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Abstract 
 

An investigation to localise facial landmarks from 

3D images is presented, without using any assumption 

concerning facial pose. This paper introduces new 

surface descriptors, which are derived from either 

unstructured face data, or a radial basis function 

(RBF) model of the facial surface. Two new variants of 

feature descriptors are described, generally named as 

point–triplet descriptors because they require three 

vertices to be computed. The first is related to the 

classical depth map feature, which is referred to as 

weighted–interpolated depth map. The second variant 

of descriptors are derived from an implicit RBF model, 

they are referred to as surface RBF signature (SRS) 

features. Both variants of descriptors are able to 

encode surface information within a triangular region 

defined by a point–triplet into a surface signature, 

which could be useful not only for 3D face processing 

but also within a number of graph based retrieval 

applications. These descriptors are embedded into a 

system designed to localise the nose–tip and two 

inner–eye corners. Landmark localisation performance 

is reported by computing errors of estimated landmark 

locations against our respective ground–truth data 

from the Face Recognition Grand Challenge (FRGC) 

database. 

 

1. Introduction 
 
The human face is a huge source of information, and it 
plays an essential role in social interactions. Physically 
speaking, the face is a natural human way of 
identification, conveying race, age and gender; and for 
the people who frequently interact with each person 
(such as colleagues, friends, and family), the person’s 
face is closely associated with all that he/she is. 
Behaviourally speaking, the face is a primary actor 
within interpersonal communication, essentially, 
because it is the means of expressing emotions [6]. 
Furthermore, it has been said that the effectiveness 
when a message is transmitted is 7% from spoken 

words, 38% from voice intonation, and 55% from 
facial expressions, which implies that facial 
expressions are the main modality in human 
communications [7]. These are some facts that 
motivate the research community to study the human 
face from different perspectives. 

For many face processing algorithms: face 
animation, face registration, face alignment, face 
recognition and verification; accurate facial landmark 
localisation is an essential precursor. For instance, it is 
well known that even holistic matching methods, such 
as Eigenfaces [8] and Fisherfaces [9], need accurate 
locations of key facial features for face pose 
normalisation; where noticeable degradation in 
recognition performance is observed without accurate 
facial feature locations. Furthermore, it is generally 
believed that, an improved landmark localisation will 
increase the effectiveness of many face processing 
applications [11-15]. 

After several years of research, face processing has 
become an everyday tool in real life applications [11]-
[15]. However, convincing solutions for 3D data that 
work well over a wide range of head poses are still 
needed. This paper presents some progress in localising 
facial landmarks within 3D face data, without any 
assumptions concerning facial pose. 

The rest of this paper is structured as follows. 
Section 2 introduces the point-triplet descriptors. 
Section 3 presents the experimental framework to 
localise facial landmarks. Section 4 shows the 
experimental framework and results. Finally, Section 5 
discusses and concludes this paper. 
 

2. Point-triplet feature descriptors 
 

This section describes the point–triplet feature 

descriptors, which given a triplet of 3D points, are able 
to encode a 3D shape contained in the triangular region 
defined by this triplet into a surface signature. It 
presents two variants of point–triplet descriptors. The 
first is related to the classical depth map feature, this 
feature is referred to as weighted–interpolated depth 



map. The second variant of descriptors are derived 
from an implicit radial basis function (RBF) model, 
they are referred to as surface RBF signature (SRS) 
features, which are related to the previous work in 
sampling an RBF model [1]. Both variants of 
descriptors are a natural extension of the previous work 
in landmark localisation [1]-[5]. The point-triplet 
descriptors are able to encode surface information 
within a triangular region defined by a point–triplet 
into a surface signature, which could be useful not only 
for 3D face processing but, also, within a number of 
graph based retrieval applications. 

However, this paper evaluates their ability to 
identify point–triplets of facial landmarks, two 
endocanthions (inner-eye corners) and a pronasale 
(nose-tip), as a first application. To do this, first 
generate candidate landmark–triplets as follows: for 
every vertex, DLP and SSR value features [4] were 
computed, and only those within three standard 
deviations were retained. Then, using contextual 
support [2], a pair of candidate landmarks is created. 
As long as SSR value features robustly detect the 
pronasale landmark, it was found that many candidate 
pairs of endocanthions can be deleted, as no pronasale 
landmarks support them [5]. After this, only candidate 
landmarks with the minimum Mahalanobis distance to 
the mean of training SSR value features, within a radius 
of 10 mm, are kept. This is found necessary to reduce 
the potential number of candidate triplets. Unique 
combinations of endocanthions and pronasale 
landmarks, with mutual contextual support, were then 
created, using a right-hand orientation, from the left to 
the right endocanthion, and then to the pronasale 
landmark. Such orientation was defined using the 
normal to the plane defined by each triplet, which was 
oriented towards the camera’s viewpoint. At the end of 
this process, a practical number of candidate point–
triplets for every testing face were obtained, to which, 
the point–triplet descriptors were applied. The 
following subsections define the point–triplet 

descriptors and the experimental evaluation used to 
identify triplets of facial landmarks. 

 
2.1 Weighted–interpolated depth map 

 
A weighted–interpolated depth map is a point–

triplet descriptor closely related to the classical depth 

map feature. The idea here is to compute a depth map 
using a point–triplet which effectively defines a 
triangular–region within a surface as illustrated in 

Figure 1(a). Given a triplet of 3D points ),,(
321

ppp , a 

weighted–interpolated depth map is computed as 
follows. Firstly, the baricenter of the triangular–plane is 

computed, and this point is used as the origin O . From 
this origin and based on the plane’s normal ( n  in 
Figure 1-a) a local right-hand basis is defined, which is 
oriented towards the camera’s viewpoint. Then, a 
[13x13] regular grid is created, but only those points 
within the triangular region are used. To do this, a 
binary mask is used, as shown in Figure 1(b). Then, for 
each sampling point within this triangular mask, a 
depth is estimated by using inverse square weighted 

interpolation ),( yxf : 
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Figure 1. A weighted–interpolated depth map is computed by 
generating a [13x13] regular grid, then applying a binary mask. 

2.2 Surface RBF Signature (SRS) Features 

 
In this subsection four alternate features to analyse a 

3D shape given a triplet of 3D points are presented. All 
of them use a radial basis function (RBF) model to 
compute depths. Thus, this family is referred to as 
surface RBF signature (SRS) features, namely: 
baricenter depth map, 7–bins SRS vector, SRS depth 
map, and SRS histogram. 

The idea here is to sample an RBF model by a set of 
n  points which lie within the triangular–region defined 

by ),,(
321

ppp . There are several ways to generate such 

sets of sampling points, beginning with the classical 
approach to computing a depth map using a regular 



grid. However, the point of interest is the shape 
enclosed by this triplet of points. Hence, only points 
within this triangle are considered here, in the first 
approach, this is done by using a binary mask, see 
Figure 1(b). 

However, a triplet of non–colinear points which 
define a triangle is expected. Taking advantage of their 
geometry, it is then straightforward to compute their 
baricenter O  (see Figure 2). Furthermore, it is clear 
that this process can be done iteratively. This 
procedure is referred to as a baricenter sampling points 

algorithm [5] which motivates the computation of the 
SRS descriptors: baricenter depth map, 7–bins SRS 
vector, and SRS histogram, introduced in the following 
subsections. 

 
Figure 2. Labelled sampling points, computing baricenters from a 
triangular region in 2 iterations [5].  

a) Baricenter Depth Map 

 
A baricenter depth map is a straightforward 

solution, which is generated from sampling points 
using the baricenter–based algorithm with two 
iterations. Figure 2 shows 25 labelled sampling points 
generated using the baricenter approach with 2 
iterations. It is known that these sampling points will be 
the same no matter how the three points within the 
triplet are sorted. However, in order to encode depths 
from these sampling points they are labelled as shown 
in Figure 2. Then, the labels are used to assign each 
depth (Distance to Surface, DTS, value [1]) into a 
specific bin as indicated in Table I. As observed, this is 
a pose–invariant solution, but it is oriented, and 

different features are obtained if the triplet ),,(
321

ppp  

is sorted differently, which affects labels in Figure 2. 
  

b) 7–bins SRS Vector 

 
A 7–bins SRS vector is a feature descriptor which, 

contrarily to a depth map, is pose–invariant and 
undirected, which make this an attractive descriptor for 

several applications. Such a feature vector is a 
straightforward solution computed from 25 sampling 
points, as detailed in Figure 2, generated from the 
baricenter algorithm in 2 iterations. The idea here is to 
fold down the initial triangular section, collapsing 
symmetrical points into just one, for example: points 

1
p , 

2
p  and 

3
p ; and the internal baricenters. This 

descriptor is inspired by an ideal model, an equilateral 
triangle that can be folded down symmetrically. In this 
case, it is done by adding depths of what were 
considered coincident points in the ideal model. 
Addition is considered an appropriate operation 
because it is commutative, making an undirected 
feature descriptor. Figure 2 illustrates the 25 sampling 
points, where labels in this case are just for reference to 
show how they are folded down, into a new triangular 
region as observed in Figure 3. Using this approach, 
depths in Figure 3 are distance to surface values (DTS) 
from each sample point to the surface RBF model.  

 

 
Figure 3. The 7–bins SRS vector is generated by folding down 25 
sampling points from the baricenter algorithm (2 iterations), where 
depthi is the distance to surface value from the i–sample point to the 
surface’s RBF model. 

c) SRS Depth Map 

 
An SRS depth map is a counterpart to the weighted–

interpolated depth map (Section 2.1), where depths are 
generated by sampling an RBF model using a regular 
grid, but taking only those values within the triangular 

region defined by a point–triplet ),,(
321

ppp . This is 

possible by applying a type of binary mask (see Figure 
1), however, this solution is neither undirected nor 
pose–invariant. 

TABLE I. BINNING DTS VALUES FOR BARICENTER DEPTH MAPS. 

5 4 3 2 1 
17 16 15 14 13 
6 18 25 24 12 
7 19 21 23 11 
8 20 9 22 10 

 



 
d) SRS Histograms 

 
A surface RBF signature (SRS) histogram is related 

to Pears’ SSR histograms [1]. Given a point–triplet 
which defines a triangular region in the 3D space, an 
SRS histogram is computed by generating sampling 
points using our baricenter algorithm. Distance to 
surface (DTS) values are then obtained from this 
sample set at different heights, above and below the 
target triangular region. Normalised DTS values are 
obtained by dividing each DTS by its respective height, 
producing values between -1 to 1. Finally, a 23–bin 
histogram is produced with the normalised DTS values 
for each height. In doing this, consistent triangular 
regions from views at different heights are being sought 
[5]. The theory being that given a triangular region 
defined by a point–triplet, an SRS histogram is 
computed by sampling an RBF surface model at 
different heights, where such a sampling set is 
produced using our baricenter sampling point 

algorithm mentioned in Section 2.2. 
 

3. Landmark Localisation 
 

This section presents the experimental framework to 
illustrate how the point–triplet descriptors can be used 
to identify distinctive facial landmarks, the pronasale 
and endocanthions. As shown in Figure 4, our 
investigation firstly needs candidate point–triplets. To 
do this, distance to local plane (DLP) and spherically 

sampled RBF (SSR) value features are used [3]-[5], 
along with contextual support based on Euclidean 
lengths [2]. Point–triplet descriptors are then computed 
and the candidate triplet with the minimum 
Mahalanobis distance to the mean of respective point–
triplet training data is stored for localisation 
performance evaluation. 

 
3.1 Testing Procedure 

 
As observed in Table II, a system was created using 
each point–triplet descriptor to localise the pronasale 
and endocanthion landmarks, giving five point–triplet 
systems (PT–S) in total, which are tested as illustrated 
in Figure 4. The experimental procedure is as follows: 
 
1. Separate training and testing sets from the Face 

Recognition Grand Challenge (FRGC) database 
[10] are defined. Particularly, only data with 2D-
3D correspondence [5] from Spring-2003 subset, 
which present variations in depth but generally 
neutral expressions. Thus, 200 shape images from 

different people for training and 509 faces from 
different people for testing are used. 

2. From these 200 training images, point–triplet 
training data is gathered at the ground–truth [2] 
level. 

3. For each testing face above, candidate triplet–
landmarks (endocanthions and pronasale) are 
collected as illustrated in Figure 4. Firstly, initial 
candidate lists for endocanthions and pronasale 
landmarks are collected. This is done by computing 
distance to local plane (DLP) first, and then, 
spherically sampled RBF (SSR) values for every 
vertex within a testing face. For a vertex to be a 
candidate, it must be within 3–standard deviations 
of respective training data. Secondly, point–pair 
candidates were gathered based on training 
Euclidean distance within three standard 
deviations. This produces both candidate 
endocanthion–pairs and endocanthion–pronasale–
pairs. This allows endocanthion pairs (left–right) 
without pronasale support to be ignored, as they are 
not useful for creating triplets. Candidates with the 
minimum Mahalanobis distance to the mean of SSR 
value training data are then kept, giving a kind of 
local maximum and local minimum for pronasale 
and endocanthion landmarks. Finally, a triplet is 
formed by combining pronasale and endocanthion 
candidates mutually supported. 

4. Every triplet is right-hand oriented, from left to 
right endocanthion, then to the pronasale candidate. 
This allows identification of duplicated triplets, 
which are expected from the shape similarity 
between the left and right endocanthions. 

5. Depths for weighted–interpolated depth maps are 
computed using raw points within the triangular 

region defined by the candidate triplet ),,(
321

ppp . 

6. SRS depth maps are produced by computing 25 
sampling points, using the baricenter algorithm 
with 2 iterations, then binning each depth into a 
[5x5] array, as illustrated in Table I. 

7. 7–bins SRS vector features are computed as defined 
in Section 2.2(b). 

8. SRS histogram features are generated from sample 
points computed by 4 iterations of our baricenter 

algorithm, 8 heights: 10:5:45 and 23 bins, giving 
SRS histograms of [23x8]. 

9. When appropriate, Principal Component Analysis 
(PCA) is used to reduce the feature space to 8, 16, 
32, and/or 64 dimensions. 

10. Point–triplet features are computed for every 
candidate triplet and compared against respective 
training data. Then, the triplet with the minimum 
Mahalanobis distance to the mean of respective 



point–triplet training data is taken as the best 
landmark estimation. 

11. Localisation performance figures are generated by 
computing localisation errors between estimated 
landmarks against our manually marked ground–
truth [2] from the FRGC database. The results are 
then used to present localisation performance 
figures, using thresholds in Table III for successful, 
poor, and failure localisations. 

 

 
Figure 4. Experimental framework to localise the triplet 
endocanthions and pronasale landmarks using point–triplet 
descriptors. 

 

 
 

Note that localisation is done at the 3D vertex level 
and we are using a down-sample factor of four on the 
FRGC dataset [10], which gives a typical distance 
between vertices of around 3-5mm. Thus, a threshold 
of 20mm is selected where an estimated landmark 
would be within a radius of 4 vertices from the ground 
truth vertex [2]. 

4. Localisation Performance 
 
Performance figures when using our point–triplet 

descriptors to localise the landmark–triplet pronasale 
and endocanthions are now presented. 

From the block diagram in Figure 4, it can be 
observed that the point–triplet descriptors localisation 
performance is related to the candidate triplets obtained 
off–line. A base–line to estimate the best localisation 
performance within the point–triplet localisation 
system is then defined. To compute this base–line, 
localisation errors between every candidate landmark–
triplet are computed against the ground–truth 
landmark–triplet. For every candidate landmark–triplet 
their localisation errors are added. Finally, the 
landmark–triplet with the minimum total localisation 
error is taken as the best estimation. As observed in 
Table IV, only the pronasale landmark reaches 100% 
successful localisation performance, but the same 
would not be expected for the endocanthion landmarks. 

As indicated in Table II, the point–triplet 
descriptors were embedded into five localisation 
systems. From these systems, different performance is 
observed. Hence, a summary of successful localisation 
is presented in Table IV.  

 
 

5. Discussion and conclusion 
 
This paper devised new surface descriptors, derived 
from either unstructured surface data, or a radial basis 
function (RBF) model from the face surface. Then, two 
new families of descriptors were introduced, generally 
named as point–triplet descriptors, which require three 
vertices respectively for their computation. 

Our point–triplet descriptors approach was done 
based on the belief that a good descriptor must be 
invariant to pose and orientation. From these criteria, 
the 7–bins SRS vector descriptor is the only one that 
possesses these two properties, making this a potential 
descriptor for future research. 

As for the point-triplet descriptor in general, 7–bin 

SRS vector and SRS histograms are undirected. 
Weighted–interpolated depth map and SRS depth map 

features, depend on a normal’s orientation. Finally, a 
Baricenter depth map feature is undirected, as long as 
it is binned according to fixed labels from sample 
points. 

TABLE III. THRESHOLDS TO EVALUATE ESTIMATED LOCATIONS. 

Success mmerror 12≤  
Poor mmerrormm 2012 ≤<  
Fail mmerror 20>  

 

 TABLE II. IMPLEMENTATIONS USING POINT-TRIPLET DESCRIPTORS. 

 Point-triplet feature descriptor 

PT-S1 Weighted-interpolated depth map 
PT-S2 Baricenter depth map 
PT-S3 7-bins SRS vector 
PT-S4 SRS depth map 
PT-S5 SRS histogram 

 

TABLE IV. SUCCESSFUL LANDMARK LOCALISATION SUMMARY. 

 Left 

endocanthion 

Right 

endocanthion 

Pronasale 

PT-S1 82.90% 76.03% 98.82% 

PT-S2 90.17% 81.92% 99.60% 

PT-S3 91.35% 83.98% 99.01% 

PT-S4 93.71% 89.98% 99.21% 

PT-S5 90.76% 84.67% 99.60% 

Base line 96.26% 99.01% 100.00% 

 



This paper presented performance figures when 
computing every feature descriptor to localise 
particular facial landmarks as summarised in Table IV. 
However, this is not the only property that can be 
observed from them. The motivation to investigate 
feature descriptors using a number of vertices, e.g. one 
[2]-[3], two [4], or three, is based on natural limitations 
associated with each feature descriptor. For instance, a 
very good question could be: why use more than one 

vertex to compute a feature, when SSR histograms or 

spin–images are able to robustly localise the pronasale 

landmark? [1]. There are several reasons that can be 
discussed in answering this question; however, at this 
point the focus is on three main arguments: 

 
a) Robustness to extreme pose variation 
 
The experimental feature descriptors, computed from a 
single vertex, e.g. DLP, SSR features and spin–images, 
are defined radially and a decrease in performance for 
particular facial landmarks is expected when computed 
from self occluded data, such as in pure profiles [5]. 
For instance, an SSR histogram at the pronasale 
landmark in a pure profile will be computed from the 
half of the nose in the best case, which suggests a 
reduction in effectiveness. In this respect, point–triplet 

descriptors are flexible and they can be computed from 
a set of distinctive landmarks, present within a wide 
range of pose variations, as observed in our 
preliminary experimentation. 
 
b) Single facial landmark dependence 
 
Most 3D face processing applications depend on the 
pronasale detection to extract the face from a shape 
image. Although our previous work [5] presents 
experimental results supporting the pronasale as the 
most distinctive facial landmark among eleven, those 
results are from nearly front–pose data, and a different 
performance is expected using data with pose 
variations. Thus, the most distinctive facial landmark 
cannot be depended on alone. Contrarily, with point–

triplet descriptors, more than one vertex can be 
combined to assist a landmark localisation. 
 
c) Scale invariance:  
 
Computing a feature descriptor based on a single 
vertex does not provide enough information to define 
an appropriate scale for an intended facial feature [5]. 
For instance, SSR histograms are computed from 10 to 

45mm in steps of 5mm [1]-[5]. Similarly, distance to 

local plane (DLP), SSR values and spin–images need a 

specific radius to be computed [1]-[5]. Contrarily, 
point–triplet features are scale invariant, where surface 
shapes can be encoded within the triangular region 
defined by the given triplet of points. 

However, in exchange for those advantages 
mentioned above, it is necessary to collect suitable 
candidates in triplets to compute a point–triplet 

descriptor. This is a crucial task, because the overall 
system performance greatly depends on these initial 
candidates. 
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