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Abstract—A method of mobile robot steering control around pre-planned

paths is presented. The system can manœuvre accurately at low speeds by

deriving control parameters as functions of vehicle velocity. The peak demand

on the steering controller is reduced, by distributing steering curvature changes

evenly over the extent of a manœuvre.
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1. INTRODUCTION

The robotics research community has invested significant effort in a variety

of solutions to the problem of mobile robot control. Earlier examples include

an optimal proportional-plus-integral controller for a wire-guidance vehicle [4],

a method whereby the accelerations of the left and right drive wheels are con-

trolled such that the vehicle’s pose will agree with that of the current command

after a given time period [3], and an exponential control law to track a sequence

of points [6]. More recently, detailed non-linear models have been included in

the control analysis [1] and sliding mode control methods have become popular

for both trajectory tracking [7] and in the context of artificial potential fields [2].

Other recent research has bypassed the pose estimation phase normally assumed

and used sensory information directly for control [5]. Here, we assume sensory

pose estimation and that a path has been planned that is consistent with the

kinematic constraints of the vehicle. We then go on to develop simple linear

state feedback laws and test and augment them for a variety of path complex-

ities. In comparison to many previous systems, the steering control described

here is simple, robust and effective due to these intuitive state feedback control

laws.

2. THE CONTROL LAW

We assume that there is always an estimate of global vehicle position, (xg , yg, θg),

from some sensor system(s). This estimate may be subject to small step changes

due to either bumps on the floor, or new landmarks becoming visible, causing a

discontinuity in the estimation. Thus we need to analyse both the transient and

steady state behaviour of path tracking performance. In addition to a global

position estimate, we require some definition of the planned path within the
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global frame. We then determine the position of a local frame situated on the

path, whose y axis is perpendicular to the path and incident with the robot

reference point (see figure 1). This local frame moves along the path at a speed

equal to the tangential velocity of the robot relative to the path. Measurement

of the vehicle position in this local frame gives a normal offset error, y, and

orientation error, θ, relative to the path. Assuming that the vehicle velocity

along the specified path can be controlled adequately, we now present a steer-

ing control law, which forces the robot’s reference point to track the demand

trajectory.

Since vehicle heading, θ, in the local frame affects the way in which tracking

error, y, changes, the control algorithm initially generates a demand heading

relative to the orientation of the local frame. This always points towards the

x axis of the local frame at an angle that is proportional to the tracking error

and in the direction that the robot is travelling. The error in robot heading

with respect to a demand heading derived in this fashion yields a proportional

turning curvature that tends to diminish this heading error. In effect, the robot

can turn left and then right by steering around each of the demand heading

lines shown in figure 1.

3. KINEMATIC ANALYSIS

Initially we assume ideal dynamics of the steering controller, which allows the

robot to instantaneously assume any arbitrary turning curvature. The control

law can be formally specified as follows: Generate a demand heading in the local

frame, θd, proportional to the path offset error, so that:

θd = −ky(y − yd) (1)
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subject to |θdmax| = π
2 . (Note that the demand offset from the path, yd, is

zero, but is included so that we can generate a transfer function later.) Then,

generate a steering curvature, κ, which is proportional to the heading error:

κ = −kθ(θ − θd) (2)

where ky and kθ are constants. Combining controller equations 1 and 2 gives:

κ = −kykθ(y − yd) − kθθ (3)

Let the system state be the vehicle’s position in the path dependent local frame:

xT = [y, θ]. Kinematic relations for the derivatives of the state variables are:

ẏ ≈ V θ (4)

(small angle approximation), and

θ̇ = V κ (5)

We can now write equations 3, 4 and 5 in the linear form ẋ = Ax + bu

[

ẏ

θ̇

]

=

[

0 V

−kθkyV −kθV

] [

y

θ

]

+

[

0
kθkyV

]

yd (6)

The characteristic equation of the above system is given by

|A− sI| = 0 (7)

which in this case is:

s2 + kθV s + kθkyV 2 = 0 (8)
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where, s, is the variable of the Laplace transform. Note that if the robot is

travelling backwards, speed, V , is negative, so both kθ and ky must be made

negative to keep coefficients positive and the system stable (Routh-Hurwitz

criterion). The characteristic equation of the system (equation 8) can be written

in the normalised form:

s2

ω2
+ Ts + 1 = 0 (9)

with

T =
1

kyV
, ω =

√

kθkyV (10)

The damping factor, ξ, is:

ξ =
Tω

2
=

1

2

√

kθ

ky

(11)

Thus to give critical damping (fastest response without overshoots), we require

ξ = 1 or

kθ = 4ky (12)

The closed loop transfer function of the system can be derived from the state

space matrices as

Gcl(s) =
Y (s)

Yd(s)
= c[sI −A]−1b (13)

where c = [1, 0] is the matrix that relates the system states to the output, y,

and A and b are matrices as defined in equation 6. Hence

Gcl(s) =
kθkyV 2

s2 + kθV s + kθkyV 2
(14)
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Figure 2: Step responses for various control parameters

The open loop transfer function of the system is related to the closed loop

transfer function by

Gol(s) =
Gcl(s)

1 − Gcl(s)
=

kykθV
2

s(s + kθV )
(15)

3.1 Simulation results

Damping factor (equation 11), shows that if kθ > 4ky the robot’s motion is

overdamped and if kθ < 4ky the motion is underdamped. This is confirmed in

figure 2 which shows simulation results of the distance, y, to the demand path

as the vehicle attempts to track a straight line. In the experiments, the robot

was placed parallel to its demand path, but with a 0.1m offset. Graphs y1, y2

and y3 show the paths taken with control constants (kθ, ky) set at (4,1), (2,2)

and (8,0.5) respectively.

4. TRACKING CIRCLES
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Simulation results for tracking a circle of radius 1m, with control constants

set at kθ = 4, ky = 1. show that a large steady state offset of around 0.2m

quickly develops and the control system, as it stands, is clearly inadequate for

curve tracking. In steady state, the system type dictates that the vehicle travels

parallel to its demand path. (Since it indicates a finite, bounded steady state

error.) This implies that the steady state value of local heading, θss, is zero.

Thus, from equation 3 we have

κss = −kykθyss (16)

We also note that the steady state curvature is given as κss = 1
rpath−yss

where

rpath, is the radius of the circular demand path. Substituting for κss and rear-

ranging gives the quadratic

y2
ss − rpathyss −

1

kθky

= 0 (17)

Equation 17 indicates that the steady state offset in the state y, yss, is depen-

dent on the path curvature (κpath = 1
rpath

) and the choice of control constants.

Substituting values of rpath = 1.0, kθ = 4, and ky = 1 gives a solution to equa-

tion 17 as yss = −20.0cm, which is in close agreement with the value obtained

from the simulation.

Adding κpath to the right hand side of equation 16 allows yss to be zero when

κss = κpath. If κpath is considered as an input, then this curvature is added to

that derived from the measured local position (y, θ′) and the robot accurately

tracks the circular demand path. The simplified overview of this system is shown

in figure 3.
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Figure 3: Steering control system

5. VELOCITY DEPENDENCIES

In accordance with the common experience of driving a car, the robot should

slow down for sharp corners, allowing safe, smooth and accurate tracking. To

implement this we generate a demand velocity, Vd, for the speed controller,

which is a function of turning curvature such that

Vd(κ) =
θ̇max

κlim

, κlim = max{κ,
θ̇max

Vmax

} (18)

where θ̇max and Vmax are constants. Actual vehicle follows this demand velocity

as closely as possible in accordance with the speed controller and vehicle dy-

namics. The control constants, (ky, kθ) are computed as a function of this actual

velocity, so that the vehicle can turn more sharply towards the demand path

at lower speeds. This requirement may be formulated by making the system’s

performance, described by T and ξ in equations 10 and 11 (or equivalently the

coefficients in the characteristic equation) independent of velocity. Thus, for

velocity independent rise time and unity damping ratio, we require:

ky =
γ

vlim

, kθ =
4γ

vlim

(19)
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Vlim = max

{

V,
γ

kymax

}

(20)

where typically we have used γ = 0.2 and kymax
= 16.

This constant rise time feature of the control system means that, when trav-

elling more slowly, any deviations from the planned path are eliminated over a

shorter path length. This is beneficial in two instances

• As the robot approaches its destination, it decelerates to a low velocity.

This means that raised values of the control constants allow more accurate

docking manœvres.

• High curvatures in planned paths typically occur when manœvering close

to objects. In such cases, the vehicle velocity is automatically lowered,

allowing raised values of the control constants to give accurate tracking,

when subject to disturbances such as bumps in the floor.

6. CURVATURE RATE LIMITING

In the preceding sections, we assumed that the steering controller could in-

stantaneously assume any desired curvature. The resulting analysis yielded a

4:1 ratio between control constants for critically damped response. The graph

labelled “curv raw” on figure 4 shows the curvature required to correct an error

in y when the vehicle is parallel to a stright path but displaced 0.1m from it.

The graph indicates that a large initial step change in curvature is required

followed by a sequence of much smaller changes. In real systems, the steering

controller will take a finite time to attain this step in demanded curvature, so

we must either:
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1. Include the dynamics of the steering process in the analysis and recompute

the optimum ratio of control constants.

2. Include in the system a mechanism to spread the change in curvature more

evenly over the whole steering process, and assume that, to an acceptable

accuracy, the real steering mechanism can track the demanded turning

curvature.

To avoid assuming specific steering control dynamics, here we present a solu-

tion based on the second approach.

6.1 Filtering demand curvature

In order to spread the changes in curvature more evenly across the whole

manœuvre, the actual curvature passed to the steering controller is the value

of the previous curvature plus a fraction of the difference between the demand

curvature and previous curvature.

κi = κi−1 + kl(κdi − κi−1) = (1 − kl)κi−1 + klκdi (21)

where kl is a constant such that {0 < kl <= 1}. In the z transform domain

(where z = esTs), the transfer function of such a filter is given by

Gl(z) =
κi

κdemi

=
klz

z − (1 − kl)
(22)

Equation 21 has the form of a backward difference integration, in which the

function integrated is the difference between the demand turning curvature and

the curvature actually implemented by the vehicle’s wheel(s). The backward

difference mapping between the z and s domains can be written as
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Gl(s) = Gl(z)|z=(1−Tss)−1 (23)

and using this mapping on equation 22 gives:

Gl(s) =
kl

kl + (1 − kl)Tss
(24)

which can be written as

Gl(s) =
k′

l

s + k′

l

, k′

l =
kl

(1 − kl)Ts

(25)

The introduction of this filter, modifies the system’s open loop transfer function

(equation 15) to:

Gol(s) =
kθkyV 2k′

l

s(s + kθV )(s + k′

l)
(26)

6.2 Simulation results

The same step response test was implemented as in section , except that the

curvature filter was included before implementing curvature on the simulated

vehicle. Figures 4 and 5 compare the results of turning curvature, κ, and offset

from the demand path, y, for the limited (kl = 0.1) and unlimited (kl = 1.0)

system when ky = 1.0, kθ = 4, Ts = 0.1s and V = 0.2s.

Notice that the step responses in y are very similar in form, as the time

constant of the curvature filter is short compared to the time for the vehicle

manœuvre. However, the form of κ for the curvature limited system is signifi-

cantly preferable to the unlimited system. In the limited system, the initial rate

of change of curvature required is 10% of the unlimited system, and the changes

in curvature are distributed much more evenly over the whole of the manœuvre.
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Figure 4: Step response (κ) with curvature rate limiting

A root locus plot employing the modified open loop transfer function in equa-

tion 26 indicates that the system is now underdamped. (As expected from the

introduction of a lag into the system.) If necessary, this may be restored by ei-

ther increasing ktheta or decreasing ky. Although the latter option reduces rise

time, it is preferable as increasing kθ. Simulations have indicated that an in-

crease in kθ can have the undesirable effect of introducing oscillations (multiple

sign changes) into κ, even though y does not change sign.

7. TRACKING PARAMETRIC CURVES

Although paths could be constructed with straight line and curve segments,

this offers little flexibility. Also, at the junction points between path segments,

there would be a discontinuity in curvature which can not be tracked by real

steering mechanisms. Parametric curves, such as cubic B-spline are often used

to represent planned paths as they offer an attractive trade-off between the

flexibility of higher order curves and the control and simplicity of lower order
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Figure 5: Step response (y) with curvature rate limiting

curves. Also, they are formulated to give continuity up to the second derivative

with respect to their parameter, s, 1 which implies continuity in curvature at

the knot points (segment junctions).

As the vehicle attempts to track a B-spline, we need to determine the curve

parameter value, s, which corresponds to the closest Euclidean distance from

the path to the robot. A parametric 2D curve has the form p(s) = (x(s), y(s)).

To determine a location on the curve where the robot’s position is normal to

that curve, we require that

p′.(pg − p) = 0 (27)

where pg = (xg , yg) is the global position of the robot. (Primed values represent

differentiation wrt s). For a cubic B-spline, this is a quintic in parameter s,

which we solve by the Newton-Raphson method. Given a solution, s, we then

determine the local coordinates of the robot position as:

1Not to be confused with the Laplace trasform variable used earlier
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Figure 6: Path offset whilst tracking a cubic B-spline

θ = θg − tan−1 y′(s)

x′(s)
(28)

y = m.(t̂X(pg − p)) (29)

where

t̂ =
p′

|p′|
m = [001] (30)

This gives

y =
x′(yg − y) − y′(xg − x)

(x′2 + y′2)
1

2

(31)

In addition to the local position of the path, we require the Euclidean path

curvature as input to the control system. It can be shown that this is given by

κ =
y′′x′ − x′′y′

(x′2 + y′2)
3

2

(32)
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To test the control system in following a cubic B-spline, a demand path was

set with spline control points of (1,1), (2,1), (3,6) and (8,1). The robot was

placed 6cm from the demand path, and parallel to that path, and asked to

move at 0.2m/s with ky, kθ, kl set at 1, 4 and 0.1 respectively. The graph labelled

“kd = 0” on fig 6 shows the path error increasing due to the combination of the

lag caused by the curvature filter and a continuously varying curvature of the

demand path.

If rate of change of curvature can be found (wrt time), a proportion of this,

kdκ̇, may be added to the demand turning curvature to reduce the tracking

error. Now it can be shown that

κ′ =
x′(y′′′ − 3vsκx′′) − y′(x′′′ + 3vsκy′′)

v3
s

(33)

where

vs = |p′| = (x′2 + y′2)
1

2 (34)

Curvature rate with respect to time is given as

κ̇ =
κ′Vx

x′
=

κ′Vy

y′
(35)

(the term with the largest denominator is evaluated). Demand turning curvature

is now given as

κd = −kykθy − kθθ + κpath + kdκ̇path (36)

The improvement gained in adding the derivative of the path input is shown in

figure 6. Future work will determine explicit analytic relations between all four

system parameters kθ, ky, kl and kd for optimum performance over a variety of

path types.
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8. CONCLUSION

In this paper, the formulation, analysis, and tuning of a mobile robot path

tracking system has been described, and it has been tested on paths of varying

complexity. Although this control rule is very simple, it has proved successful,

because it establishes an intuitive link between the vehicle’s degrees of freedom

y and θ′ relative to its demand path. The velocity independence of key system

parameters generates sensible behaviour whereby the vehicle turns more steeply

towards its demand path when it is travelling more slowly. In addition, the

filtering of curvature demand spreads curvature changes more evenly over the

whole process of step disturbance correction.
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