
Isoradius Contours:
New representations and techniques for 3D face registration and matching

Nick Pears and Tom Heseltine
Department of Computer Science

University of York
York, YO10 5DD, UK.

Abstract

We propose a technique for 3D face registration and match-
ing using a novel representation called “isoradius con-
tours”. An isoradius contour is the contour on the 3D facial
surface that is a known fixed distance relative to some pre-
defined reference point (the tip of the nose). A 3D face rep-
resentation contains many isoradius contours with different
radii and the first major benefit of the technique is that the
shape of the contours is independent of the facial pose, due
to the infinite rotational symmetry of a sphere. The second
major benefit of the technique is that registration, alignment
and matching can be implemented using a simple process
of 1D correlation. Our results have shown that registration
and alignment is of comparable accuracy to ICP (iterative
closest points), but is fast, non iterative, and is robust to the
presence of outliers.

1 Introduction

Successful automatic 2D face recognition is often con-
founded by variations in lighting, face orientation and facial
expression, and by background clutter. Recently, several
groups of researchers [1][2][3][4] have attempted to per-
form face recognition from 3D data, captured using stereo
cameras and/or using structured lighting. This approach has
several immediate benefits: the face is easily segmented
from the background, the facial orientation can be nor-
malised to a fronto-parallel view if the recognition algo-
rithm requires it, captured shape is independent of lighting
variations, 3D shape information is explicit rather than im-
plicit and it is easier to model facial expression.

Given that we have 3D face data, and (possibly) also a
standard 2D colour-texture image registered with this data,
how do we implement a face recognition system? There
are many ways of encoding 3D structure in the literature.
Gordon [2] discusses face recognition based on depth and
curvature features. In this work 3D facial features are ex-
tracted, such as nose ridge, nose bridge, and eye corners and
comparison between two faces is based on their relationship

in feature space. Also there are several examples of work
in which both 2D (colour/intensity) 3D images are used
for the purpose of face recognition/verification [3][5]. Ap-
pearance based methods using sub-space techniques have
proved competitive over recent years in terms of achieving
state-of-the-art performance in 2D face recognition. It has
been shown that it is possible adapt these methods, such
as eigenface [6] and fisherface [7], to work with 3D and
3D/2D data [8][1][9]. The results have been promising, not
least because of the excellent background segmentation and
explicit, discriminating 3D data. A requirement for sub-
space methods to work well is that all the data has a com-
mon alignment, which is usually a fronto-parallel view.

The work presented here introduces our work on the
multi-featured “isoradius contour” representation. This pro-
vides a fast (non-iterative) accurate and robust means of
aligning faces, and hence is a useful preprocessing stage
for the application of sub-space based 3D and 3D/2D face
recognition, but also provides a mechanism for face match-
ing in itself as face correlations are a by-product of the
alignment process. In this paper, we discuss (i) an orien-
tation invariant representation of 3D faces and their associ-
ated (registered) 2D colour-intensity image data, (ii) how to
extract this representation, (iii) the registration of faces us-
ing this representation and (iv) the correlation-based match-
ing of faces using this representation.

In the following section, a brief overview of the isora-
dius representation is given to set the context of the paper.
This is followed by a section on related literature, where, in
particular, two related concepts are discussed, namely Stein
and Medioni’s “Splash” representations [10] and Chua and
Jarvis’s “point-signature” representation [11]. Section 4 de-
scribes how to extract such a representation from the raw
3D camera data. Section 5 then describes our approach to
3D registration and compares it to other approaches, such
as the popular ICP (iterative closest points) algorithm [12].
Section 6 describes our evaluation procedure and results of
registration and direct correlation matching, which has very
little processing overhead over and above registration.
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2 Isoradius contours : an overview

We start with the following definition: An isoradius contour
is a space curve defined by the locus on a 3D surface that is
a known fixed distance relative to some predefined reference
point. Thus an isoradius contour (IRAD) can be thought of
as the intersection of a sphere (of given radius, centered on
that reference point) with the object surface. In the case of
faces, an obvious choice for this reference point is the tip
of the nose. An IRAD face representation contains many
isoradius contours with different radii. A good visualisation
of this is to imagine a set of concentric spheres separated
by a (typically uniform) radius step, with a face positioned
such that the nose tip is at the centre of all spheres. Clearly
the shape of the intersection of the spheres with the face
is independent of the 3 DOF head orientation, due to the
infinite rotational symmetry of the spheres. This orientation
invariance is a major benefit of the representation. The face
representation that we propose is multi-featured in the sense
that many feature types can be measured along the isoradius
contour. In particular, these features include

• The shape of the isoradius contour itself, for example,
as defined by it’s curvature.

• Properties of the 3D facial surface along the contour,
such as face curvature. In this sense the isoradius con-
tour serves as a ‘marker’ on the facial surface, over
which to extract a signal.

• Properties of the registered 2D colour-texture image,
such as intensity and colour chromatics. Again, the
isoradius contour is acting as a marker on the facial
surface.

Thus, for example, we can have a collection of forty iso-
radius contours (IRADs) spanning the face, each with five
features (IRAD signals) associated with it. This gives us
an ensemble of two hundred one-dimensional signals rep-
resenting the face. If the IRAD signals are scanned out in
a consistent way relative to a coordinate system centered
on the nose tip and aligned with the camera axes, then the
rotational shift of the signal is only dependent on the head
orientation.

This suggests that we can align one head with another by
a process of 1D signal correlation, where the correct align-
ment occurs at the maxima of IRAD signal correlations,
which are consistent with some rotational shift. Further-
more, the magnitudes of these correlations (when rotation-
ally consistent) gives an immediate measure of how well
one face matches with another. Note that the method de-
scribed can be applied to any object. However, it works
particularly well for faces, as there is a single easily identi-
fied point of interest, the nose tip.

3 Related work

The iterative closest point (ICP) algorithm due to Besl and
McKay has been used extensively to register 3D data [12].
There are a large number of variants on this technique, but
the basic steps are as follows: Firstly, correspondences are
established between pairs of features across the two objects,
based on proximity. Then the rigid transformation that maps
the first member of the pair onto the second is computed.
That transformation is then applied to all features in the first
structure to establish further correspondences. These three
steps are then reapplied until convergence is detected. The
algorithm is effective when given a good initial correspon-
dences are given and hence it is required that an initial es-
timate of the transformation between the two surfaces is al-
ready known. This is generally achieved with a coarse cor-
respondence scheme, such as that used by Lu [13], where
heuristics applied to local, curvature based shape indices
are used before application of ICP. In order to compare
ICP with our algorithm, we initialise it with the translation
between the two nose tips. We have found that ICP and
IRADs have similar alignment accuracies, when there are
no data outliers and when the initial angular displacement
is sufficiently small for ICP to converge to the correct solu-
tion. This is not surprising since they are both based on a
least squares transformation between corresponding points.
However, our algorithm has a number of advantages: (i) it
is robust to 3D data outliers, since it explicitly finds spe-
cific contours on the facial surface. In contrast ICP can not
distinguish between outliers and the facial surface, and fails
unless the data is preprocessed to remove outliers. (ii) Our
algorithm is not iterative and hence is fast. (iii) An align-
ment solution is guaranteed even over very large rotational
displacements, such as 180 degrees roll. This is not the case
for ICP, particularly when we have the common combined
effect of outliers and large rotational displacements. (iv) Fi-
nally our algorithm is easily adapted to cope with changes in
facial expression. ICP can not distinguish which facial areas
are more rigid and sufficiently reliable for registration and
matching. However, we have found that certain portions of
the IRAD signals are invariant to expression, namely those
around the forehead and nose bridge, whereas IRADs over
the mouth area move between facial expressions, and are
less suitable for registration.

To our knowledge, there are two previous works that use
the rotational invariance of the sphere to extract 3D repre-
sentations invariant to orientation. The first is due to Stein
and Medioni [10], who call their approach Structural Index-
ing, with their basic representation called a Splash used in
a hash table 3D object indexing/retrieval approach. A sim-
ilar, later approach, termed Point Signature representations
has been presented by Chua and Jarvis [11]. Like our ap-
proach, both of these methods intersect a sphere around a
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feature point or point of interest (POI) in order to achieve
invariance of the representation to a three degree-of free-
dom (DOF) orientation. However, they are quite different
from our approach for a number of reasons:

Firstly, compared to both splashes [10] and point signa-
tures [11], we do not attempt to encode the shape around
multiple points of interest (POI) using a single contour.
Rather, we choose to encode the whole facial surface us-
ing a dense set of contours around a single POI. This seems
appropriate for human faces, since there is indeed a single
distinctive (high curvature) structure in the data, namely the
tip of the nose, which is easily detected. In detecting a sin-
gle POI there is an implicit one-to-one correspondence be-
tween the POI on the probe (test) data and the POI on each
of the 3D models in the database and thus the 3 DOF trans-
lation between the two models is easily computed.

Secondly, we do not attempt to extract a set of structural
features from the data around the contour. Breaking a softly
curved organic structure such as a human face into a piece-
wise linear segments is not stable and indeed a complex
multi-threshold approach is pursued by Stein and Medioni
[10] in an attempt to circumvent this problem. In contrast,
we extract signals, which can be matched by a straightfor-
ward process of one-dimensional signal correlation.

Thirdly, we do not use references that can be corrupted
by missing data. One of the problems with using point sig-
natures [11] over larger area surface patches is that is suf-
fers from ‘missing parts’. If there are missing parts in the
3D face data, due to glasses or the nose occluding part of
the cheek in non-frontal view, then the plane fitting process
in the point signature method will be corrupted, which in
turn will corrupt the projection distances. The best fit plane
in this method will also be sensitive to changes in facial
structure, such as those caused by changes in expression,
hence any local change in surface structure will affect the
whole representation of the surface around the point of in-
terest. In contrast, our method maintains a consistent signal
for all rigid sections of the surface regardless of any struc-
tural changes in other sections. For example, the part of the
contour passing through the rigid forehead is not affected
by the same contour passing through the malleable mouth
area.

Finally, we propose the use of multiple signals types
around the contours. In addition to measuring surface shape
along the contour, we measure the surface reflectance to cre-
ate an ensemble of signals around each contour in a set of
contours.

4 Extracting IRADs

Extraction of IRADs can be divided into the following
broad stages: (i) a ‘point-of-interest’ (POI) is extracted

(the nose tip) on which the 3D data is centered, (ii) a se-
ries of isoradius surface contours are extracted on the 3D
object surface (iii) both 3D surface properties and aligned
colour-intensity properties along each of those contours is
extracted into an ‘ensemble’ of one-dimensional (1D) sig-
nals. We now describe these stages in more detail.

4.1 Extraction of the POI

The first stage in extracting the isoradius representation is
to locate a single point of interest (POI) on the captured
3D facial surface. The advantage of using a single point-
of-interest is that the matching from query POI to database
POI is implicit as it is one-to-one. A crucial point is that
the 3D position of this point should be detected reliably,
such that there is high repeatability (low variance in 3D po-
sition) relative to the more rigid face components (forehead,
nose-bridge, cheekbones). Good interest points are those
that have a local maximum in 3D surface curvature. In the
case of the human face, the tip of the nose is a good choice
for interest point. We have localised the nose tip using a
simple approach which assumes that the pan and tilt of the
face is within a 45 degree cone relative to the fronto-parallel
direction. In this simple approach, we pan and tilt the face
throughout a 90 degree range and build a histogram repre-
senting the frequency that a 3D vertex is marked as nearest
the camera (minimum z coordinate). The vertex with the
modal score in this histogram is taken as the nose tip. We
have found this approach to be adequate for our initial tests,
although we are currently investigating more sophisticated
approaches.

4.2 Extraction of the contour locus

In order to extract properties associated with IRADs, such
as curvature, we need to define the IRAD contour as a set
of evenly spaced points along the IRAD sphere. The meth-
ods we have used to extract IRAD contours aim to minimize
the effects of noise and interpolation errors associated with
sampling a noisy and non-uniformly spaced signal. To do
this we force the computation of the IRAD contour position
to occur at points of equal step length across a sphere, which
we call an IRAD sphere, as shown on the left hand side of
figure 1. The simplest method we have used intersects pla-
nar facets of the 3D face mesh with IRAD spheres. Recently
we have implemented a more sophisticated approach as fol-
lows:

1. For each IRAD (radius, r) find the list of surface
patches that intersect the IRAD sphere of radius r.
Here a “surface patch” is bounded by four adjacent
points on the x-y grid.
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Figure 1: Extraction and encoding of an IRAD

2. Each surface patch, within a neighbourhood of four
points on the x-y grid, is defined by fitting cubic Her-
mite patches using a neighbourhood of sixteen 3D
points over the x-y grid.

3. After finding an initial point on the IRAD contour, the
next point must be a fixed step away, and also on the
IRAD sphere. This defines a circle on the IRAD sphere
centered on the initial IRAD point, as shown in figure
1. In order to determine the next IRAD point, we must
intersect this circle in 3D space, with the Hermite sur-
face patch. We solve this equation with Brent’s nu-
merical root finding algorithm, which yields a pair of
solutions for the two places in which the circle on the
IRAD sphere pierces the Hermite surface patch. One
of these solutions is very close to the previous IRAD
point and so this is rejected to prevent the IRAD turn-
ing back on itself (see points pi−1, pi, pi + 1 in figure
1). The remaining solution is accepted as the correct
IRAD contour point to keep the IRAD growing in the
correct direction.

4. This process is repeated and thus the IRAD grows us-
ing equal steps along the IRAD sphere, whilst interpo-
lating across piece-wise continuous Hermite patches
that define the facial surface at any arbitrary point on
the x-y grid.

4.3 Extraction of the signal ensemble

The isoradius method requires the extraction of 3D shape
properties and (possibly) colour-intensity properties of the

face along isoradius contours, such that a set, or ensem-
ble, of 1D signals is generated. Extraction of shape prop-
erties may be done in a number of ways, the most obvi-
ous of which are (i) using the facial curvature(change in
facial surface normal) to encode shape and (ii) using the
curvature of the IRAD contour itself. The first of these is
straightforward, and requires measuring the change in face
surface normal from one reference point to the adjacent one
using a straightforward backward (or forward) difference
operation. Obviously the operation should not be computed
across breaks in the IRAD contour. Encoding the curvature
of the IRAD contour itself is slightly more complicated. In
this case we measure the curvature of the IRAD contour,
which is due to the face shape, rather than the curvature
which is simply due to the fact that the IRAD is distributed
across the surface of a sphere. The process is illustrated at
the centre of figure 1. Given that curvature, κ = ∆θ

∆s
, if

we maintain a constant step length, ∆s, along the isoradius
contour, then the angular changes, ∆θ, encode the contour
shape. How do we actually compute ∆θ along the contour?
Consider three consecutive points (p1, p2, p3) on the con-
tour, separated by a fixed, but small ∆s, as shown in figure
1. A normal to the contour in the direction direction n̂ is
computed as the cross-product of the two vectors Op1 and
Op2, where p1 and p2 are two points on the isoradius con-
tour and O is the POI centred origin. This vector can be
recomputed for points p2 and p3 using the cross-product of
Op2 and Op3. The change in angle of this normal vector,
∆θ, is the angle that we need.

5 Registration of 3D faces

In order to make a meaningful use of a whole range of
IRAD signals associated with different radii from the nose
tip, the IRAD signals must be moved into a common rota-
tional alignment. It turns out that this process of achiev-
ing a common rotational alignment of all IRADs simultane-
ously achieves registration of one 3D facial surface with an-
other, which is a necessary pre-requisite for the application
of appearance based sub-space methods of facial recogni-
tion, such as Eigenface (PCA based ) and Fisherface (LDA
based). We now propose a new method to align a pair of
3D facial surfaces using IRAD signals. The pair of 3D im-
ages being matched may be two individual facial surfaces,
either of the same subject or different subjects, or could be
a match of an individual subject with an average facial sur-
face, for the purposes of alignment to a common orienta-
tion throughout the full database population. This would be
useful in the application of sub-space methods and requires
a two-pass process to generate an average face in the first
place.

Given that we have an ensemble of signals, 1D signal
correlation suggests itself as a mechanism for alignment,
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and, as a by product, a means of matching with little extra
processing over and above the registration procedure. Much
of the power of the isoradius method is that the dense, com-
prehensive multi-contour, multi-feature representation em-
ployed makes 1D signal correlation central to the registra-
tion and matching process. Of course, in the correlation
process, we need to deal with IRAD signals of different
sizes (this can occur even on two 3D images of the same
person, particularly if the face is in a different expression)
and IRAD signals that are fragmented due to holes in the
data. For now, lets suppose that the two signals are the same
size and both form a closed loop on the facial surface. We
express these signals as discrete data sets: x = [x1...xn]T

and y = [y1...yn]T . The normalised cross correlation C is
given as:

C =
xTy

√

xTx + yTy
, where xTx + yTy > t2 (1)

for some threshold t. For n-1 rotational shifts of the x vec-
tor, we obtain n values of C, which yields a normalised
cross correlation signal over n values. (Note that we talk of
‘rotational shifts’, because the x vector is being managed in
a buffer where data is shifted and when it falls off the end
of the buffer it is placed at the front of the buffer, much like
a rotational shift register.)

The maximum value of the correlation signal suggests
the correct alignment of the IRAD contour pair and we can
generate a list of 3D correspondences along the matched
pair of IRAD contours, as:

xq(i) → xd(j) , i = 1...n, j = i + k, modulo(n) (2)

where xq = (x, y, z)T
q is a 3D point on the query surface,

xd = (x, y, z)T
d is a 3D point on the database surface, n

is the number of points on the IRAD signal pair, and k is
the rotational shift (in contour steps) required to achieve the
peak in correlation.

Thus, if we had a face with N IRADs we would have
N correlation peaks, each of which has a (different sized)
set of n 3D correspondences. Each of these sets of 3D cor-
respondences defines a 3D rotation about the origin, which
is positioned at the nose tip. We compute these rotations
using the least squares method of Haralick et al [14]. First
compute the cross covariance matrix, K given by:

K = Σn
i=1(xq(i) − xq)(xd(j) − xd)

T (3)

we then compute the singular value decomposition of K as

K = USV′ (4)

where S is the diagonal matrix of singular values and V and
U are orthogonal matrices. The rotation matrix, R, is then
given by

R = VU′ (5)

We now have N rotation matrices and most of these ma-
trices represent very similar 3D rotations, namely the 3D
rotation that approximately aligns the two faces. However,
some matrices, particularly those associated with very small
or very large radius IRAD contours, can represent inconsis-
tent alignments, the most common of which is an alignment
which is approximately 180 degrees out of phase with the
correct alignment. To remove these inconsistent IRAD cor-
relations, we implement a simple rotation clustering pro-
cess as follows. Rotation matrices are converted to angle-
axis format (via quaternions) and we find the largest cluster
within the set of N points in angle-axis space. The IRADs
associated with this cluster are labelled ‘inlier IRADs’,
while the remainder are deemed to be outliers. We then cre-
ate a large list of 3D point correspondences, by concatenat-
ing all 3D correspondences associated with inlier IRADs.
Finally, we reapply the LS process in equations 3 to 5 to
this large correspondence list in order to compute the re-
fined rotation matrix, R.

6 Results

We now present our results, when applying the IRAD
method to our data sets, in which each “3D image” con-
sists of the 3D point cloud and mesh, and a registered 2D
intensity image. Our testing proceeded initially with sanity
checks on the method and then with tests of the performance
of the method as follows:

1. We extracted some IRAD signals to check that the sig-
nal shapes were intuitively what we expected. IRADs
extracted for a single 3D image are shown in figures
2, 3. These are shown from two different viewpoints
to emphasise the three dimensionality. Notice how
the front view gives a pattern similar to a fingerprint,
and the IRAD pattern can be viewed as a kind of
“faceprint”.

2. We tested the ability of our system to align 3D images.
For this experiment, we have used a subset of our data,
namely four subjects, each with eleven 3D images to
test our alignment procedure. Each person in this set
is marked up with three small 2x2 chessboard patterns
applied to rigid parts of the face in order to estimate the
ground truth alignment after applying IRAD based reg-
istration. Each image of a given subject is registered
with every other image of that subject to give a total
of 220 registration operations. An example of IRAD
based registration and alignment is shown in figures 4
to 7. The first two figures show images, as captured
from the camera, but centered on the nose tip, the third
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image is the first image registered and rotated to the
second image using the computed rotation (R), and
the final image is the second image aligned to the first,
using the inverse of the computed rotation. Figure 8
shows the IRAD contour curvature signal for image 1
at a radius of 30mm. The first peak in the signal is
where the IRAD traverses the nose bridge and the sec-
ond is the mouth area. The fact that the signal has a
pair of dominant peaks explains why individual IRAD
registration errors are usually manifested as 180 degree
misalignments. Note that it is possible to correct such
errors by selecting the second most dominant correla-
tion peak, if the angular displacement associated with
this second peak falls within the dominant angle-axis
cluster.

3. We tested the correlation based recognition ability of
individual facial curvature IRAD signals at different
radii, using 30 subjects with 12 images each. (Note
that the IRAD contours used in this experiment were
generated directly from mesh facet intersection with
IRAD spheres, i.e. there was no Hermite patch fit-
ting). In this experiment 64,620 face matching opera-
tions were performed and a match was accepted or re-
jected based on thresholding a correlation score. (Note
that the data set we used is very challenging, with 50%
of the images in a non-standard pose/expression. The
set comprised 6 neutral, one head facing up (about
45 degrees), one head facing down (45 degrees), one
happy expression, one angry expression, one eyebrows
raised, and one 3D image double the distance from the
camera.) Although direct correlation is not necessarily
a good way to use IRADs for face matching, this exper-
iment provides useful information to try to understand
which parts of the face, in terms of IRAD contours
are the most discriminating, and hence what range
of IRAD radii we may wish to incorporate in more
sophisticated matching schemes. Direct correlation
based recognition rate curves, expressing false accep-
tance ratio (FAR) against false rejection ratio (FRR)
for a selection of six IRADs, with facial curvature sig-
nals, are shown in fig 9. The equal error rate (EER),
when FAR is equal to FRR, expresses the performance
of direct correlation when matching faces and is shown
for each radius that we tested in fig 10. Note that the
areas across the nose bridge are most discriminating
across the data set, whereas those very close to the
nose and those on the periphery of the facial surface
as less discriminatory. When visualising IRADs, these
results accord with intuition, since the area very close
to the nose tip is near spherical and featureless, and
peripheral contours can be quite uniform in depth and
near circular in the x-y plane. In contrast the contours
over the nose bridge and cheek areas tend to be much

Figure 2: Irad contours on 3D image 00179-08: front view

Figure 3: Irad contours on 3D image 00179-08: profile view

more varied across the data set. The best performance
achieved was an EER of 21.91%, which is encourag-
ing, given that the result is from a single signal around
a single IRAD contour.

7 Conclusions

We have proposed a new representation for 3D face regis-
tration and matching, called the isoradius contour (IRAD)
representation. It has proved to be effective for 3D face
registration and has several advantages over the commonly
used ICP method [12] and its variants, namely it is ro-
bust to outliers, non iterative and almost always provides
a good alignment solution, irrespective of the initial dis-
placement in pose. Furthermore, unlike ICP, the method
has good potential to be made invariant to facial expression
by analysing the variance of IRAD signals across different
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Figure 4: Marked subject frontal (image 1)

Figure 5: Marked subject looking to left (image 2)

Figure 6: Image 1 rotated to align with image 2

Figure 7: Image 2 rotated to align with image 1
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Figure 8: IRAD contour curvature signal for image 1 at ra-
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Figure 9: Error curves for six individual IRAD signals
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Figure 10: Bar chart of EER for face curvature IRAD sig-
nals at various radii.

parts of the face under a variety of facial expressions. A use-
ful by-product of the IRAD registration procedure is that we
have computed a set of maximum correlation scores that are
consistent with some rigid rotational alignment. We have
shown that these correlation scores may be used in a sim-
ple direct correlation matching process, to determine which
IRAD signals are most discriminating and, overall, to give
a reasonable face recognition performance, possibly as a
correlation-based pre-filter to a more sophisticated match-
ing method. Finally, we believe that the IRAD representa-
tion is appropriate to support simultaneous 3D face recogni-
tion and identification of facial expression. Modelling how
IRADs deform over a range of facial expressions is one fo-
cus of our current research.
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