions 

discriminating ability. 

 

Figure 7-4  Discriminant values of the eigenface face space dimensions using no image pre-

processing. 

However, it can also be seen that certain dimensions produce very low discriminant 

values.  In Figure 7-4 we see that the third principal component in particular has a very 

low discriminating ability, despite its relatively high eigenvalue.  This highlights some 

problems in the eigenface training method, in that the third dimension obviously 

represents something of high variance in the training set that has little or no use in 

discriminating between different people.  In other words, it is a feature of the 

environmental capture conditions.  Applying Equ. 7-1 to each dimension in the 

assortment of Fisherface systems, we see similar results to those of the eigenface 

systems, with a wide range of discriminant values across the different image processing 

techniques.  Figure 7-5 shows the top ten dimensions with the highest discriminant 

value from each Fisherface system.   

It is clear that although some image processing techniques do not perform well in the 

face recognition tests, producing high EERs as seen in Figure 7-3 some of their face-key 

components do contain highly discriminatory information.  We hypothesise that the 
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reason for these highly discriminating anomalies, in an otherwise ineffective subspace, 

is that a certain image processing technique may be particularly suited to a single 

discriminating factor, such as skin tone or hair colour, but is not effective when used as 

a more general classifier.  Therefore, if we were able to isolate these few useful qualities 

from the more specialised image subspaces, they could be used to make a positive 

contribution to a generally more effective face space, reducing error rates further.  For 

example, grey_world pre-processing results in a particularly high EER (23.0%), yet we 

see that two dimensions of this face space have discriminant values significantly greater 

than any dimension from the best Fisherface system (using slbc image pre-processing).  

Therefore, it is not unreasonable to assume (given that grey_world normalises colour 

and slbc enhances edges) that if these two dimensions were extracted and combined 

with the existing slbc face space, a further reduction in error may occur, due to the 

additional discriminatory information being introduced. 

In order to combine multiple dimensions from a range of face spaces, we require some 

criterion to decide which dimensions to combine.  It is not enough to rely purely on the 

discriminant value itself, as this only gives us an indication of the discriminating ability 

of that dimension alone, without any indication of whether the inclusion of this 

dimension would benefit the existing set of dimensions.  If an existing face space 

already provides a certain amount of discriminatory ability, it would be of little benefit 

(or could even be detrimental) if we were to introduce an additional dimension 

describing a feature already present within the existing set, unless it was of a 

discriminant significantly high as to provide a valued contribution.  Ideally we would 

use the EER as this criterion, such that a new dimension would be incorporated into any 

existing system if it resulted in a reduced EER.  However, such an approach is 

problematic in that the time taken to process a complete verification evaluation for all 

dimension combinations would be unfeasible, without substantial algorithm 

optimisations and an abundance of memory.  Thankfully, with such optimisations in 

place and access to numerous high specification PCs, we were able to test this approach 

in section 7.3.   
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Figure 7-5  Ten greatest discriminant values of dimensions from Fisherface face spaces using a 

range of image pre-processing techniques. 

What we require is some method of providing an indication of how effective a given 

combination of face space dimensions is likely to be, without the need of processing a 

complete evaluation of all verification operations.  An obvious solution, already used to 

analyse individual face space dimensions is that of FLD, which with a small amount of 

adaptation can be applied to whole face-key vectors, rather than individual vector 

elements, providing a global discriminant value d for the entire face space, 
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where ω is the face-key of some single or combined face space, to which we apply the 

distance metric to the averageω and class average iω .  Applying Equ. 7-2 to each 

Fisherface system shown in Figure 7-3 and comparing the result with their respective 

EERs, it becomes evident there is some correlation between this global discriminant 

value and the effectiveness of a face recognition system, as seen in Figure 7-6. 

 

Figure 7-6  Scatter graph showing the correlation between the global discriminant value and EER 

of Fisherface systems. 

 

7.1.4   Combining Systems 

In this section we describe how the analysis methods discussed in section 7.1.3 are used 

to combine multiple face recognition systems.  Firstly, we need to address the problem 

of prioritising face space dimensions.  Because the average magnitude and deviation of 

face-key vectors from a range of systems are likely to differ by some orders of 

magnitude, certain dimensions will have a greater influence than others, even if the 

discriminating abilities are evenly matched.  To compensate for this effect, we 

normalise moments by dividing each face-key element by its within-class standard 
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deviation.  However, in normalising these dimensions we have also removed any 

prioritisation, such that all face space components are considered equal.  Although not a 

problem when applied to a single face space, when combining multiple dimensions we 

would ideally wish to give greater precedence to the more reliable components.  

Otherwise the situation is likely to arise when a large number of less discriminating (but 

still useful) dimensions begin to outweigh the fewer more discriminating ones, 

diminishing their influence on the verification operation and hence increasing error 

rates. 

In section 7.1.3 we showed how FLD could be used to measure the discriminating 

ability of a single dimension from any given face space.  We now apply this 

discriminant value d (Equ. 7-1) as a weighting for each face space dimension, 

prioritising those dimensions with the highest discriminating ability. 

With this weighting scheme applied to all face-keys produced by each system, we can 

begin to combine dimensions into a single unified face space.  The criterion required for 

a new dimension to be introduced to an existing face space is a resultant increase in the 

global discriminant, calculated using Equ. 7-2.  However, as can be seen from Figure 

7-6 this method can only provide a rough indication of system effectiveness and if we 

were to build up the combination from a single dimension, we may achieve a greater 

discriminant but not necessarily the lowest EER.  Therefore, in order to provide the 

combination with the best head start, we initialise the dimension set with the best face 

space achieved so far (intensity and slbc for eigenface and Fisherface systems 

respectively).  Beginning with this small preliminary set of dimensions (the face space 

of the best eigenface or Fisherface system), we then iteratively test each additional 

dimension from other face spaces for combination with the existing dimension set as 

shown in the ‘combination by accumulation’ algorithm below. 

The result is a new face space consisting of the dimensions taken from the best single 

subspace system, plus a selection of additional dimensions from other systems.  Each 

new dimension will have increased the global discriminant, such that the final 

combination has a significantly higher discriminant value and will therefore also have 

reduced the EER when evaluated on test set B. 
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Composite face space = face space dimensions of best single system 

Calculate global FLD of composite  face space 

For each face space system: 

For each dimension of face space system: 

Concatenate new dimension onto composite  face space 

Calculate global FLD of composite  face space 

If global FLD has not increased: 

Remove new dimension from composite  face space 

Save composite face space ready for evaluation 

 

Figure 7-7  Face space dimensional combination by accumulation algorithm, based on an FLD 

fitness criteria. 

7.1.5   The Test Procedure 

The effectiveness of the face recognition systems is evaluated by means of error rate 

curves (FRR vs. FAR) generated by performing a large number of verification 

operations on the database test sets.  The images in the test set are verified against every 

other image, producing a distance value.  No image is compared with itself and each 

pair is compared only once (the relationship is symmetric).  This provides 64,620 

verification operations when performed on all images in test set B or 258,840 operations 

if both test sets A and B are combined.  After calculating the distance values for each 

comparison, a threshold is applied in order to derive the rejection/acceptance decision 

for each image pair.  FAR is calculated as the percentage of acceptance decisions when 

images of different people are compared and FRR is the percentage of rejection 

decisions when images of the same person are compared.  By varying the threshold we 

produce a set of FRR FAR plots, forming the error rate curve, as shown in Figure 7-9. 
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Figure 7-8  Flow chart of face recognition evaluation procedure. 

7.1.6   Results 

In this section we present results obtained from evaluating the best performing single-

subspace systems and combined face recognition systems formed using the eigenface 

and Fisherface methods.  The results are presented in the form of error rate curves (FAR 

vs. FRR) generated using the procedure described in section 6, taking the EER as a 

single comparative value. 

Figure 7-9 shows the error rates obtained using the eigenface approach, when applied to 

test set B (the previously unseen test set).  We see that applying the optimum eigenface 

system (incorporating the best image pre-processing technique discovered in section 

4.3.3) to test set B, produces an EER of 19.7%.  A significant improvement is witnessed 

when the discriminant values (calculated using test set A) are applied as a weighting 

scheme (described in section 5), prioritising the most discriminating principal 

components, reducing the EER to 15.4%.  With this weighting scheme in place for all 

eigenface systems, we then apply the combination by accumulation algorithm, 
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producing the third error rate curve in Figure 7-9.  Unfortunately, this multi-subspace 

system substantially increases the error rate, resulting in a final EER of 22.8%. 

 

 

Figure 7-9  Error rate curves of the best single, weighted and multi-subspace eigenface systems 

Figure 7-10 shows the results obtained when performing the same evaluation 

experiments using the Fisherface approach.  The initial EER, using the optimum image 

pre-processing technique is 17.9%.  Weighting the components according to 

discriminant values, unlike the eigenface system, has very little effect on system 

performance and although it provides marginal improvement at some points along the 

error curve, actually results in the same EER of 17.9%. 

We conjecture that this interesting contrast between the eigenface and Fisherface 

methods is due to the application of LDA in the Fisherface training process.  It is likely 

that Fisherface dimensions are effectively already weighted according to their 
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discriminant values.  Obviously this is not a mathematical equivalence, otherwise the 

results would be identical, but it would seem that weighting dimensions by between-

class to within-class ratios has little effect if those dimensions have already been 

constructed to maximise between-class to within-class ratios. 

 

Figure 7-10  Error rate curves of Fisherface systems, produced when applied to test set B. 

Combining the weighted dimensions, from all Fisherface systems, produces a 

significant error reduction to 13.0% EER.  Displaying the face space dimensions 

selected for inclusion in this final multi-subspace Fisherface system in Figure 7-11 

shows that those systems with lower EERs generally provide more highly 

discriminating dimensions for inclusion in the final system than systems with higher 

EERs.  It is also evident that dimensions with higher eigenvalues provide the most 

discriminating information, as expected.  However, it is interesting to note that even a 
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few of the least effective systems provide some contribution to the final composite face 

space. 

Having evaluated the initial single-subspace systems and multi-subspace systems on the 

unseen test set B, demonstrating the improvement gained by combining multiple 

Fisherface dimensions, we now explore how these results vary when the images used to 

compute the optimum combination are also present in the evaluation test set.  This 

experiment is analogous to training the face recognition system on the database (or 

gallery set) of known people, which are then compared to newly acquired (unseen) 

images. 

 

Figure 7-11  Face space dimensions included (����) in the final multi-subspace Fisherface face space 

used to produce the results shown in Figure 7-9. 
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Figure 7-12  Error rate curves of best single and multi-subspace Fisherface systems applied to three 

test sets. 

Figure 7-12 shows the results obtained when the best single Fisherface system and 

multi-subspace Fisherface system are applied to test set A (used to construct the multi-

subspace system), test set B (the unseen test set) and the full test set (all images from 

sets A and B).  We see that the multi-subspace system does produce lower error rates 

(11.7% EER) when applied to images used to construct the combination, as would be 

expected.  However, we also see that test set A produces better results (16.6% EER) 

than test set B for the single Fisherface system, suggesting that it is actually a slightly 

easier test set anyway.  Performing the evaluation on the larger set, providing 258,840 

verification operations, the error rate drops slightly to 12.8% EER, showing that a small 

improvement is introduced if some test images are available for training, as well as 

suggesting that the method scales well, considering the large increase in image 

comparisons.  The distinct separation between the error curves of the best single 

Fisherface system and those using the multi-subspace system further enforces the fact 
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that combining multiple face space dimensions provides a substantial advantage over 

individual systems that use a single image processing technique. 

7.1.7   Conclusion 

We have highlighted the importance of using image processing as a pre-processing step 

to two well-known methods of face recognition (eigenface and Fisherface) and 

discussed the possibilities of combining face space dimensions of multiple systems in 

an attempt to utilise the advantages offered by numerous image processing techniques.  

Using FLD as an analysis tool we have confirmed the hypothesis that although an image 

subspace may not perform well when used for recognition, it may harbour highly 

discriminatory components that could complement other more superior systems and 

hence we have shown the potential to improve recognition error rates by combining 

multiple dimensions from a range of face recognition systems. 

Using this method of FLD analysis, we have overcome two problems presented when 

combining face recognition systems.  Firstly, using the respective discriminant values to 

weight face space dimensions, according to their discriminating ability, has allowed us 

to combine multiple dimensions yet maintain a bias towards those that present the most 

distinguishing features.  We have shown this weighting scheme to be highly beneficial 

when used with the best single eigenface system, reducing the EER from 19.7% to 

15.4%, but have little influence on the effectiveness of individual Fisherface systems 

(probably because the subspace computation process has already accounted for 

between-class to within-class ratios).  Secondly, applying FLD to entire face-keys and 

comparing these global discriminant values with the EERs of existing systems has 

demonstrated how this analysis can be used to provide a rough indication of the 

effectiveness of a given face recognition system, requiring significantly less processing 

time than completing a full set of verification operations on the same data.  Using this 

global discriminant as criteria for selecting face space dimensions as potential sources 

of additional discriminatory information to an existing system has enabled an iterative 

approach of appending new face space dimensions to existing combinations, increasing 

the global discriminant value and hence improving the performance of the multi-

subspace face recognition system. 
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Testing this method of combination on face space representations produced using the 

eigenface approach has shown it to be ineffective for this method of face recognition, 

increasing the EER significantly from 15.4% to 22.8%.  However, applying the same 

combination process to Fisherface systems has shown that combining multiple face 

spaces can improve system performance substantially, reducing the EER from 17.9% 

down to 13.0%. 

This key difference between the eigenface and Fisherface approaches is of particular 

interest and at first thought perhaps quite surprising.  In order to understand this 

phenomenon, we must consider the method of combination used.  We have created a 

criterion in which face space dimensions are incorporated into an existing set if they 

increase the discriminant of the composite face space.  This criterion only takes into 

account the discriminating ability of the new dimension when compared with the level 

of discrimination already achieved within the existing combination.  It does not allow 

for the inter-dependency of features or the possibility that features represented in the 

additional dimension may already be present in the existing combination face space.  

For example, consider a composite face space, in which its current set of dimensions 

encapsulates such features as the nose base width, bridge curvature and nose length.  

Now suppose we identify a new dimension for inclusion in the face space, representing 

the more general feature of nose shape, which due to its high between-class variance 

will increases the global discriminant.  However, this new dimension represents a 

feature that is largely dependent on those already represented in the face space.  

Therefore the discriminatory information available in this new dimension is 

predominantly redundant, meaning that the only real contribution to the multi-subspace 

system is the additional noise of within-class variance. 

This reasoning begins to uncover the grounds for failing to successfully combine 

multiple eigenface systems.  The eigenface approach creates a face space that 

maximises image distribution, but uses no examples of within-class variance, therefore 

doing nothing to reduce noise or environmental features.  Any dimension combined 

with an existing face space not only introduces the primary discriminating feature 

(which may have been present beforehand anyway) but also incorporates substantial 

within-class variance.  Adini et al [ 26 ] have shown that differences due to lighting 

conditions and facial expression are greater than the differences between images of 
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different people, suggesting that the noise introduced when combining dimensions will 

be more diverse and cumulative than the discriminating features, which will often 

reoccur and hence be redundant.  The Fisherface approach differs in its ability to 

formulate face space such that within-class variation is minimised relative to between-

class variation, hence reducing environmental influence, allowing multiple dimensions 

to combine with relatively little increase in noise content.  Therefore, even if the 

dimension contribution is redundant, little degradation is introduced. 

The criterion used to select dimensions is obviously an important factor in the 

combination process.  In this section we develop a method of using FLD to predict 

system effectiveness, which due to its short processing time allows many combinations 

to be tested in a relatively small amount of time, yet we see from Figure 7-6 that the 

system with the greatest discriminant value does not necessarily have the lowest EER.  

Therefore it is highly likely that other face space combinations exist that will produce a 

lower EER than the best combination presented so far in the thesis.  Such a face space 

combination could easily be found if a more accurate representation of system 

effectiveness was used in the combination selection criteria.  One obvious choice is the 

EER itself.  Although this would take an extremely long time to process, once the 

dimensions have been identified, the multi-subspace projection matrix can be stored for 

latter use and providing the training set is sufficiently large and varied, re-training and 

re-combining would not be required. 

We have already shown that image processing improves the Fisherface method of face 

recognition from an EER of 20.1% using no image processing, to 17.8% using the best 

processing technique.  We have extended this line of research to show that creating a 

face space combination, incorporating multiple Fisherface systems reduces the EER 

further, down to 12.8% when tested on a large amount of data presenting typical 

difficulties when performing recognition.  Evaluating this system at its fundamental 

level, using 258,840 verification operations between face images, demonstrates that 

combining multiple face space dimensions improves the effectiveness of the core face 

recognition engine.  We have not applied any additional heuristics, typically 

incorporated into fully functional commercial and industrial systems.  For example, we 

have not experimented with different distance metrics, multiple facial alignments, 

optimising crop regions or storing multiple gallery images.  All of which are known to 
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improve error rates and can easily be applied to the multi-subspace face recognition 

systems presented here.  With these additional measures in place, it is likely that the 

improvements made to the core recognition engine will bring the error rates of fully 

functional commercial and industrial systems substantially closer to those required for 

the application scenarios in mind. 
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In section 5.3 we demonstrated how the use of various surface representations affects 

the performance of 3D face recognition systems and in analysing these various filtering 

techniques we have seen how the discriminating abilities vary.  What we have not 

considered, until now, is how these various representations may be combined to further 

advantage. 

In this section we expand on earlier investigations involving the use of facial surface 

data, derived from 3D face models (generated using a stereo vision 3D camera), as a 

substitute for the more familiar two-dimensional images. Previous investigations 

(section 5.5 and published in [ 16 ]), have shown how different surface representations 

and distance measures affect recognition, reducing the EER from 19.1% to 12.7% when 

applied to a difficult test set of 290 face models.  However, the focus of this research 

has been on identifying optimum surface representations, with little regard for the 

advantages offered by each individual representation.   

We suggest that different surface representations may be specifically suited to different 

capture conditions or certain facial characteristics, despite a general weakness for 

overall recognition.  For example, curvature representations may aid recognition by 

making the system more robust to inaccuracies in 3D orientation but are highly sensitive 

to noise.  Another representation may enhance nose shape, but lose information 

regarding jaw structure. 

We now carry out similar investigations as those applied to two-dimensional 

recognition in section 7.1 and published by Heseltine et al [ 35 ].  We analyse and 

evaluate a variety of 3D Fishersurface [ 17 ] face recognition systems, each 

incorporating a different surface representation of facial structure.  We propose a means 

of identifying and extracting components from the 3D surface subspace produced by 

each system, such that they may be combined into a single unified subspace.  Pentland 

et al [ 40 ] have previously examined the benefit of using multiple eigenspaces, in 

which specialist subspaces were constructed for various facial orientations, from which 

cumulative match scores were able to reduce error rates.  Our approach differs in that 

we extract and combine individual dimensions, creating a single unified surface space, 

as applied to two-dimensional images in previous investigations [ 35 ]. 
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7.2.1   Test Data 

For the purpose of these experiments we select a sample of 1770 face models (280 

people) captured under the conditions in Figure 7-13, taken from the University of York 

3D Face Database [ 50 ].  During data acquisition no effort was made to control lighting 

conditions.  In order to generate face models at various head orientations, subjects were 

asked to face reference points positioned roughly 45° above and below the camera, but 

no effort was made to enforce precise orientation. 

 

 

Figure 7-13  Example face models taken from the University of York 3D Face Database 

3D models are aligned to face directly forwards before conversion into 60 by 90 pixel 

depth map representation.  We then take a training set of 300 depth maps (50 people), 

used to compute the scatter matrices described in section 3.  The remaining 1470 depth 

maps (230 people) are then separated into two disjoint sets of equal size (test set A and 

test set B).  We use test set A to analyse the face-key variance throughout surface space, 

calculate discriminant weightings (see section 4) and compute the optimum surface 

space combinations.  This leaves set B as an unseen test set to evaluate the final multi-

subspace system.  Both training and test sets contain subjects of various race, age and 

gender and nobody is present in both the training and test sets. 

7.2.2   Surface Space Analysis 

In this section we analyse the surface spaces produced when various facial surface 

representations are used with the Fishersurface method.  We begin by testing the variety 

of Fishersurface systems (introduced in section 5.6) on test set A, showing the range of 

error rates produced when using various surface representations (Figure 7-14).  

Continuing this line of research we persist with the same surface representations, 
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referring the reader to section 5.3 for implementation details, while here we focus on the 

effect and methodologies of combining multiple systems, rather than the surface 

representations themselves. 

Figure 7-14 clearly shows the choice of surface representation has a significant impact 

on the effectiveness of the Fishersurface approach, with horizontal gradient 

representations providing the lowest EER (point at which false acceptance rate equals 

false rejection rate). 

 

Figure 7-14 - Equal error rates of Fishersurface systems applied to test set A. 

However, the superiority of the horizontal gradient representations does not suggest that 

the vertical gradient and curvature representations are no use whatsoever.  Although 

discriminatory information provided by these representations may not be as robust and 

distinguishing, they may contain a degree of information not available in horizontal 

gradients and could therefore still make a positive contribution to a composite surface 

space.  We measure the discriminating ability of surface space dimensions by applying 

Fisher’s Linear Discriminant (FLD) (as used by Gordon [ 4]) to individual components 

(single dimensions) of each surface space.  We calculate the discriminant dn, describing 

the discriminating power of a given dimension n, between c people in test set A.  
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Where �i is the set of all class i face-key vector elements in dimension n, and m and mi 

are the mean and class mean of nth dimension elements in test set A.  Applying Equ. 

7-3 to the assortment of surface space systems listed in Appendix A, we see a wide 

range of discriminant values across the individual surface space dimensions (Figure 

7-15).  

 

Figure 7-15 - Top ten discriminant values of all Fishersurface dimensions. 

It is clear that although some surface representations do not perform well in the face 

recognition tests, producing high EERs, some face-key components do contain highly 

discriminatory information.  For example, we see that the min and max curvature 

representations contain one dimension with a higher discriminant than any horizontal 

gradient and curve type dimension, yet the EERs are significantly higher.  We 

hypothesise that the reason for these highly discriminating anomalies, in an otherwise 

ineffective subspace, is that a certain surface representation may be particularly suited 

to a single discriminating factor, such as nose shape or jaw structure, but is not effective 

when used as a more general classifier.  Therefore, if we were able to isolate these few 

useful qualities from the more specialised subspaces, they could be used to make a 

positive contribution to a generally more effective surface space, reducing error rates 

further. 

7.2.3   Combining Systems 

In this section we describe how the analysis methods discussed in section 7.2.2 are used 

to combine multiple face recognition systems, where each face recognition system is 
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based on a different feature type (using a different surface representation).  Note that 

this approach requires each face recognition system to be created individually, applying 

LDA to a training set pre-processed to produce a specific surface representation.  One 

may consider this series of separate analysis procedures followed by a combination of 

the subspaces produced as a sub-optimal approach, given that applying LDA directly to 

pre-combined representations would maintain the concept of combining multiple 

surface representations, yet likely produced a more highly optimised subspace.  This is 

indeed the case, and concatenating surface representations to create large images with 

multiple surface representations in each image, and then applying LDA is perhaps the 

simpler method. 

Table 7-2 shows the time complexities of combining multiple face recognition pre-

processing techniques before training (left) and after training (right).  Note that the 

training phase has a cubic time complexity, with the number of systems s (which 

equates to the number of processing techniques or subspaces produced for the pre-

training and post-training methods respectively) included in the base of each term.  

However, in the post-training method s is merely a coefficient of the polynomial terms, 

so despite the added time for projection (comparably negligible) and combination 

(easily varied by altering t) post-training combination is much more tractable within the 

timescales of this project. 

Pre-Training Combination Post-Training Combination 

( )32 )()( snsnMTraining +Ο=  

( )32 snMsnTraining +Ο=  

( )sntΟ=Projection  

( )ststnCombinatio −Ο= 2  

Where: 

 M is the number of images in the training set. 

 s is the number of systems to be combined. 

 n is the number of pixels in a single face image. 

 t is the number of images in test set A (the combination set). 

Table 7-2  Time complexities of pre-training and post-training combination algorithms 
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Bearing in mind the time complexity of pre-training combination, concatenating just the 

16 representations described in this thesis would create a large composite image of 

86,400 pixels.  Performing LDA on such an image would be a process to challenge the 

resources of a reasonably powerful desktop computer, even by today’s standards.  If we 

were to include a greater number of surface representations, the problem would soon 

become intractable, whereas the method described here provides a much more flexible 

process of combination, continually producing an improved system on each iteration.  

Once a multi-subspace system is produced, because of the progressive nature of the 

algorithm another surface representation can easily be included in the combination 

without the need to restart the process.  In addition, the processing time can be 

controlled by the size of test set A, allowing a decrease in computation time at the 

expense of the statistical significance of the test set. 

To begin combining multiple features we must first address the problem of prioritising 

surface space dimensions. We normalise moments by dividing each face-key element by 

its within-class standard deviation (calculated from test set A face-keys).  In section 

7.1.3 we showed how FLD could be used to measure the discriminating ability of a 

single dimension from any given face space.  We now apply this discriminant value dn 

as weighting for each surface space dimension n, prioritising those dimensions with the 

highest discriminating ability. 

Our investigations in this thesis (published [ 35 ]) have used FLD, applied to a 

composite subspace in order to predict effectiveness when used for recognition.  

Additional dimensions are introduced if they result in an increase in discriminant value.  

This method has been shown to produce face space combinations achieving 

significantly lower error rates than individual two-dimensional systems, although we do 

note that an EER-based criterion is likely to produce a better combination, at the 

expense of greatly increased training time.  However, with a more efficient program and 

greater computational resources, we now take that approach: the criterion required for 

introduction of a new dimension to an existing surface space is a resultant decrease in 

EER (computed using test set A).  Thus creating an algorithm that implements a hill 

climbing technique to a locally optimum combination. 
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Composite surface space = first dimension of best current system 

Compute EER of composite surface space 

For each surface representation system: 

For each dimension of surface space: 

Concatenate dimension onto composite surface space 

Compute EER of composite surface space 

If EER has not decreased: 

Remove dimension from composite surface space 

Save composite subspace ready for evaluation 

Figure 7-16  Face space combination by dimensional accumulation algorithm, using the EER as a 

fitness criteria 

7.2.4   The Test Procedure 

In order to evaluate the effectiveness of a surface space, we project and compare each 

facial surface with every other surface in the test set, no surface is compared with itself 

and each pair is compared only once.  The false acceptance rate (FAR) and false 

rejection rate (FRR) are then calculated as the percentage of incorrect acceptances and 

incorrect rejections after applying a threshold.  By varying the threshold, we produce a 

series of FAR FRR pairs, which plotted on a graph produce an error curve as seen in 

Figure 7-19.  The equal error rate (EER, the point at which FAR equals FRR) can then 

be taken as a single comparative value. 

Using this test format we consider three separate data sets.  The training set (τ) is used 

solely to compute the scatter matrices and ultimately the projection matrix that defines 

our surface subspace.  The remaining data is separated into two disjoint test sets A and 

B.  Test set A is used to compute a FAR and FRR curves for each iteration of the 

combination algorithm described above.  The EER extracted from these graphs is then 

used as the decision criterion as to whether a dimension is utilised or discarded.  The 

final test set B is used once the final combination has been computed, to provide a FAR, 

FRR curve calculated using previously unseen test data. 
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Figure 7-17  Flow chart of system evaluation procedure 

7.2.5   Results 

In this section we present the dimensions selected to form the multi-subspace 

Fishersurface systems (Figure 7-18) and the error rates obtained from a range of tests 

sets, making a comparison to best single-subspace systems in Figure 7-19. 

We see that systems with lower EERs generally make the most contribution to the 

multi-subspace system, as would be expected.  However, it is also interesting to note 

that even systems with particularly high EERs do contain some dimensions that make a 

positive contribution, although this is much more prominent for the cosine distance, 

showing that this metric is more suited to combing multiple surface spaces. 

Having selected and combined the range of dimensions shown in Figure 7-18, we now 

apply these multi-subspace systems to test sets A and B using both the cosine and 

Euclidean distance metric.  We also perform an evaluation on the union of test sets A 

and B: an experiment analogous to training on a database (or gallery set) of known 

people, which are then compared with newly acquired (unseen) images. 
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Figure 7-18  Face space dimensions included (x) in the multi-subspace Fishersurface systems 

Figure 7-19 shows the error curves obtained when the best performing single-subspace 

Fishersurface systems and multi-subspace systems are applied to test set A (used to 

construct the combination), test set B (the unseen test set) and the full test set (all 

surfaces from sets A and B), using the cosine and Euclidean distance metrics.  We see 

that the multi-subspace systems produce lower error rates than the best single-subspace 

systems for all six experiments.  As would be expected, the lowest error rates are 

achieved when tested on the surfaces used to construct the combination (7.2% and 

12.8% EER respectively).  However an improvement is also seen when applied to the 

unseen test set B, from 11.5% and 17.3% using the best single systems to 9.3% and 

16.3% EER for the multi-subspace systems.  Performing the evaluation on the larger 

set, providing 1,079,715 verification operations (completed in 14 minutes 23 seconds on 

a Pentium III 1.2GHz processor at a rate of 1251 verifications per second), the error 

drops slightly to 8.2% and 14.4% EER, showing that a small improvement is introduced 

if some test data is available for training, as well as suggesting that the method scales 

well, considering the large increase in verification operations. 
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Figure 7-19  Error curves comparing multi-subspace (dashed lines) and individual (solid lines) 

systems using the Euclidean (top) and cosine (bottom) distance measures. 
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7.2.6   Conclusion 

We have shown how a well-known method of two-dimensional face recognition, 

namely the Fisherface method, can be applied to 3D face models achieving reasonably 

low error rates, depending on the surface representation used.  Drawing on previous 

investigations (section 7.1) combining face recognition eigenspaces [ 35 ], we have 

applied the same principle to multiple 3D face recognition systems, showing that the 

combination method is applicable to both two-dimensional and 3D data.  Using FLD as 

an analysis tool, we have confirmed the hypothesis that although some surface 

representations may not perform well when used for recognition, they may harbour 

highly discriminatory components that could complement other surface spaces. 

Iteratively improving error rates on a small test set, we have built up a combination of 

dimensions extracted from a variety of surface spaces, each utilising a different surface 

representation.  This method of combination has been shown to be most effective when 

used with the cosine distance metric, in which a selection of 184 dimensions were 

combined from 16 of the 17 surface spaces, reducing the EER from 11.6% to 8.2%.  

Applying the same composite surface space to an unseen test set of data presenting 

typical difficulties when performing recognition, we have demonstrated a similar 

reduction in error from 11.5% to 9.3% EER. 

Evaluating the multi-subspace system at its fundamental level, using 1,079,715 

verification operations between 3D facial surfaces, demonstrates that combining 

multiple surface space dimensions improves effectiveness of the core recognition 

algorithm.  Error rates have been significantly reduced to state-of-the-art levels, when 

evaluated on a difficult test set including variations in expression and orientation.  

However, we have not applied any additional heuristics, typically incorporated into 

fully functional commercial and industrial systems.  For example, we have not 

experimented with multiple facial alignments, optimising crop regions or storing 

multiple gallery images.  All of which are known to improve error rates and can easily 

be applied to the multi-subspace systems presented here.  With these additional 

measures in place, it is likely that the improvements made to the core algorithm will 

propagate through to producing a highly effective face recognition system.  Given the 

fast 3D capture method, small face-keys of 184 vector elements (allowing extremely 
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fast comparisons), invariance to lighting conditions and facial orientation, this system is 

particularly suited to security and surveillance applications. 
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In the previous section we discussed two methods of selecting a set of dimensions from 

the complete collection of available face space and surface space systems and 

combining them to produce a augmented feature space that produces lower error rates 

than any of the individual systems alone.  Some brief analysis and experimentation 

demonstrates that although the global discriminant value can be used as a fast 

approximation of system effectiveness, performing a complete evaluation and 

subsequently using the EER as the selection criteria is a significantly more effective 

selection criterion for the combination algorithm.  Another aspect of the combination 

algorithm, which we have not yet addressed, is the order in which each dimension is 

selected and tested.  Initial experimentation has indicated that this may be important, as 

the value of contribution of any candidate dimension is dependant on those dimensions 

already included in the existing composite subspace i.e. the optimisation is local, not 

global. 

Actually, we have already begun to touch upon this issue, although somewhat 

indirectly, in the combination methods already discussed: it is precisely the reason we 

begin our combination with all dimensions from the current best performing system.  

Consider the case in which our composite face space consists of a single dimension, 

selected by chance from the worst of the face space systems.  The next dimension tested 

for incorporation is almost certain to succeed (regardless of how discriminating it is), as 

such few features are currently utilised and even the smallest amount of additional 

discriminatory information would improve the system.  On the other hand, once a 

combination incorporates a large number of dimensions is becomes increasingly 

unlikely that the next dimension will be of any benefit.  These effects are witnessed in 

that more dimensions nearer the start of the list are included than those towards the end, 

as can be seen in section 7.1.6 and 7.2.5 (in which face space systems were considered 

for combination in order of ascending EER). 

Some additional experimentation has uncovered another phenomenon that we must also 

consider here.  It is possible that the incorporation of numerous dimensions into an 

existing subspace will significantly improve results; yet incorporating any one of those 

same dimensions individually can actually increase error rates.  The combination 
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algorithms introduced so far only consider the addition of other dimensions on an 

individual basis and hence would miss any group of dimensions that require 

incorporation en masse.  This effect is particularly well highlighted if we take the 

converse approach to subspace combination, by initialising the combined selection with 

all dimensions from all subspaces and iteratively discarding dimensions if the resultant 

combination reduces the EER.  We see in section 7.3.1 that such an approach maintains 

a much greater number of dimensions than the ‘combination by addition’ method 

presented in sections 7.3.2 and 7.1.4. 

We believe that this effect is due to the necessity of a coarse level classification having 

been applied (by incorporation of one dimension) before a fine detail lower-level 

classification becomes useful.  In other words, some features are only capable of 

classifying sub-sets of faces.  It is clear that the combinations computed by the methods 

discussed so far do not achieve the optimal combinations.  Therefore we now explore 

three methods of subspace combination: combination by dimensional elimination; 

combination by dimensional accumulation; and combinatorial optimisation by genetic 

selection. 

7.3.1   Combination by Dimensional Elimination 

In this approach of dimensional combination we begin by combining all dimensions 

from every subspace produced, weighted by the inverse of the within-class standard 

deviation as explained in section 7.1.  The EER is then calculated before iteratively 

eliminating each individual dimension (by reducing the corresponding weight to zero) 

in turn and testing for an improvement in error rate.  If no increase in EER occurs the 

dimension is permanently discarded, otherwise the original weighting is reinstated. 

Composite subspace = all dimensions of all systems 

Compute EER of composite subspace 

For each dimension: 

Remove dimension from composite subspace 

Compute EER of composite subspace 

If EER has increased: 

Reinstate dimension into composite space 

Save composite subspace ready for evaluation 

Figure 7-20  Face space combination by dimensional elimination algorithm, using the EER as a 

fitness criteria. 
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By applying the algorithm above to a set of two-dimensional face recognition systems, 

we see that almost all dimensions are retained, as shown in Figure 7-21.  This is in stark 

contrast to the combination by accumulation algorithm, in which very few dimensions 

are accumulated, a shown in Figure 7-22.  It is also interesting to note that no 

dimensions are eliminated that were produced using the successful ‘slbc’ pre-processing 

technique, although seemingly contradictorily, no dimensions are eliminated from the 

‘hbrightness’ system (which has one of the highest error rates), yet several dimensions 

are eliminated from the ‘detail’ system, which has the lowest error rates on this data set. 

 

Figure 7-21  Face space dimensions used in the final multi-subspace system produced using the 

combination by elimination method. 

7.3.2   Combination by Dimensional Accumulation 

This is the combination algorithm used in previous sections to combine both two-

dimensional face recognition systems and 3D face recognition systems.  Although we 

now define the selection criteria as a reduction in EER, rather than the faster (but less 

successful) criterion of an increase in global discriminant.  We apply the algorithm 

shown in section 7.1.4, to the same set of data used by the Combination by Dimensional 

Elimination algorithm described in the previous section.  The combination produced can 

be seen in Figure 7-22. 
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Figure 7-22  Face space dimensions used in the final multi-subspace system produced using the 

combination by accumulation method. 

7.3.3   Combinatorial Optimisation by Genetic Selection 

In section 7.3.2 we described the phenomenon that one dimension may be of no value in 

discriminating between images without the application of other dimensions in unison.  

Therefore in computing the combination of multiple dimensions, considering each 

dimension on an individual basis does not allow for the incorporation of groups of 

dimensions that only be of benefit if included together.  Likewise for the Combination 

by Elimination algorithm it may be that removing a single dimension may increase error 

rates (because the removal of a high-level classification is causing several other 

dimensions to have a negative impact on recognition accuracy), yet removing a group of 

dimensions together will reduce error rates.  For these reasons we now introduce a 

genetic algorithm to compute a more optimal combination of subspace dimensions.  It is 

hoped that the nature of genetic algorithms, allowing traversal of many areas of the 

search space at the same time, will aid combination by avoiding the problem of local 

minima and incorporate elements that may have been of no use on earlier iterations. 

We define our genome as a Boolean vector: each element indicating whether or not a 

dimension is included in the combination.  The initial population shall consist of nine 

randomly generated vectors plus one additional vector in which only the dimensions 

from the most successful system are active.  Combining randomly selected genes from 
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two randomly selected parents creates each offspring.  We also apply random number of 

mutations (possible zero) to each child, which may take one of four forms: 

• Toggle a single (randomly selected) gene. 

• Toggle a set of consecutive genes. 

• Activate one or more consecutive genes. 

• Deactivate one or more consecutive genes. 

The fitness function applied to each individual calculates the EER produced when the 

face space combination (defined by the genome) is applied to a test set of faces (the 

lower the EER the fitter the individual).  Once the population contains twenty 

individuals the ten least fit are removed from the gene pool. 

Applying the genetic algorithm to the same data set as used for the two combination 

algorithms described above, we produce the combination of dimensions shown in 

Figure 7-23. 

 

Figure 7-23  Face space dimensions used in the final multi-subspace system produced using the 

combination by genetic selection method. 
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7.3.4   Results Comparison 

It is clear the three combination algorithms produce a very different combination of 

dimensions.  In this section we apply each combination algorithm to the two-

dimensional face recognition systems and the 3D systems. 

Error Rates From Combining 3D Systems Using Three 
Methods of Combination Optimisation
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Figure 7-24  Error curves produced by 2D and 3D multi-subspace systems using each of the three 

methods of dimensional combination. 
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Until this point we have concentrated on the combination of multiple two-dimensional 

face recognition systems and multiple 3D face recognition systems, considering the two 
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data types separately in the hope that different representations of the same data may 

encapsulation different features, which can subsequently be combined to improve 

recognition accuracy.  We now extend this approach to combine 3D systems with two-

dimensional systems in order to take advantage of both the geometrical shape available 

from 3D face models as well as the colour and texture information provided by two-

dimensional images.  It is likely that such a system will produce reductions in error 

rates, as it is probable that many features of the two types of data are mutually exclusive 

and therefore combine to great benefit.  The combination of these two types of data is 

viable as the 3D camera used to create 3D face models is capable of capturing both 3D 

shape data and two-dimensional texture images simultaneously.  Therefore, a 2D/3D 

hybrid system is applicable to real world applications without the need for any 

additional equipment. 

There are a number of ways in which we can utilise the two-dimensional data provided 

by the 3D camera.  Firstly, we could simply use the standard 2D images, extract the face 

and align the images according to the position of the eyes, as with the two-dimensional 

systems already described in section 4.  However, as the 3D face models produced are 

texture mapped with the 2D images another possibility presents itself.  We have 

previously discussed the possibility of matching two-dimensional projections of a 

texture mapped 3D model in section 6.1.  This approach effectively allows standard 

two-dimensional recognition methods to gain the advantage of 3D orientation 

normalisation and hence expand the range of facial orientations that can be recognised.  

We therefore have three paradigms of data that may be combined into a unified system: 

3D depth maps, 2D images and 2D projections. 

7.4.1   Results 

In this section we present the error rates produced when two-dimensional and 3D face 

recognition systems are combined and tested on the same data set as described in 7.3 

(test set B).  We apply the three combination algorithms to all pre-processing techniques 

and surface representations using test set A as the combination analysis data, before 

computing the error curve using test set B. 



Combining Methods of Face Recognition 

 

- Page 221122  -- 

Error Rates From Combining 2D Projection Systems 
Using Three Methods of Combination Optimisation
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Figure 7-25  Error rate curves of 2D projection multi-subspace systems produced using the three 

methods of dimensional combination. 

Figure 7-25 shows the error curves produced from three multi-subspace systems 

comprised of all pre-processing techniques applied to two-dimensional image 

projections (produced from a texture mapped 3D model).  All three combination 

methods produce very similar error rates, although the discarding (7.33% EER) and 

genetic (7.21% EER) method do have a slight advantage of the addition method (7.58% 

EER) of system combination, which follows the same pattern of results produced in 

previous combination experiments with 2D and 3D systems, adding further evidence to 

support the genetic algorithm as the superior method of combination. 

Looking at the patterns of dimensions included (Figure 7-21, Figure 7-22 and Figure 

7-23) by the various combination techniques, it is interesting to note the great difference 

in selected components, but relatively little difference in the error rates produced.  This 
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suggests that the fitness function of the combination search space has many peaks of 

similar magnitude, scattered throughout the search space.  This makes it particularly 

difficult to find the optimum without a global search (unfeasible at current processing 

speeds). 

In Figure 7-26 we have continued this line of investigation to combine 3D data (using 

the various surface representations discussed in section 5.3) and the projected 2D 

texture image.  Therefore, we utilise both the geometric shape data, as well as the 

orientation normalised two-dimensional texture information in a single system.  Again 

we test all three methods of combination. 
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Error Rates From Combining 3D and 2D Projection Systems 
Using Three Methods of Combination Optimisation
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Figure 7-26  Comparison of error rate curves of multi-subspace 3D and 2D projection systems 

produced using the three methods of dimensional combination. 

Clearly the use of both categories of information provides significant advantages, 

reducing the EER from 7.21% (using the genetic combination of 2D projections) down 

to 5.58%, 5.04% and 4.84% EER using the adding, discarding and genetic methods of 

combination respectively (once again the genetic method is shown to produce the most 

effective combination). 

We now present results gained by increasing the number of multi-subspace systems to 

include 3D depth maps, 2D projections and those that use standard 2D images.  

Although at first thought it may seem that the information provided by standard two-
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dimensional images is redundant when those same images have already been used in the 

2D texture map projections, some useful discriminatory information may still be 

available in those images for the following reasons: 

• 2D systems are aligned by the eyes rather than the nose tip (as with 2D 

projections) and hence may expose different cues in the face space. 

• 2D projections are effected by any noise present in the 3D surface, as 

well noise in the 2D image itself. 

 

Error Rates From Combining All Systems Using Three 
Methods of Combination Optimisation
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Figure 7-27  Error rate curves of multi-subspace systems produced using the three methods of 

dimensional combination across all face data types. 
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Once again, by introducing yet more information in the form of standard 2D images we 

are able to reduce error rates further.  As witnessed in previous experiments the genetic 

and discarding methods of combination generate the best results, producing EERs of 

4.50% and 4.55% respectively.  The adding method of genetic combination produces a 

significantly higher EER of 5.72%.  If we now compare the results of the most 

successful methods of combining each category of data, we get a good overview of the 

effectiveness of each type of facial representation for recognition. 

 

Error Rates of Various Combination Systems Using The Most 
Successful Method of Combination Optimisation
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Figure 7-28  Comparison of error rate curves of the most effective of each type of multi-subspace 

system. 
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Figure 7-28, shows the error curves of combining all two-dimensional systems (red), 

three dimensional systems (blue), 2D projections (green) and 3D with 2D data (dashed).  

We see that standard two dimensional systems produce the highest EER, as would be 

expected due to the varying facial orientations in the test data.  The use of 3D models 

overcomes this alignment problem by allowing 3D orientation normalisation and hence 

we witness a substantial drop in error rates.  However, we then see that using the 2D 

image projections actually produces lower error rates than the 3D surfaces (without 

texture mapping), demonstrating that the reduction in error is primarily due to the 

ability to orientate the face in 3D space and not a greater abundance of discriminatory 

information held within the 3D geometric surface data.  However, we do note that 

variations in lighting conditions were not represented in the test set and therefore one of 

the key advantages of using 3D surface shape alone is not apparent in the results 

produced.  Finally, the largest reduction in error rates occurs when we combine 3D 

surface shape with 2D texture projections, showing that although 2D projections do 

produce lower error rates than surface shape alone, there is still a substantial amount of 

discriminatory information in the surface shape of the face that is not represented within 

the two-dimensional texture data. 
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In the previous sections we have discussed methods of training multiple face 

recognition systems individually, each utilising a single pre-processing technique, then 

combining the resultant systems in a post-training combination approach.  What we 

have not considered until this point is the combination of multiple image representations 

before training occurs, in other words applying a pre-training combination algorithm 

before any LDA or PCA.  Because LDA formulates an image subspace in which all 

information is used to generate a set of the most discriminating dimensions from the 

entire image space, it would seem that the effort of selecting the best dimensions after 

this training has occurred could have been avoided, providing that the multiple image 

representations were available to the original LDA algorithm.  Therefore, by applying a 

number of image pre-processing techniques and concatenating the resultant images to 

create a larger image, which can than be used for LDA we provide the training process 

with all the information that would have been combined in the post-training 

combination methods. 
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Figure 7-29  Illustration of the process used to carry out pre-training combination. 

The main drawback of this method is the high computational time complexity.  As the 

computation time of creating an image subspace has a polynomial dependence on the 

size of the images, O(Mn2+n3), where M is the number of items in the training set and n 

the dimensionality (pixels) of the face images.  Computing an optimum combination 

would become an intractable problem as a new subspace would have to be computed at 

every iteration (whereas the post-training combination method just concatenates image 

subspace projections).   Despite this, just combining a small number of images would 

still allow generation of a face space with the potential to make more efficient use of the 

available information.  By concatenating just four pre-processed images the training 

time will be increased by a factor of 61 (taking approximately 15 hours to complete, 

rather than including all 31 image-processing techniques increasing computation time to 

nearly 10 months).  Therefore, in order to test this pre-training combination approach 
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we intuitively select four image pre-processing techniques for use in a comparison of 

pre-training and post-training combination approaches.  The four image processing 

methods we shall test are the original greyscale image, brightness normalisation, 

enhanced detail and the slbc technique (see section 4.5 for a full explanation of these 

image processing techniques).  The reasons for selecting these four techniques are: they 

produced some of the lowest EERs in previous investigations; the respective face spaces 

contain many dimensions selected by the post-training combination algorithms; they 

each produce significantly different images and hence provide a wide variety of 

information. 

Figure 7-30 shows the error curves produced by combining these four types of image 

before training, compared with combining the four separate systems after training has 

occurred (simply by concatenating the four face space projections).  We also include the 

combination produced by combining all 2D systems using the genetic combination 

method. 

 

Figure 7-30  Comparison of error rate curves produced by post-training and pre-training 

combination systems. 
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This experiment has produced some interesting results.  Firstly, we see that the 

combination computed by the genetic combination algorithm is not optimal.  Even 

though the genetic combination contains various dimensions from all twenty-four 2D 

systems (10.33% EER), a simple intuitive selection of just four systems produces a 

lower EER of 9.26%, suggesting that the evolution methods used in the genetic 

algorithm could be improved by toggling all dimensions from a entire face space in a 

single mutation.  More surprisingly we see that the error rates produced by combining 

the four systems before training are higher (with an EER of 9.66%) than those produced 

by combining the four systems after training.  There are a number of possible reasons 

for this outcome: 

• The two-stage training process of the post-training combination method 

acts as a filtering mechanism for any features that have been over-trained 

on the test data, whereas any such features will remain in the pre-training 

combination method. 

• By concatenating four images before applying LDA we have supplied 

significantly more data, much of which is simply a different 

representation of the same (possibly biased) information, giving extra 

weight to what may actually be poor features for discrimination if 

applied to a different set of data. 

• Because each image is derived from the same original image it may be 

that the noise to signal ratio is substantially increased through 

concatenation, leading to a relatively poor subspace.  However, by 

performing LDA on the individual smaller images with a better signal to 

noise ratio, several more effective subspaces are produced. 

• It is well known that PCA and LDA methods ideally need a collection of 

training images similar in quantity to the dimensionality of the data for a 

statistically significant analysis.  This is typically not the case with face 

recognition systems, worsened by increasing the image size by a factor 

of four. 

• The combination process accumulates dimensions based on the same 

criteria used to evaluate performance (the EER).  This combination 
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process may therefore be more suited to producing a better subspace 

(according to the evaluation criteria) than PCA and LDA, which merely 

attempt to produce greatest between-class scatter.  Such representations 

are not necessarily optimal for classification due to subspace manifolds 

and local clustering. 



Final Comparative Evaluation 

 

- Page 222222  -- 

88      FFiinnaall   CCoommppaarr aatt iivvee  EEvvaalluuaatt iioonn  

Throughout this thesis we have presented a range of results from numerous 

investigations carried out during the course of this PhD research.  We began by 

exploring two-dimensional face recognition methods using a database of 2D face 

images provided by Martines and Benvente [ 39 ].  As our direction of research began to 

focus on 3D techniques we required a database of 3D face models.  As no suitable 

database was available we managed to obtain access to a prototype state-of-the-art 3D 

camera and began to populate a preliminary database for development of 3D face 

recognition algorithms.  Initial investigations indicated that this direction of research 

was promising, but 3D imaging technology progressed substantially over that period 

and a superior 3D camera soon emerged which was capable of capturing high quality 

3D models with high-resolution 2D texture maps.  At this point we began to populate a 

new 3D face database that would provide the capability to test and develop 3D face 

recognition technologies, incorporate 2D texture maps and compare 3D face recognition 

directly to 2D approaches using images captured at the same instant. 

This selection of databases available have continually evolved throughout the course of 

these investigations, which means that we cannot directly compare the results of those 

systems tested on one database to those computed from another.  Having reached the 

end of the development stage in this research, we now address this issue by defining a 

standard dataset, containing 2D and 3D images acquired simultaneously and hence 

under the same environmental conditions. 

In section 8.1 we specify the image capture conditions and present the results gathered 

in section 8.2 and 8.3.  We apply two methods of face recognition analysis to the 

standard dataset, reflecting the two primary applications of face recognition technology: 

verification and identification.  Verification is performed by comparing two face images 

(either 2D, 3D or 2D projections), calculating False Acceptance Rates and False 

Rejection Rates for a range of threshold values.  The resultant error curve is plotted as 

in previous sections.  Again the EER is taken as a single comparative value, for direct 

comparison of multiple systems.  In addition to the verification tests we also produce 

cumulative match curves for each face recognition system, indicating the system 
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effectiveness in searching a large database of facial images to identify the correct 

subject.  

88..11      DDaattaabbaassee  SSppeeccii ff iiccaatt iioonn  

For the purpose of these experiments we select a sample of 1770 faces (280 people) 

captured under the conditions in Figure 8-1, taken from the University of York 3D Face 

Database [ 50 ].  Each face is represented by a standard two-dimensional greyscale 

bitmap image, a 3D face model and a texture map projection of the orientation 

normalised 3D model (also stored as a 2D greyscale bitmap).  Figure 8-1 shows the 

range of capture conditions present in the database, but we refer the reader to section 5.1 

for a detailed explanation of how the data was acquired and the specific data formats. 

A test set of 735 faces (115 people) is selected at random to compute error rates and 

cumulative match rates, leaving the remaining 1035 faces (165 people) to use in training 

the various face recognition systems.  Typically, 300 of these faces are used to compute 

the face space projection matrices, while the face space combination methods require 

the additional faces in order to compute the best system combinations.  The training and 

test sets are completely disjoint, so that none of the faces (or the people) in the training 

sets are present in the unseen test set. 
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Figure 8-1  Example image capture conditions and data types present in the database used for the 

final comparative evaluation. 
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88..22      VVeerr ii ff iiccaatt iioonn  RReessuull ttss  

Error rate curves are produced as described in section 4.2.1, using the 735 faces of the 

test set, such that each error rate is based on 269,745 verification operations.  We begin 

by comparing the EERs of all the multi-subspace systems (see section 7), as shown in 

Figure 8-2. 
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Figure 8-2  EERs of each multi-subspace system applied to the final evaluation test set. 

We see that the two best performing face recognition systems use a combination of 2D 

images, 3D models and 2D projections, producing EERs of 4.55% and 4.50%.  The 

genetic method (4.50% EER) of combination shows a slight improvement over the 

discarding method (4.55% EER), whereas the adding method has a significantly higher 

EER of 5.73%.  The multi-subspace systems with the highest EERs are the 2D multi-

subspace systems (11.29%, 10.42% and 10.33% EER).  No doubt this is a reflection of 

the systems inability to cope with variations in head orientation, as all 2D projection 

systems (using orientation normalised projections of the same faces) achieve much 

lower EERs of 7.59%, 7.34% and 7.22%.  Perhaps surprisingly, the 2D projection 
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systems outperform the systems that use 3D face models, demonstrating that the colour 

and texture of the face is more discriminating than the face shape alone.  However, as 

variations in lighting condition were not included in the test set, we do expect to see 

lower error rates from the 2D systems than if strong variations in lighting conditions 

were included in the test data.  

We now expand our comparison of face recognition systems to examine a greater range 

of FARs and FRRs by looking at the full error curve of eight face recognition systems.  

Figure 8-3 shows the best performing single-subspace 2D, 3D and 2D projection 

systems, compared with the best performing multi-subspace 2D, 3D and 2D projection 

systems. 

 

Figure 8-3  Error rate curves of the most effective face recognition systems using each type of face 

data and combinations of those systems. 
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Figure 8-3 shows the performance of the face recognition systems with FAR and FRR 

ranging from zero to thirty percent.  On the right side of the graph we see the 

circumstances under which a high security system would operate: tolerating a higher 

rate of false rejection to achieve a lower possibility of an intruder gaining access.  On 

the left hand side of the graph the plots show the characteristics of such systems 

operating in a system that require high subject throughput, at the expense of a higher 

rate of false acceptances.  Again we see the same pattern of error rates, with the full 

multi-subspace systems achieving the lowest error rates, followed by 2D projections, 

3D models and finally 2D systems.  Taking the EER from each of these plots, we can 

compare the range of systems using a single error rate, as shown in Figure 8-4. 
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Figure 8-4  EERs of the most effective face recognition systems using each type of face data and 

combinations of those systems. 

It is interesting to note that the two-dimensional system using the detail pre-processing 

method produces a lower EER (9.55%) than the best 2D combination method 

(genetically combining all 2D systems), which produces an EER of 10.33%.  This is 

particularly surprising, as the fitness function for combining multiple systems requires 

an improvement in the EER for any two systems to combine.  However, because this 

analysis is computed using a different data set, these results seem to indicate substantial 
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over-training on the combination set, which means that when the system is then applied 

to the unseen test set, the error rates are significantly higher. 

88..33      II ddeenntt ii ff iiccaatt iioonn  RReessuull ttss  

The identification test evaluates the ability of a face recognition system to search a 

database of faces and select the most likely matches to a given probe face.  This method 

of evaluation differs from the verification tests in that we are not interested in gaining a 

definite acceptance/rejection decision for a pair of faces, but rather in producing an 

ordered list in which the most likely match is placed highest in the list.  For the 

purposes of this investigation the test set is separated into a gallery set (the database of 

faces to be searched) containing a single face from each of the 115 people in the training 

set, and a probe set of the remaining 620 faces (of the same 115 people).  We perform 

these tests in a closed-world environment, such that we guarantee that the probe subject 

is present in the gallery database.  This format allows 620 identification operations to be 

performed on a database of 115 people, totalling 71,300 face comparisons.  We define a 

cumulative match rate as the percentage of identification operations that returned the 

correct match within the top N returned results.  By varying N, we compute a 

cumulative match rate for each rank, producing a cumulative match curve, as shown in 

Figure 8-5.  Finally, to provide a simpler method of comparison between systems we 

extract the cumulative match rates for ranks 1, 5 and 10 for display in a bar chart as 

shown in Figure 8-6. 
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8.3.1   Two-Dimensional Systems 

Figure 8-5 shows the cumulative match curve for the three most effective 2D face 

recognition systems.  We see the cumulative match rate trail off as it becomes less and 

less likely that the correct match will be returned in the top N rank.  In particular a sharp 

decrease in cumulative match rate is seen for ranks of less than 10.  In general the best 

performing 2D system uses the detail pre-processing method, until the correct match is 

expected in the top 5 ranks, in which case the highest match score is achieved by a 2D 

system using no pre-processing. 

 

Figure 8-5  Cumulative match curves of the three most effective 2D face recognition systems. 

Figure 8-6 shows the cumulative match rates for ranks of one, five and ten for all 2D 

face recognition systems.  Again we see that the detail pre-processing method returns 

the correct match in the top ten most often (91.13%), although the most effective system 

depends on the required placement of the correct match within the rank. 
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Figure 8-6  Cumulative match rates of 2D face recognition systems. 

For example the brightness mean pre-processing method is more effective than the 

detail method at returning the correct match at rank 1, despite having a low cumulative 

match rate of 90.32%, when returning the correct match in the top 10. 

8.3.2   Three-Dimensional Systems 

Figure 8-7 shows the cumulative match curve for four 3D face recognition systems.  We 

see only a slight improvement over the 2D face recognition systems, although we do 

witness that different surface representations improve the cumulative match rate 

significantly over the standard 3D depth map representation, with the vertical derivative 

(using the larger convolution kernel) providing the highest cumulative match rate of 

91.45% correct matches within the top 10. 
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Figure 8-7  Cumulative match curves of the three most effective 3D face recognition systems. 

Looking at the bar chart of match scores shown in Figure 8-8 we see a wide range of 

results for the various surface representations.  As for verification, the most effective 

systems are those using the gradient representations. 

 

Figure 8-8  Cumulative match rates of 3D face recognition systems. 
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8.3.3   Two-Dimensional Texture Projections 

Once again the 2D projection systems outperform both the standard 2D images as well 

as the 3D face models.  However, the improvement witnessed in these identification 

tests is not as substantial as those seen in the verification tests.  Figure 8-9 shows the 

cumulative match curve for three 2D projection systems.  The match scores for the three 

systems returning the correct match within the top 10 rank and below are relatively 

similar, although the brightness mean method does show some substantial improvement 

returning the correct match in higher ranks. 

 

Figure 8-9  Cumulative match curves of the three most effective 2D projection face recognition 

systems. 

As with 2D systems, some of the highest cumulative match rates are achieved by the 2D 

projection system using no pre-processing. 
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Figure 8-10  Cumulative match rates of 2D projection face recognition systems. 

Because of the strong connection between the standard 2D systems and the systems that 

use 2D projections, one having been orientation normalised but still the same texture 

intensity data, we present a direct comparison of these systems in Figure 8-11. 

 

 

Figure 8-11  Comparison of cumulative match rates of 2D and 2D projection face recognition 

systems. 

 

 



Final Comparative Evaluation 

 

- Page 223344  -- 

8.3.4   Multi-subspace systems 

We now present the cumulative match results achieved using the various multi-subspace 

systems.  Figure 8-12, Figure 8-13 and Figure 8-14 show the cumulative match curves 

for systems combined using the adding, discarding and genetic method of face space 

combination respectively. 

 

Figure 8-12  Cumulative match curves of combination face recognition systems using the 

accumulation method of dimensional combination. 

Figure 8-12 above presents the cumulate match curve for each type of face data, as well 

as the full multi-subspace systems.  Once again we see the greatest improvement when 

3D and 2D data are combined into a single system. 
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Figure 8-13  Cumulative match curves of combination face recognition systems using the 

elimination method of dimensional combination. 

As with the verification tests, we see that the discarding and genetic methods provide 

the most effective means of combining multiple systems.  All systems show a distinct 

advantage over the best individual systems using the same type of data and we also 

witness a substantial increase in cumulative match rates when 2D and 3D data are 

combined. 
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Figure 8-14  Cumulative match curves of combination face recognition systems using the genetic 

method of dimensional combination. 

 

 

Figure 8-15  Cumulative match rates of face recognition system combinations. 
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Figure 8-15 shows the cumulative match rates for ranks of one, five and ten for all 

multi-subspace systems.  As with previous results, we see that the cumulative match 

rate at rank one is not directly proportional to the cumulative match rate for ranks five 

or ten.  The genetic and discarding methods generally have an advantage over the 

adding method of combination, with the genetic combination of all systems providing 

the highest cumulative match rate for rank one, five and ten. 

8.3.5   Cross Comparison 

We now compare the results of the most effective systems from each data type against 

the most effective multi-subspace systems.  Figure 8-16 clearly shows the advantage 

gained by combining multiple face spaces, with all three single-subspace systems at the 

lower end of the bar chart (ordered by cumulative match rate at rank five) and the full 

multi-subspace systems showing a substantial increase in cumulative match over all of 

the single-subspace systems.  However, we do note that the 2D system with no pre-

processing is more effective than some of the multi-subspace systems, when comparing 

cumulative match rate at rank one. 

 

Figure 8-16  Cumulative match rates of the most effective multi-subspace systems using each type 

of face data. 

Looking at the cumulative match curve used to generate the chart above in Figure 8-16, 

we see how each system performs over the full range of rank values and the distinct 
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improvement of the two most effective multi-subspace systems becomes more apparent, 

seeing that close to one hundred percent of searches will return the correct match within 

the top thirty. 

 

Figure 8-17  Cumulative match curves of the most effective face recognition systems and system 

combinations. 

A closer inspection of the curve over rank values less than ten is shown in Figure 8-18.  

We see that the improvement between combining just 2D projections and 3D data and 

combining all three data types becomes more evident for the lower ranks. 



Final Comparative Evaluation 

 

- Page 223399  -- 

 

Figure 8-18  Cumulative match curves over the top ten ranks produced by the most effective signle 

subspace face recognition systems and multi-subspace systems. 

We also see that some of the curves cross over as the rank value is reduced from ten 

down to one, meaning that some of the systems are more effective if the correct result is 

only required in some top N returned matches, whereas a different system may be more 

appropriate if we only consider the number one match returned (which would be the 

case if the system was fully automated). 

Finally, we compare the EER produced from the verification tests against the results 

produced in the identification tests.  To do this, we represent the cumulative match 

results in terms of cumulative match error, defined as the percentage of search 

operations that fail to return the correct match at rank one.  Figure 8-19, uses two 

vertical scales, such that these values may be compared. 
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Figure 8-19  Correlation analysis between verification and identification error rates. 

We see some correlation between the EER and the CME, in that the two most effective 

verification systems also produce the lowest CME.  However, for the other systems this 

correlation is less apparent. 

88..44      CCoonncclluussiioonn  

By providing a database of faces stored in three data types (3D, 2D and 2D Projections), 

in which each of the data types were acquired at the same instant in time, under exactly 

the same capture conditions, we have provided the means to test and compare numerous 

face recognition systems on an equal level.  By applying 2D, 3D and 2D projection face 

recognition systems to this data set, we have shown that the 2D projection systems are 

significantly more effective that any of the 2D or 3D systems for one-to-one 

verification.  As the 2D and 2D projection systems use the same greyscale intensity 

data, the improvement in recognition accuracy must be attributed to the ability to 

perform orientation normalisation prior to recognition and the fact that the 2D 

projection images are all to the same scale. 

As the 3D face models are orientation normalised and all to the same scale (as with the 

2D projections) and the 3D face recognition systems did not perform as well as the 2D 
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or 2D projections, this demonstrates that 3D face shape alone is not as discriminating as 

colour and texture information. 

However, this is providing the lighting conditions are relatively controlled.  As each set 

of faces for each person in the database were captured in the same session without 

altering the lighting conditions, this did give the 2D face recognition systems a slight 

advantage, as one of the key reasons for using surface shape alone in 3D face 

recognition systems is to create a face recognition system that is invariant to variations 

in lighting conditions.  This is perhaps the reason behind the anomaly witnessed in the 

identification experiments, where the 2D system with no pre-processing emerged as the 

most effective for rank-one identification (except for combinations of 2D and 3D 

systems).  It is possible that this 2D system is using the lighting conditions on the face 

as a cue for recognition and that because these lighting conditions may be quite unique 

(due to the slow progressive changes in lighting throughout the captures sessions and 

the height of the person meaning overhead lighting is reflected differently) they are very 

useful for selecting a rank-one match.  Whereas in order to achieve the higher 

cumulative match rates for larger rank values, the system must be less reliant on the 

chance that the lighting has remained constant and therefore other systems take the lead, 

as seen when considering matches in the top ten: the 2D none system becomes the least 

effective. 

We have shown that combining multiple systems provides substantial benefits in terms 

of verification and identification capabilities.  In almost all cases combining multiple 

systems provides a reduction in EER and CME, when compared to all individual 

systems using the same type of data.  A much greater improvement is then provided 

when we bridge the gap between 2D and 3D data, by combining systems across these 

data types. Combining 2D projection systems with 3D systems reduced the EER to 

4.84% and improves the CMR-10 to 96.94%.  The further improvement introduced 

when standard 2D systems are included in the combination could be due to an increased 

robustness to small inaccuracies in orientation normalisation (2D images are aligned by 

the eyes rather than the nose tip), by effectively providing an alternative method of 

alignment.  Secondly, the orientations at which different people naturally position their 

head may also be used as a cue for recognition.  It may also be that variations in lighting 

from one data collection location to another (represented in 2D images by small areas of 
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background in the corners of the image) could aid recognition, as no subject was present 

in more than one capture location. 
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99    FFiinnaall   CCoonncclluussiioonnss  aanndd  FFuuttuurree  WWoorr kk  

We now bring a close to this thesis by summarising the discoveries and achievements 

made throughout our research.  In chapter 1 we outlined a number of goals that we 

hoped to achieve and we now begin this chapter by considering our progress towards 

each of these goals in relation to the relevant sections of this thesis.  We then discuss 

each of the technologies explored, again referring to individual chapters, summarising 

the progress made.  Finally, we draw overall conclusions from the results obtained and 

predict their impact on the research field, before suggesting the most promising avenues 

of future research. 

99..11      PPrr ooggrr eessss  AAcchhiieevveedd  

Give an overview of existing face recognition systems and the current state of 

research in this field. 

In section 3 we reviewed the current literature regarding face recognition technology 

and identified a number of promising methods worthy of further investigation.  In 

particular we focused on PCA and LDA approaches, such as the Eigenface and 

Fisherface methods as discussed in sections 4.3 and 4.4 respectively.  We carried out 

experiments similar to those of other researches, reconfirming results on a standard 

dataset and began to explore some ways of improving these systems. 

Identify the problems associated with existing face recognition systems and 

possible avenues of research that may help to address these issues. 

Among the available literature it was clear that several issues had become well known 

as primary hindrances to face recognition systems, namely variations in lighting 

conditions, facial expressions and head orientation.  Although there are several other 

problems that will eventually need to be addressed, such as facial occlusion, disguises 

(beards, glasses, headwear) and aging, these are generally considered secondary 

(perhaps because they are more difficult).  Obviously, it is accepted that a face cannot 

be recognised if it cannot be seen, but an ideal surveillance application should be able to 

cope with these secondary problems.  However, a great deal of improvement was 
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needed in terms of coping with lighting, facial expression and head orientation before 

these more difficult problems could be addressed. 

Improve the effectiveness of existing face recognition algorithms, by introduction 

of additional processing steps or adaptation of the method. 

In order to improve a systems ability to cope with variations in lighting we explored the 

area of image pre-processing in section 4.5, in an attempt to normalise lighting 

conditions while maximising between-class variation.  We identified a number of pre-

processing methods that reduced error rates for the eigenface system, presented in 

section 4.6.  We then addressed the problem of expression by further developing the 

statistical analysis used in producing the model for discrimination.  Approaches such as 

the Fisherface method allowed for multiple representations of the same face in order to 

capture such within-class variation, which we explored in detail in section 4.4, again 

showing how image pre-processing can reduce error rates. 

Design and implement novel face recognition approaches, taking advantage of the 

newly emerging 3D-capture technology. 

In order to address the problem of head orientation, we began an investigation into the 

use of 3D capture technology to aid face recognition in section 5.  Using 3D face 

models we were able to normalise facial orientation using the techniques described in 

section 5.2, to perform recognition on face depth maps as explained in section 5.3.1.  

We continued this research direction using the experience gained in 2D face recognition 

investigations; we applied various pre-processing methods to produce numerous 3D 

surface representations, again producing a reduction in error rates.  The resultant system 

was able to perform face recognition to a high level of accuracy, with much improved 

robustness to head orientation, as presented in section 5.3. 

The 3D face database also allowed for projection of the 2D texture from an orientation 

normalised 3D model.  This facilitated creation of a third novel type of face recognition 

system, using 2D techniques applied to an orientation normalised 2D image, created 

using some of the advantages offered in 3D systems, as shown in section 6.1.  In an 

attempt to utilise multiple approaches to improve error rates, we developed new 

methods of combining systems (section 7), taking advantages of 3D and 2D data and a 

range of pre-processing methods in a single system. 
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Finally, returning to the first principles of 3D face recognition to develop a new 

recognition algorithm aside from the subspace PCA and LDA approaches used in 

previous chapters, we developed the novel IRAD contours methods of face recognition 

(see section 5.7). 

Analyse and evaluate a range of face recognition systems applied to both two-

dimensional and three-dimensional data. 

Because 3D face recognition was relatively unexplored we collected a large database of 

3D face models to train and test 3D face recognition systems.  This database will 

provide a great resource for research into the areas of 3D and 2D face recognition.  As 

the database includes 2D images, captured alongside the 3D face models it allows a 

direct comparison of the two types of face data.  We carried out investigations using the 

same PCA and LDA approaches applied to 3D face data and the corresponding 2D face 

data and presented the results in section 8.   

Determine the most effective method of combining the range of face recognition 

techniques, in order to achieve a more effective face recognition system. 

It became clear in section 7.2 that although combining multiple face recognition 

systems could reduce error rates, the degree of this improvement was dependent on the 

method of criteria used for combination.  In section 7.3 we developed and tested three 

methods of combination.  The results presented demonstrated that the most effective 

method of the three was to use a genetic algorithm to optimise the combination.  

However, in section 7.5 we were able to demonstrate that even this improvement could 

be surpassed by some human intuition and that a more effective genetic algorithm 

would likely be discovered with some additional investigation. 

Evaluate this final face recognition system and present results in a standard 

format. 

In chapter 8 we defined standard training and test sets from the 3D face database, in 

which each image was represented by a 3D face model, 2D image and 2D texture 

projection.  We then selected numerous face recognition systems and compared the 

performance on this triple modal database.  The results are presented in such formats as 

to be easily compared to the majority of face recognition publications. 
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Identify limitations of the final face recognition system and propose a line of 

further research to combat these limitations. 

In section 9 we describe some of the difficulties still faced by face recognition systems.  

We suggest points at which our own research may be extended to explore these 

problems and what other technologies are required in order to increase the capabilities 

of face recognition systems. 

99..22      22DD  FFaaccee  RReeccooggnnii tt iioonn  

We began by exploring the eigenface method of face recognition, implementing a 

standard system using no image pre-processing to produce an EER of 34.0%.  Further 

investigation showed that some pre-processing techniques could greatly reduce error 

rates and without any alterations to the eigenface technique itself, an EER of 22.4% 

percent can be achieved (a reduction of 11.6%).  We published these findings in the 

conference proceedings of the International Conference on Image and Graphics.  

Although the test set used in these experiments contained a majority of extremely 

difficult images (20% of the images are partially obscured and 40% of the images have 

extreme lighting conditions), an error rate in which one in five verifications produces an 

incorrect decision is not suitable for most potential face recognition applications.  

However, this investigation did prove that selecting a suitable image pre-processing 

technique is vital to the performance of a face recognition system. 

Continuing research focused on appearance based approaches leading towards the 

Fisherface method, which is widely reported to produce superior recognition accuracy 

than the eigenface method when multiple examples of the same subject are available for 

training.  However, our initial experiments did not comply with these findings.  Further 

investigation showed that by altering the training and test sets such that they both 

represented the same capture conditions produced significantly better results.  

Therefore, if the Fisherface method is to be used in a real world scenario, it is vital that 

the training set is an adequate representation of the expected application data.  Providing 

such a training set is available, the Fisherface method has significantly lower error rates 

(20.1%) than both the eigenface (25.5%) and direct correlation methods (25.1%) applied 

to the same test set.  Hypothesising that the Fisherface method would be as dependent 

on the image pre-processing techniques as the eigenface method, we tested the same 
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processing techniques as in previous experiments, reducing the EER to 17.8%.  We 

compared the Fisherface and eigenface methods in detail in section 4.6 (also published 

in ‘Face Recognition: A Comparison of Appearance-Based Approached’ [ 15 ] and 

presented at  the International Conference on Digital Image Computing: Techniques and 

Applications.  These investigations supported the consensus that Fisherface systems 

typically produce lower error rates than eigenface.  Although an additional key finding 

was that lighting correction techniques (colour normalisation etc.) have less affect than 

application of LDA to model such variations. 

99..33      33DD  FFaaccee  RReeccooggnnii tt iioonn  

Because of the success of PCA and LDA appearance-based approaches to two-

dimensional face recognition, we adapted these methods for application to 3D face data.  

This required implementation of an orientation normalisation routine, to localise the 

nose of the 3D face model and orientate the facial surface to a fronto-parallel 

orientation, before producing a depth map of the 3D face model.  Applying PCA to 

these depth maps we introduced the eigensurface method of face recognition, which was 

capable of recognising faces with substantially lower error rates  (12.7% EER) than the 

best two-dimensional systems (20.4% EER and 17.8% EER).  These promising results 

(published in [ 16 ]) demonstrated that geometric face structure is useful for recognition 

when used independently from colour and texture and capable of achieving high levels 

of accuracy, suggesting that 3D face recognition has distinct advantages over 

conventional two-dimensional approaches. 

To follow on the success of applying PCA to facial surface representations we 

continued along the same course of research as applied to two-dimensional systems by 

examining the application of LDA to 3D surface representations.  The EER produced 

using the best surface representations was 11.3% EER, again demonstrating the superior 

performance of LDA when compared with PCA approaches, as well as reinforcing 

earlier findings that 3D face recognition could produce better results than corresponding 

two-dimensional Fisherface systems (17.8% EER).  The experiments carried out to 

produce these results are documented in detail in section 5 (also published in [ 17 ]).  

Given that the 3D capture method produces face models invariant to lighting conditions 
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and provides the ability to recognise faces regardless of pose, this system is particularly 

suited for use in security and surveillance applications. 

Rather than focus purely on subspace-based approaches to 3D face recognition we also 

developed a novel method capable of recognising faces based on cues extracted from 

both the colour and geometric shape data available in 3D face models.  One of the key 

advantages of our IRAD contours method is that it uses relatively little registration in 

terms of feature detection and image alignment.  Once this single feature localisation 

operation has been performed all variances due to head orientation are reduced to a one-

dimensional shift in a simple cross-correlation process.    Using this technique we were 

able to show that a single contour around the tip of the nose contained enough 

discriminatory information to perform recognition with an EER of just 21.91%.  

Although we were restricted by time limitations to explore this method in great detail, 

we were able to apply a simple weighted sum across signal ensemble correlation scores, 

reducing the EER to 20.02%, although much greater reductions are expected if colour 

and texture information were included and additional constraints applied. 

Finally, we investigated a method that perhaps lies at a midpoint between two-

dimensional and 3D face recognition.  By using a texture mapped 3D face model we 

produced system that was able to orientate the face to a fronto-parallel orientation 

before projecting the texture back into the 2D image plane.  This 2D image could then 

be used for recognition as with standard two-dimensional face recognition methods.  

We have demonstrated that such 2D projection systems have significant advantages 

over standard 2D systems:  in almost all cases the error rates are significantly lower than 

the equivalent system without 3D orientation.  This emphasises the importance of 

orientation normalisation for recognition and that the use of absolute size (2D 

projections are real-size) as a feature for recognition can provide additional 

discriminatory information. 

However, an additional side-effect of 2D projection systems, which may also have 

improved results, is that surface noise in terms of depth precision errors are effectively 

compressed onto a 2D plane.  Because no virtual lighting or surface shading effects are 

used, any error in surface depth is not visible in the 2D image projection.  Perhaps with 

a better method of dealing with surface noise in 3D methods we would see substantial 

improvements. 
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99..44      MM uull tt iippllee  SSuubbssppaaccee  CCoommbbiinnaatt iioonnss  

By applying FLD as an analysis tool to individual face space dimensions we were able 

to confirm that although an image subspace may not perform well when used for 

recognition, it may still contain discriminatory components that could complement other 

face space systems.  Hence we uncovered the potential to improve recognition error 

rates by combining multiple dimensions from a range of face recognition systems.  

Combining multiple systems in this way has been shown to be highly beneficial when 

used with the best single-subspace eigenface system, reducing the EER from 19.7% to 

15.4%.  Although when the same method was applied to the Fisherface systems, little 

influence was witnessed.  These initially confusing results lead to further investigation 

into the methods of combination and weighting schemes applied.  By using the EER as 

combination criteria, we were able to demonstrate that a Fisherface system could also be 

improved in the same way, reducing the EER from 17.8% using the best processing 

technique down to 12.8% for the multi-subspace.  We submitted the findings from this 

investigation to BMVC 2004, which were later published in the conference proceedings 

[ 21 ]. 

Naturally, this method of system combination could also be extended to the appearance-

based 3D systems, which we tested using a variety of distance metrics, to discover that 

the cosine distance metric was the most suitable for dimensional combination.  Out of 

the seventeen surface spaces (with forty-nine dimensions in each one) sixteen subspaces 

were shown to provide at least one useful dimension, totalling 184 dimensions in the 

final composite surface space.  This combination process was able to reduce the EER 

from 11.5% to 9.3% EER, which is explained in more detail in section 7.2. 

The final application of combining multiple subspaces was to combine 3D and 2D 

systems in order to create a face recognition method that utilises both 3D geometric 

shape and 2D texture information together with the ability to perform orientation 

normalisation.  This combination managed to reduce the EER to 4.84%.  These error 

rates are state-of-the-art, particularly when considering that this is applied to test sets 

with variations in head orientation and the increased robustness to lighting variation due 

to the use of geometric shape data.  However, it is likely that further reductions are still 

possible using a similar method of dimensional combination.  This prediction is 

extrapolated from the realisation that the combination of two-dimensional systems is not 
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optimal.  Even though the combination contains various dimensions from all twenty-

four 2D systems (producing 10.33% EER), a simple intuitive selection of all dimensions 

from just four systems produces a lower EER of 9.26%.  This suggests that an improved 

combination process could be derived from the principles used in the intuitive selection 

(four of the best systems using very different pre-processing techniques).  Because this 

improved combination, utilising only four face spaces performs so well, it raises the 

question as to whether these four image types could be combined prior to LDA.  This 

would not be possible using all pre-processing techniques as the high time space 

complexity makes the process intractable, but it may produce a more efficient subspace 

for recognition than combining the dimensions after training. 

Surprisingly, this is not the case.  We see that pre-training combination produces a 

higher EER of 9.66% than those produced by combining the four systems after training.  

We hypothesise that the reason for the improved results of the post-training 

combination is due to the use of two disjoint training sets: one to compute the projection 

matrices and the second as a double check before combining only the most 

discriminatory dimensions.  Perhaps by concatenating four images before applying 

LDA we supplied so much information that the system effectively over-trains on the 

single training set, but forcing four separate systems to rely on less information and then 

combining on a separate secondary training set reduces any over-training that may have 

occurred in the preliminary LDA.  

99..55      CCoommppaarr aatt iivvee  EEvvaalluuaatt iioonn  

The penultimate chapter of our thesis provided a final evaluation across three data types 

(3D, 2D and 2D Projections), in which each of the data types were acquired at the same 

instant in time, providing the means to test and compare numerous face recognition 

systems on an equal level.  This was done to recompense the inability to directly 

compare some of the results from the various experiments throughout our research.  We 

included an additional measure of system effectiveness in the form of a cumulative 

match curve, in order to demonstrate a systems ability to perform at the task of 

identification when searching through a database of known faces. 

The ability to directly compare the results from numerous systems has allowed for some 

interesting conclusions.  We see that the 2D projection systems are significantly more 



Final Conclusions and Future Work 

 

- Page 225511  -- 

effective than any of the 2D or 3D systems for one-to-one verification.  Because these 

two types of system are actually using the same greyscale intensity data, the 

improvement in recognition accuracy can only be attributed to the orientation 

normalisation procedure and the consistent scale of 2D projections.  Conversely, 

because the 3D systems are also privy to these same advantages, but do not perform as 

well as the 2D projections this demonstrates that 3D face shape alone is not as 

discriminating as colour and texture information (providing the lighting conditions 

remain constant). 

The final evaluation also reconfirmed that combining multiple systems provides 

substantial benefits for both verification and identification operations.  The multi-

subspace using 2D, 3D and 2D projection data achieved a CMR of 96.94% correct 

matches returned in the top ten. 

99..66      FFuuttuurr ee  RReesseeaarr cchh  

The most effective face recognition system produced from our research has been the 

multiple subspace combinations that combine Fisherface and Fishersurface systems 

using 3D face models, 2D images and 2D texture projections into a single composite 

subspace.  Although we explored three methods of combination and identified the 

genetic algorithm method as marginally the most effective, there is still a great deal of 

development that may be done in this area.  One brief experiment has already 

demonstrated that an intuitive selection of just four subspaces can produce lower error 

rates than the best combination produced by the GA, when applied to two-dimensional 

systems.  This suggests that altering the evolution functions used in the GA may 

produce more effective combinations. 

We would suggest that a coarse to fine evolution cycle might be more effective.  Such a 

system would begin by combining entire subspaces, rather than individual dimensions; 

a single mutation would accumulate or discard all dimensions from an entire subspace 

and crossover would select random subspaces as a whole from each parent.  As the 

fitness of the population reaches a plateau the mutation and crossover functions would 

begin operating on a finer level, selecting smaller and smaller fractions of the subspaces 

until individual dimensions were being selected or discarded. 
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Another area in which this combination approach may be expanded would be to create 

subspace systems using partial sections of the original face image (or 3D surface).  

Pentland et al [ 40 ] found that this approach was beneficial in their paper on modular 

eigenface approaches, although they were not using the same criteria based dimensional 

combination approach as described here.  We have witnessed the same phenomena 

(although from a different perspective) when we discovered that concatenating four 

images before applying LDA, produced higher error rates than performing LDA on each 

individual image and then combining the dimensions after the training phase.  The same 

may apply to an image of a single face: perhaps splitting the image into two parts and 

then combining the resultant subspaces of each after LDA will produce a more effective 

system.  This approach could be performed on a large scale using the GA combination 

algorithm.  For example, supposing we applied all the same image pre-processing 

techniques and 3D surface representations to images of the nose area alone (having 

cropped out the cheeks, forehead and chin) producing a variety of nose-recognition 

systems.  These subspaces could then be included in the combination genome, doubling 

the number of subspaces available and providing much larger scope for improvement.  

We believe that such an approach could prove to be highly effective for the following 

reasons: 

• Different image pre-processing techniques and surface representations 

are likely to be particularly well suited to specific areas of the face (edge 

detectors around the eyes, colour normalisation for the cheeks, gradient 

representations for the nose for example). 

• By reducing the size of the image to focus on a smaller area of the face 

but maintaining the size of the training set, we improve the ratio between 

true discriminatory information and noise. 

• By using multiple subspaces concentrated on partial regions of the face 

we increase robustness against partial occlusion of one area, such as 

glasses, hats or beards. 

Another exciting area that we have not explored in this thesis is the possibility of using 

multiple face recognition systems in series.  This is a different approach to combining 

multiple systems to make a single definitive decision, but rather to make an initial 
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screening step, before making the final accept/reject decision.  Such an approach would 

allow each face recognition system to concentrate on one aspect of the decision 

problem.  For instance, the primary face recognition system may be used to remove any 

certain rejections, before the secondary system makes the final acceptance decision.  

The threshold of the primary system would be configured such that the false rejection 

rate was near zero and then used to prune the training set for the secondary system, 

leaving only comparisons that looked similar.  Using this two stage technique the 

resultant secondary system would be specifically designed to determine the likeness of 

two similar faces, knowing that it would never have to compare any drastically different 

faces the subspace could be a more effective representation of the between class 

differences. 

One of the most interesting findings of our research was that the 2D projection systems 

were the most effective means of recognising faces.  However, the test set on which 

these results were based did not contain any controlled variations in lighting conditions.  

Therefore, lighting typically remained constant for each person and might also have 

contributed as cues for recognition.  One of the key advantages of using 3D face models 

is that basing the recognition on shape rather than colour and texture means that the 

system becomes invariant to lighting conditions (providing the 3D camera is still 

capable of constructing a 3D model), but this advantage is lost when reverting back to 

texture data of 2D projections.  One method of combating this problem would be to use 

the 3D model shape to facilitate lighting correction.  As any two-dimensional image 

pre-processing technique can only adjust colour and intensity levels without taking into 

account the shadow and shading due to the surface shape of the face, it becomes very 

difficult to reproduce or compensate for specific lighting conditions.  However, by 

using the 3D face model to generate virtual lighting on the textured surface it becomes 

possible to normalise lighting across the 3D surface or simulate the same lighting 

conditions from one face onto another. 

The IRAD contours method as described in section 5.7 has only been touched upon in 

this thesis.  Unfortunately, the technique was only conceived towards the end of our 

research project and we now leave the full potential of this method to be exposed by 

another researcher.  There are two immediate topics that must be addressed.  Firstly, to 

test the effect of constraining correlation of multiple contour signals to have the same 
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rotational phase.  The process described in section 5.7.5 allowed each individual signal 

to correlate independently, meaning that the highest correlations of two signals may 

compete with different phase shifts, hence allowing greater flexibility for incorrect 

matches to achieve a higher correlation score.  Secondly, no colour or texture 

information was extracted for use in the signal correlation stage.  Since this information 

has been shown to be of great benefit when combining 2D and 3D subspaces it is highly 

likely that similar improvements will be seen for this method. 

Further improvements to the IRAD contours method would be expected by performing 

some statistical analysis on the discriminatory nature of the various facial contours and 

the relative dependence on such features as curvature, symmetry, texture and facial 

location.  We have already witnessed that weighting contours signals according to the 

distance from the contour origin has a beneficial effect, but there are likely to be other 

such dependencies.  The systems ability to cope with changes in expression must also 

be investigated.  Whereas with LDA approaches we are able to represent and model 

within-class variation (including expression to some extent), this is currently not 

featured in the IRAD contours method.  There are numerous possibilities that may 

contain some potential to overcome these difficulties, such as correlating on partial 

signals extracted from rigid facial areas whilst ignoring those from malleable regions, or 

modelling signal variation due to expression by LDA or some other statistical method. 
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1100  AAppppeennddiicceess  

I - 3D FACE DATABASE STORAGE 

Master copies of the database will be held by Cybula Ltd. and made available by secure 

download (access via username and password) and/or DVD library, agreed with Cybula 

beforehand.  No information revealing the subject identity will be stored with the data.  

Agreement signatures will be held separately by Cybula Ltd. and not distributed to any 

other party.  No data may be redistributed by anybody other than Cybula Ltd. 

Each 3D face model will be stored under a filename using the naming convention 

shown in Appendix II.  For example, a file stored under the name ‘00021-10-

mww24bnncy.obj’ is a Wavefront OBJ file containing a 3D model of a 24 year old (24) 

white (ww) male (m), who does have a beard, but is not wearing glasses or headwear 

(bnn) and facing forwards with a neutral expression (-10-).  Colour texture is available 

(c) for the model (stored under filename 00021-10-mww24bnncy.bmp) and permission 

has been given for his image to be published (y).  All other files in the database 

containing “00021-“ contain models of the same person.  A text file will be stored with 

the model under filename 00021-10-mww25bnncy.txt, containing the following 

information. 

Subject ID 00021 

Model ID 10 

Capture Conditions Front facing, neutral expression . 

Sex m 

Ethnicity White 

Age 24 years 

Subject was wearing: 

No Beard 

No hat 

No glasses 

Height: 5'10" 

Weight: 75 Kg 

More.... 

Subject has given permission to publish his/her ima ge in 

scientific papers and journals 

Colour texture is not available 
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II - 3D FACE DB METADATA 

Filename nnnnn-xx-srraaeeetp.ext 

nnnnn Five digit unique subject identifier. 

Xx  Two digit capture condition identifier as specified in Table 5-1. 

S Single character indicating gender. m = male,  f = female 

Rr 

Two character label indicating ethnicity: 

ww White 

ap Asian Pakistani 

ab Asian Bangladeshi 

ai Asian Indian 

ac Asian Chinese 

aj Asian Japanese 

ao Asian Other 

na American Indian 

ng Aboriginal 

bb Black British 

bc Black Caribbean 

ba Black African 

bo Black Other 

hs Hispanic Spanish 

hm Hispanic Mexican 

hp Hispanic Puerto Rican 

hc Hispanic Cuban 

ho Hispanic Other 

mm Mixed 

oo Other / Abstain 

Aa Two digit number indicating age, calculated from the DOB entry. 

eee 

Three character label indicating presence of external features: 

b = beard present, n = not present 

g = glasses present, n = not present 

h = headwear present, n = not present 

t 
Single character indicating the type of texture available for that model: 

g = greyscale texture, c = colour texture, n = no texture 

p 

Single character flag indicating whether permission for publication has been 

granted. 

y = publication permissions granted. 

n = publication permissions not granted. 

ext  

Three character extension, indicating the file type. 

obj = The 3D Face Mode file. 

bmp = The 2D bitmap texture file. 

sp1 = Intermediate 3D reconstruction file. 

sp2 = Intermediate 3D reconstruction file. 

txt = The questionnaire information file. 

Table 10-1 File storage convention used for the UOY 3D Face Database. 
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III - AURA GRAPH MATCHER RESULTS 

Proof-of-concept tests were carried out using a small database of facial surfaces, 

comprising 4 models of one person (A1, A2, A3, A4) and four models of other people 

(B1, C1, D1, E1) [ 46 ][ 47 ].  Graph nodes are selected from the vertices of the facial 

surfaces (no feature detection is attempted).  For training, the graphs are fully connected 

and the edges labelled with the distances between nodes.  The AURA graph matcher is 

then trained to recognise the 8 facial surfaces. 

Identification tests are carried out by performing identification operations using four 

models of one subject from the database (A1, A2, A3, A4), at various levels of 

quantisation. 

Quantisation Query Matches (Strength) 

0.001 A1 A1(100%), A2(100%) 
 A2 A2(100%) 
 A3 A3(100%) 
 A4 Out of memory 
0.01 A1 A1(100%), A2(100%), A3(100%), B1(100%) 
 A2 A2(100%) 
 A3 Out of memory 
 A4 Out of memory 
0.05 A1 A1(100%), A2(100%), A3(100%), A4(100%), B1(100%) 
 A2 Out of memory 
 A3 Out of memory 
 A4 Out of memory 

Table 10-2 – Results of proof-of-concept identification tests using the AURA graph matcher taken 

from Turner [ 47 ].  

We see in many cases that the algorithm halted due to insufficient memory before 

completing the identification: this is due to instability in the current stage of AURA 

development.  Other results show that the query model matches perfectly with itself in 

all cases, as would be expected.  Three queries also return correct matches with other 

face models of the same person, while two false matches are also witnessed. 
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IV – VERIFICATION ERROR RATES OF 2D MULTI-SUBSPACE SYSTEM 

Multi-subspace 2D        
Date: Fri, 23 Jul 2004 06:50:23       
Test Set B         
EER 10.4215       
Minimum 0.0864       
Maximum 1.4969       
         
Threshold  FRR  FAR Threshold FRR  FAR Threshold FRR  FAR 

0.0864 99.9604 0.0000 0.6882 14.7606 4.7280 1.0549 0.5144 78.4101 
0.1006 99.8813 0.0000 0.6929 14.4044 5.0285 1.0690 0.3166 81.3830 
0.1147 99.6438 0.0000 0.6976 14.0879 5.3372 1.0831 0.2374 84.0583 
0.1288 99.4856 0.0000 0.7023 13.8504 5.6748 1.0972 0.0791 86.4844 
0.1429 98.9315 0.0000 0.7070 13.6526 6.0071 1.1113 0.0000 88.6950 
0.1570 98.0214 0.0000 0.7117 13.3755 6.3446 1.1254 0.0000 90.6443 
0.1711 96.8738 0.0000 0.7164 13.0985 6.6994 1.1396 0.0000 92.2887 
0.1852 95.2909 0.0000 0.7211 12.7820 7.1073 1.1537 0.0000 93.7388 
0.1993 93.5892 0.0000 0.7258 12.3467 7.5223 1.1678 0.0000 94.9382 
0.2134 90.8192 0.0000 0.7305 12.1884 7.9452 1.1819 0.0000 95.9797 
0.2275 88.2074 0.0000 0.7352 11.7531 8.3872 1.1960 0.0000 96.8277 
0.2416 86.0704 0.0000 0.7399 11.3573 8.8594 1.2101 0.0000 97.5144 
0.2557 83.6565 0.0000 0.7446 10.8033 9.3366 1.2242 0.0000 98.0716 
0.2698 80.8073 0.0000 0.7493 10.7638 9.8380 1.2383 0.0000 98.5241 
0.2839 77.5623 0.0000 0.7540 10.4472 10.3642 1.2524 0.0000 98.8766 
0.2980 74.5548 0.0007 0.7587 10.2097 10.8952 1.2665 0.0000 99.1621 
0.3121 71.9430 0.0007 0.7634 9.9723 11.4386 1.2806 0.0000 99.3814 
0.3262 67.8670 0.0015 0.7681 9.6953 12.0213 1.2947 0.0000 99.5330 
0.3403 64.7012 0.0022 0.7728 9.3391 12.6552 1.3088 0.0000 99.6568 
0.3544 60.7835 0.0041 0.7775 8.9830 13.2701 1.3229 0.0000 99.7519 
0.3685 57.7760 0.0086 0.7822 8.5873 13.9197 1.3370 0.0000 99.8264 
0.3826 54.6498 0.0120 0.7869 8.4685 14.5780 1.3511 0.0000 99.8814 
0.3967 51.6423 0.0210 0.7917 8.2707 15.2774 1.3652 0.0000 99.9165 
0.4108 48.9513 0.0318 0.7964 8.0332 15.9922 1.3793 0.0000 99.9446 
0.4249 46.8935 0.0445 0.8011 7.8750 16.7433 1.3934 0.0000 99.9663 
0.4390 44.5192 0.0610 0.8058 7.7562 17.5022 1.4075 0.0000 99.9794 
0.4532 42.3427 0.0846 0.8105 7.4792 18.2978 1.4216 0.0000 99.9873 
0.4673 40.0475 0.1141 0.8152 7.3209 19.0983 1.4357 0.0000 99.9940 
0.4814 37.6336 0.1564 0.8199 6.8856 19.9481 1.4498 0.0000 99.9963 
0.4955 35.8924 0.2002 0.8246 6.4899 20.8373 1.4639 0.0000 99.9981 
0.5096 33.5180 0.2679 0.8293 6.2920 21.6920 1.4780 0.0000 99.9993 
0.5237 31.6977 0.3604 0.8434 5.2632 24.5066 1.4922 0.0000 99.9996 
0.5378 29.2046 0.4659 0.8575 4.8279 27.4574       
0.5519 27.4238 0.5950 0.8716 4.3926 30.6671       
0.5660 25.9596 0.7571 0.8857 4.2343 34.0482       
0.5801 24.4954 0.9794 0.8998 3.9968 37.5712       
0.5942 22.8334 1.2454 0.9139 3.4824 41.2311       
0.6083 21.6462 1.5497 0.9280 3.1262 45.0089       
0.6224 20.3403 1.9183 0.9421 2.8097 48.8496       
0.6365 19.1927 2.3513 0.9562 2.4139 52.8179       
0.6506 18.1243 2.8711 0.9703 1.8599 56.8064       
0.6647 16.8579 3.5020 0.9844 1.5433 60.6741       
0.6694 16.4622 3.7202 0.9985 1.3455 64.5398       
0.6741 16.0269 3.9578 1.0126 1.0289 68.2997       
0.6788 15.5916 4.2097 1.0267 0.7519 71.8746       
0.6835 15.2750 4.4578 1.0408 0.5936 75.2640       
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V – VERIFICATION ERROR RATES OF 3D MULTI-SUBSPACE SYSTEM 

Multi-subspace 3D        
Date: Sun, 11 Jul 2004 07:38:50       
Test Set B         
EER 8.3869       
Minimum 0.1000       
Maximum 1.3873       
         
Threshold  FRR  FAR Threshold FRR  FAR Threshold FRR  FAR 

0.1000 99.9604 0.0000 0.6921 20.2216 1.8749 0.9410 2.5326 32.8675 
0.1129 99.8417 0.0000 0.7050 18.1243 2.2083 0.9539 2.1765 36.7992 
0.1257 99.8417 0.0000 0.7179 16.3435 2.5889 0.9667 2.0578 40.9770 
0.1386 99.6834 0.0000 0.7222 15.9478 2.7266 0.9796 1.7808 45.2556 
0.1515 99.5251 0.0000 0.7265 15.3542 2.8890 0.9925 1.4246 49.8073 
0.1643 99.4460 0.0000 0.7307 15.0376 3.0496 1.0054 1.1080 54.4765 
0.1772 99.0107 0.0000 0.7350 14.2857 3.2187 1.0182 0.8706 59.1611 
0.1901 98.8128 0.0000 0.7393 13.8900 3.4114 1.0311 0.6727 63.7199 
0.2030 98.4567 0.0000 0.7436 13.6526 3.5926 1.0440 0.4749 68.2649 
0.2158 97.9818 0.0000 0.7479 13.3360 3.7816 1.0569 0.1583 72.6590 
0.2287 97.2695 0.0000 0.7522 12.9402 3.9814 1.0697 0.1583 76.7018 
0.2416 96.5968 0.0000 0.7565 12.5841 4.1928 1.0826 0.0791 80.3670 
0.2545 95.7657 0.0000 0.7608 12.1092 4.4133 1.0955 0.0791 83.8080 
0.2673 94.4994 0.0000 0.7651 11.9114 4.6498 1.1083 0.0791 86.8579 
0.2802 92.9165 0.0000 0.7694 11.4365 4.8878 1.1212 0.0396 89.5419 
0.2931 91.4127 0.0000 0.7737 11.1595 5.1336 1.1341 0.0000 91.7681 
0.3059 90.1860 0.0007 0.7779 10.8429 5.4102 1.1470 0.0000 93.6692 
0.3188 88.7218 0.0019 0.7822 10.6055 5.7182 1.1598 0.0000 95.2447 
0.3317 86.7036 0.0022 0.7865 10.3680 6.0254 1.1727 0.0000 96.4598 
0.3446 84.7250 0.0034 0.7908 9.9327 6.3607 1.1856 0.0000 97.4354 
0.3574 82.8651 0.0045 0.7951 9.3787 6.7323 1.1985 0.0000 98.1921 
0.3703 80.9260 0.0064 0.7994 8.9434 7.1069 1.2113 0.0000 98.7463 
0.3832 78.8287 0.0097 0.8037 8.7455 7.4972 1.2242 0.0000 99.1557 
0.3961 76.3356 0.0138 0.8080 8.5873 7.8936 1.2371 0.0000 99.4548 
0.4089 73.7238 0.0183 0.8123 8.4685 8.2958 1.2499 0.0000 99.6456 
0.4218 71.7056 0.0243 0.8166 8.0728 8.7371 1.2628 0.0000 99.7841 
0.4347 69.0146 0.0307 0.8209 7.6771 9.1977 1.2757 0.0000 99.8642 
0.4475 66.4424 0.0393 0.8251 7.4397 9.7011 1.2886 0.0000 99.9121 
0.4604 63.7911 0.0543 0.8294 7.1626 10.1902 1.3014 0.0000 99.9517 
0.4733 61.1397 0.0696 0.8337 6.9252 10.7294 1.3143 0.0000 99.9734 
0.4862 58.3696 0.0898 0.8380 6.8065 11.3013 1.3272 0.0000 99.9869 
0.4990 56.3910 0.1175 0.8423 6.6482 11.8832 1.3401 0.0000 99.9948 
0.5119 52.9482 0.1486 0.8466 6.2525 12.4584 1.3529 0.0000 99.9970 
0.5248 50.3759 0.1920 0.8509 5.9755 13.0938 1.3658 0.0000 99.9993 
0.5377 47.5267 0.2305 0.8552 5.7776 13.7154 1.3787 0.0000 99.9996 
0.5505 44.8753 0.2766 0.8595 5.3819 14.4070       
0.5634 42.5406 0.3271 0.8638 5.0257 15.1180       
0.5763 40.2849 0.3963 0.8681 4.8674 15.7920       
0.5891 37.2774 0.4809 0.8723 4.6300 16.5662       
0.6020 35.3383 0.5752 0.8766 4.5904 17.3622       
0.6149 32.6474 0.6875 0.8809 4.4321 18.1743       
0.6278 30.5501 0.8248 0.8852 4.2738 18.9998       
0.6406 28.3340 0.9711 0.8895 4.1947 19.8856       
0.6535 25.9992 1.1459 0.9024 3.6011 22.6998       
0.6664 23.9019 1.3498 0.9153 3.2054 25.7733       
0.6793 22.1607 1.5979 0.9281 2.7701 29.1788       
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VI – VERIFICATION ERROR RATES OF 2D PROJECTION MULTI-SUBSPAC E 

SYSTEM 

Multi-subspace 2DP        
Date: Wed, 14 Jul 2004 09:14:45       
Test Set B         
EER 7.3385       
Minimum 0.0699       
Maximum 1.4772       
         
Threshold  FRR  FAR Threshold FRR  FAR Threshold FRR  FAR 

0.0699 99.9604 0.0000 0.6704 13.4943 2.7120 0.9988 0.4749 61.9468 
0.0840 99.8813 0.0000 0.6751 12.9007 2.9115 1.0128 0.2770 65.8964 
0.0981 99.6834 0.0000 0.6798 12.7028 3.1207 1.0269 0.2374 69.7124 
0.1121 99.4460 0.0000 0.6845 12.3467 3.3355 1.0410 0.1979 73.3124 
0.1262 98.7732 0.0000 0.6891 11.9905 3.5499 1.0550 0.0396 76.6962 
0.1403 97.8631 0.0000 0.6938 11.5156 3.7797 1.0691 0.0396 79.8475 
0.1544 96.9925 0.0000 0.6985 11.0803 4.0259 1.0832 0.0000 82.8361 
0.1684 95.7657 0.0000 0.7032 10.6055 4.2935 1.0973 0.0000 85.4965 
0.1825 94.3807 0.0000 0.7079 10.2097 4.5757 1.1113 0.0000 87.9207 
0.1966 93.0748 0.0000 0.7126 9.7349 4.8986 1.1254 0.0000 90.0718 
0.2106 91.2545 0.0000 0.7173 9.2996 5.2085 1.1395 0.0000 91.9676 
0.2247 89.3945 0.0000 0.7220 9.1017 5.5303 1.1536 0.0000 93.5921 
0.2388 87.3763 0.0000 0.7267 8.9038 5.8798 1.1676 0.0000 94.9569 
0.2529 85.6351 0.0000 0.7314 8.4685 6.2425 1.1817 0.0000 96.0762 
0.2669 83.2608 0.0000 0.7361 8.1124 6.6238 1.1958 0.0000 97.0335 
0.2810 81.0447 0.0000 0.7407 7.6375 7.0197 1.2099 0.0000 97.7573 
0.2951 78.2746 0.0000 0.7454 7.2418 7.4415 1.2239 0.0000 98.3336 
0.3092 76.0190 0.0000 0.7501 6.7273 7.8906 1.2380 0.0000 98.7725 
0.3232 73.3676 0.0007 0.7548 6.4108 8.3490 1.2521 0.0000 99.1228 
0.3373 70.8746 0.0007 0.7595 6.1733 8.8366 1.2661 0.0000 99.3807 
0.3514 67.9858 0.0015 0.7642 6.0546 9.3441 1.2802 0.0000 99.5622 
0.3655 64.7804 0.0019 0.7689 5.7380 9.8444 1.2943 0.0000 99.7002 
0.3795 61.8916 0.0037 0.7736 5.4610 10.3874 1.3084 0.0000 99.8020 
0.3936 59.0028 0.0075 0.7783 5.2632 10.9581 1.3224 0.0000 99.8668 
0.4077 55.7974 0.0116 0.7830 4.9466 11.5460 1.3365 0.0000 99.9184 
0.4217 52.7899 0.0165 0.7877 4.8674 12.1717 1.3506 0.0000 99.9476 
0.4358 50.2176 0.0187 0.7923 4.4321 12.7675 1.3647 0.0000 99.9719 
0.4499 47.7246 0.0288 0.7970 4.3926 13.4272 1.3787 0.0000 99.9828 
0.4640 45.2711 0.0460 0.8017 4.3134 14.1072 1.3928 0.0000 99.9891 
0.4780 43.0550 0.0726 0.8064 4.1551 14.8246 1.4069 0.0000 99.9944 
0.4921 40.1662 0.1010 0.8111 3.8781 15.5760 1.4210 0.0000 99.9970 
0.5062 36.8817 0.1415 0.8158 3.7990 16.3503 1.4350 0.0000 99.9989 
0.5203 34.1907 0.1946 0.8205 3.6407 17.1340 1.4491 0.0000 99.9996 
0.5343 31.2624 0.2578 0.8252 3.5615 17.9576 1.4632 0.0000 99.9996 
0.5484 28.0966 0.3484 0.8299 3.4824 18.8191       
0.5625 25.8805 0.4554 0.8439 2.9284 21.5087       
0.5766 23.8227 0.5842 0.8580 2.4139 24.4089       
0.5906 22.1607 0.7481 0.8721 2.0973 27.5105       
0.6047 20.4195 0.9644 0.8862 1.8203 30.8493       
0.6188 19.0344 1.2260 0.9002 1.5829 34.4307       
0.6328 16.9767 1.5373 0.9143 1.4642 38.1408       
0.6469 15.4333 1.8940 0.9284 1.2268 41.9612       
0.6516 14.9189 2.0257 0.9425 0.8310 45.9026       
0.6563 14.4440 2.1780 0.9565 0.7519 49.9132       
0.6610 14.0879 2.3479 0.9706 0.6332 53.8998       
0.6657 13.9296 2.5230 0.9847 0.4749 57.9751       
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VII – VERIFICATION ERROR RATES OF 3D AND 2D PROJECTION  MULTI-

SUBSPACE SYSTEM 

Multi-subspace 3D+2DP       
Date: Thu, 19 Aug 2004 18:11:39       
Test Set B         
EER 5.0458        
Minimum 0.0983        
Maximum 1.3708        
         

Threshold  FRR  FAR Threshold FRR  FAR Threshold FRR  FAR 
0.0983 99.9604 0.0000 0.6667 14.2066 0.8731 0.8618 1.4642 16.4285 
0.1110 99.9604 0.0000 0.6709 13.6526 0.9341 0.8661 1.3850 17.3046 
0.1237 99.9209 0.0000 0.6752 12.9798 1.0123 0.8788 1.2268 20.1031 
0.1365 99.8813 0.0000 0.6794 12.7028 1.0912 0.8915 1.0289 23.2447 
0.1492 99.7230 0.0000 0.6837 12.3467 1.1878 0.9042 0.9102 26.7269 
0.1619 99.3668 0.0000 0.6879 12.0301 1.2716 0.9170 0.6332 30.5054 
0.1746 99.2085 0.0000 0.6922 11.5948 1.3633 0.9297 0.4749 34.6103 
0.1874 98.8128 0.0000 0.6964 11.1199 1.4629 0.9424 0.3562 38.9285 
0.2001 98.1401 0.0000 0.7006 10.7638 1.5695 0.9551 0.2374 43.4851 
0.2128 97.5465 0.0000 0.7049 10.3285 1.6829 0.9679 0.1979 48.2741 
0.2256 96.6363 0.0000 0.7091 9.8932 1.8079 0.9806 0.1583 53.0705 
0.2383 95.5679 0.0000 0.7134 9.5370 1.9404 0.9933 0.1187 57.9763 
0.2510 94.3807 0.0000 0.7176 9.2996 2.0878 1.0060 0.0396 62.8326 
0.2637 93.3518 0.0000 0.7218 8.9434 2.2469 1.0188 0.0000 67.4947 
0.2765 91.6502 0.0000 0.7261 8.5873 2.4059 1.0315 0.0000 72.0180 
0.2892 89.7903 0.0000 0.7303 8.0332 2.5799 1.0442 0.0000 76.2344 
0.3019 87.9699 0.0000 0.7346 7.6771 2.7539 1.0569 0.0000 80.1503 
0.3146 86.2683 0.0000 0.7388 7.4792 2.9519 1.0697 0.0000 83.6968 
0.3274 84.0127 0.0000 0.7431 7.3209 3.1547 1.0824 0.0000 86.8856 
0.3401 81.8362 0.0000 0.7473 6.8856 3.3643 1.0951 0.0000 89.6126 
0.3528 79.8180 0.0000 0.7515 6.5295 3.5881 1.1079 0.0000 91.9946 
0.3655 77.7998 0.0000 0.7558 6.1733 3.8433 1.1206 0.0000 93.8836 
0.3783 75.0693 0.0004 0.7600 5.9755 4.0903 1.1333 0.0000 95.4778 
0.3910 72.4179 0.0007 0.7643 5.6985 4.3691 1.1460 0.0000 96.6986 
0.4037 69.2125 0.0015 0.7685 5.4214 4.6696 1.1588 0.0000 97.6491 
0.4164 66.1258 0.0015 0.7727 5.1049 4.9521 1.1715 0.0000 98.3403 
0.4292 63.0392 0.0034 0.7770 4.9070 5.2661 1.1842 0.0000 98.8638 
0.4419 60.1108 0.0041 0.7812 4.7487 5.5999 1.1969 0.0000 99.2471 
0.4546 56.8658 0.0060 0.7855 4.5509 5.9584 1.2097 0.0000 99.5068 
0.4673 53.7396 0.0101 0.7897 4.0760 6.3188 1.2224 0.0000 99.6913 
0.4801 50.9300 0.0135 0.7940 3.7594 6.7050 1.2351 0.0000 99.8144 
0.4928 47.5267 0.0172 0.7982 3.5615 7.1073 1.2478 0.0000 99.8926 
0.5055 44.4796 0.0236 0.8024 3.3241 7.5369 1.2606 0.0000 99.9409 
0.5182 41.6304 0.0329 0.8067 3.0471 7.9871 1.2733 0.0000 99.9704 
0.5310 39.2956 0.0460 0.8109 2.8097 8.4699 1.2860 0.0000 99.9824 
0.5437 36.2485 0.0632 0.8152 2.7305 8.9687 1.2987 0.0000 99.9903 
0.5564 33.3993 0.0861 0.8194 2.6118 9.5136 1.3115 0.0000 99.9951 
0.5691 30.9854 0.1216 0.8236 2.2952 10.0491 1.3242 0.0000 99.9981 
0.5819 28.6506 0.1613 0.8279 2.1765 10.6464 1.3369 0.0000 99.9993 
0.5946 26.3949 0.2043 0.8321 2.0973 11.2608 1.3496 0.0000 99.9996 
0.6073 23.4666 0.2706 0.8364 1.8599 11.9127 1.3624 0.0000 99.9996 
0.6200 21.2901 0.3574 0.8406 1.7412 12.6069       
0.6328 19.0740 0.4607 0.8449 1.7016 13.3356       
0.6455 16.6996 0.5958 0.8491 1.6620 14.0788       
0.6582 15.2355 0.7522 0.8533 1.5829 14.8216       
0.6625 14.8002 0.8121 0.8576 1.5433 15.5888       
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VIII – VERIFICATION ERROR RATES OF 3D, 2D AND 2D PROJECTION MULTI-

SUBSPACE SYSTEM 

Multi-subspace 3D+2D+2DP       
Date: Fri, 23 Jul 2004 06:02:37       
Test Set B         
EER 4.5539       
Minimum 0.1174       
Maximum 1.3713       
         

Threshold  FRR  FAR Threshold FRR  FAR Threshold FRR  FAR 
0.1174 99.9604 0.0000 0.6608 13.3755 0.6197 0.8530 1.3455 15.3298 
0.1299 99.9604 0.0000 0.6649 13.0590 0.6676 0.8572 1.1476 16.1651 
0.1424 99.9604 0.0000 0.6691 12.6237 0.7309 0.8698 0.9497 18.9141 
0.1550 99.8021 0.0000 0.6733 12.1884 0.8050 0.8823 0.8310 22.0797 
0.1675 99.6438 0.0000 0.6775 11.5948 0.8723 0.8948 0.7123 25.5866 
0.1801 99.4064 0.0000 0.6817 11.2782 0.9550 0.9074 0.5936 29.4759 
0.1926 99.0107 0.0000 0.6858 10.7638 1.0359 0.9199 0.5144 33.6022 
0.2051 98.3775 0.0000 0.6900 10.4076 1.1186 0.9325 0.3562 37.9907 
0.2177 98.0609 0.0000 0.6942 10.1702 1.2009 0.9450 0.2374 42.7729 
0.2302 96.9133 0.0000 0.6984 9.6953 1.2978 0.9575 0.1583 47.6319 
0.2428 95.5679 0.0000 0.7026 9.3391 1.3985 0.9701 0.0791 52.6563 
0.2553 94.2620 0.0000 0.7067 9.0621 1.5029 0.9826 0.0791 57.7989 
0.2678 92.9165 0.0000 0.7109 8.7455 1.6197 0.9952 0.0396 62.9168 
0.2804 91.2940 0.0000 0.7151 8.4685 1.7428 1.0077 0.0000 67.8139 
0.2929 89.2758 0.0000 0.7193 8.0728 1.8745 1.0202 0.0000 72.4925 
0.3055 87.4555 0.0000 0.7235 7.8750 2.0219 1.0328 0.0000 76.8653 
0.3180 85.3186 0.0000 0.7276 7.5188 2.1859 1.0453 0.0000 80.9017 
0.3305 82.0736 0.0000 0.7318 7.1626 2.3617 1.0579 0.0000 84.5018 
0.3431 79.3431 0.0000 0.7360 6.8461 2.5328 1.0704 0.0000 87.6307 
0.3556 76.5334 0.0000 0.7402 6.4503 2.7128 1.0829 0.0000 90.3461 
0.3682 72.6553 0.0000 0.7444 5.9755 2.9081 1.0955 0.0000 92.5937 
0.3807 69.8852 0.0000 0.7485 5.7380 3.1323 1.1080 0.0000 94.4207 
0.3932 67.6296 0.0004 0.7527 5.3819 3.3707 1.1206 0.0000 95.8629 
0.4058 64.2659 0.0004 0.7569 5.1840 3.6027 1.1331 0.0000 96.9938 
0.4183 61.0210 0.0004 0.7611 4.9861 3.8508 1.1456 0.0000 97.8680 
0.4309 57.6573 0.0019 0.7653 4.7883 4.1270 1.1582 0.0000 98.5229 
0.4434 54.5706 0.0034 0.7694 4.6300 4.4069 1.1707 0.0000 98.9660 
0.4559 51.1674 0.0041 0.7736 4.4717 4.7126 1.1832 0.0000 99.2908 
0.4685 48.8326 0.0056 0.7778 4.2738 5.0610 1.1958 0.0000 99.5101 
0.4810 45.2711 0.0071 0.7820 4.1156 5.4124 1.2083 0.0000 99.6770 
0.4936 42.6989 0.0090 0.7862 4.0364 5.8106 1.2209 0.0000 99.7863 
0.5061 39.1373 0.0112 0.7903 3.8385 6.1905 1.2334 0.0000 99.8642 
0.5186 36.4068 0.0191 0.7945 3.6407 6.6122 1.2459 0.0000 99.9143 
0.5312 34.1907 0.0262 0.7987 3.5220 7.0403 1.2585 0.0000 99.9439 
0.5437 31.6977 0.0348 0.8029 3.2450 7.5152 1.2710 0.0000 99.9630 
0.5563 29.2046 0.0516 0.8071 3.0471 8.0298 1.2836 0.0000 99.9783 
0.5688 26.3949 0.0737 0.8112 2.7701 8.5312 1.2961 0.0000 99.9899 
0.5813 24.7329 0.1014 0.8154 2.5722 9.0600 1.3086 0.0000 99.9944 
0.5939 22.4377 0.1411 0.8196 2.3744 9.6307 1.3212 0.0000 99.9978 
0.6064 20.6965 0.1938 0.8238 2.2556 10.2119 1.3337 0.0000 99.9993 
0.6190 18.8366 0.2526 0.8280 2.0182 10.8264 1.3463 0.0000 99.9996 
0.6315 17.1745 0.3417 0.8321 1.9391 11.4659 1.3588 0.0000 99.9996 

 

 



Definitions 

 

- Page 226633  -- 

1111  DDeeff iinnii tt iioonnss  

 

AURA Advanced Uncertain Reasoning Architecture 

EER Equal Error Rate 

FAR False Acceptance Rate 

FRR False Rejection Rate 

FMTD Fast Marching on Triangulated Domains (FMTD)  

FLD Fisher’s linear discriminant 

FRVT Face Recognition Vendor Tests 

IRAD Contour Isoradius contour  

LDA Linear Discriminant Analysis 

PCA  Principal Component Analysis 

SOM Self Organising Map 

ICA Independent Component Analysis 

CME Cumulative Match Error 

CMR Cumulative Match Rate 
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