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Abstract

We investigate a range of solutions in car ‘make and
model’ recognition. Several different feature detection ap-
proaches are investigated and applied to the problem in-
cluding a new approach based on Harris corner strengths.
This approach recursively partitions the image into quad-
rants, the feature strengths in these quadrants are then
summed and locally normalised in a recursive, hierarchical
fashion. Two different classification approaches are inves-
tigated; a k-nearest-neighbour classifier and a Naive Bayes
classifier. Our system is able to classify vehicles with 96.0%
accuracy, tested using leave-one-out cross-validation on a
realistic dataset of 262 frontal images of cars.

1. Introduction
Automatic vehicle surveillance is an increasingly impor-

tant technology due to a rising trend in license plate cloning.
In the UK, for example, tens of thousands of license plates
are cloned every year. Reasons for plate cloning range from
evading speed camera fines and congestion fees to selling
stolen cars and even disguising a vehicle for use in a serious
crime. To deal with this, automatic recognition of the actual
vehicle itself is required to supplement standard automatic
number plate recognition (ANPR). Vehicle recognition sys-
tems usually either classify the vehicle into generic classes
(car/lorry etc) [3], or they classify the vehicle into specific
‘make and model’ classes. Here we focus on the latter ap-
plication of make and model recognition (MMR).

1.1. Related work
Petrovic and Cootes [10] looked for structures such as

headlights and grill in car images to use as a basis for MMR.
Image samples were position/scale normalised using the
size and location of the license plate. A number of different
features are then extracted over a region of interest. Clas-
sification uses the nearest neighbour to an input sample, by
minimising a cosine distance measure. The best feature is

found to be square mapped gradients, which are gradients
formed from vertical and horizontal Sobel edge responses.
An identification rate of 97.7% on more than 1000 images
and a verification error rate of 3.5% was achieved.

Munroe and Madden [8] use thickened Canny edges as
the extracted features, and test 3 different classifiers: k-
nearest neighbour (k-NN), feed-forward neural network and
a decision tree. The testing dataset is comprised of 5 classes
with 30 samples of each class. Each training set is com-
prised of 134 images with 10 of the class being tested,
30 of each of the other classes and 4 images of unknown
class. The k-NN classifier is found to be most effective
with 97.46% correct identification rate, but the dataset for
this result can be considered less challenging with only 5
fairly distinct looking classes of car tested.

In Clady et al’s work [4], Sobel edges are extracted from
the license plate based ROI and oriented-contour points
are then obtained from the edges using a histogram based
thresholding process. For each class an array is formed
containing the oriented-contour points that are stable across
the class training samples. These are then used to vote on
whether or not a sample belongs to that class. The training
dataset contains 50 classes and is comprised of 291 high
quality frontal view images captured in car parks. The test-
ing dataset is comprised of 830 outdoor images again with
variance in lighting, angle, distance and resolution. A cor-
rect identification rate of 93.1% is reported.

Many other approaches appear in the literature for ex-
ample, Huang at al’s 2D-LDA approach [6], Psyllos et al.
[11] use symmetry measurements and Sarfraz et al. [13]
present a local energy based shape histogram to encode ve-
hicle shape. When dealing with vehicle images at a wide
variety of scales, SIFT-based approaches are popular [7].

In this paper, we investigate several of the approaches
mentioned above, and compare them to our own method,
which is based on normalised Harris corner strengths over
recursively partitioned image regions. In the next sections,
we describe our dataset, followed by our position/scale nor-
malisation and cropping processes. The evaluated methods
are then described and their performance compared.
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2. The evaluation dataset
In many image classification applications, a uniform

distribution of training/testing image samples across the
classes is used. However, this is not what one encoun-
ters for car models, both when collecting training data and
testing. Some models, such as the Ford Focus are much
more popular than other models, and this is reflected in our
dataset. Our dataset consists of 262 frontal car images with
74 different ‘make and model’ classes, collected from the
car parks around our university. There are 21 ‘common’ ve-
hicle classes that have 5 or more sample images and these
constitute 177 images in total. There are another 53 ‘un-
common’ vehicle classes in the dataset, which mostly have
one or two samples, and these constitute the remaining 85
samples.

For the uncommon vehicle classes, we consider that we
do not have enough training data to test for these particular
classes. In the experiments where we test 3-nearest neigh-
bour schemes, this is self-evident when we have less than
3 samples (2 needed for a majority vote, one for testing).
Thus our testing consists of using the 177 images within the
21 ‘common’ classes in a ‘leave-one-out’ scheme, yet the
other 85 samples are included when matching in order to
create a more difficult, realistic scenario where the feature
space is populated by a large number of different classes
(i.e. 74).

Images are collected so that there are small pose varia-
tions: the distance from the car ranges from 1.5m-3m and
the camera pan angle varies from 10 degrees. Also im-
ages are collected in a variety of lighting conditions: mid-
day, evening, in bright sunshine and in cloudy conditions.

3. Normalisation and ROI selection
In all images, we manually mark up the three corners of

the numberplate, the fourth is computed from the other three
such that the four corners form a parallelogram. Firstly, this
allows us to normalise the scale, rotation and skew of the
imaged license plate and hence vehicle front. Secondly it
allows us to mask the plate in the database for security rea-
sons. Finally, features from the number plate are not di-
rectly associated with the class and so should be masked in
the classification process. Although this amounts to manual
intervention, license plate localisation is a mature, high per-
formance technology particularly when using active (LED)
light projection onto the retro-reflective plate surface. Ad-
ditionally, there are many highly successful passive plate
localisation techniques [1].

Given we have the four corners of the numberplate, we
can map them to canonical positions using a planar projec-
tivity (homography). Since we restrict the corners of the
number plate to be on a parallelogram, this is a 6-DOF affine
mapping, and this appears to give a more stable mapping

Figure 1. Undesirable image warping when normalising with four
corners of license plate. Notice how the vehicle’s right headlamp
is enlarged.

Figure 2. Example of an extracted region of interest, h is the li-
cense plate height and w is the license plate width.

than when we specify all four corners independently and
allow a full 8-DOF projectivity, see figure 1. Thus we ef-
fectively normalise the position, scale, rotation and skew of
the plane containing the license plate.

The region of interest (ROI) over which the image is pro-
cessed and a feature vector extracted influences both signal
to noise ratio (and hence classification rate) and the speed of
classification. In order to find a suitable size for the ROI, an
optimal box shaped ROI was manually plotted on 60 differ-
ent vehicles (after normalisation), such that the full width of
the vehicle and the lights and grill were included within the
image. The mean of these box coordinates was then taken as
an estimate for the optimal ROI for the dataset. The position
and size of the ROI relative to the license plate is illustrated
in figure 2.

4. Methods evaluated

Our approach was to examine some approaches in the lit-
erature, understand their performance limitations and then
try and use this information to inform a new approach. To
try and keep the comparison of methods fair, we ensured
that the feature vectors extracted for any one method were
not excessively large and, where possible, we tried to make
them approximately the same size across different methods.
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4.1. Canny edges

Munroe and Madden [8] outline a MMR system using
thickened Canny edge features [2]. Since, in this implemen-
tation, a feature is considered to be one pixel, this restricts
the size of the image. A resolution of 150 by 150 pixels
gives 22,500 pixels in total. Petrovic and Cootes [10] ob-
served that most of the information in a vehicles front is in
the vertical direction, so compressing along the horizontal
and making the image square may be a better use for extra
pixels than maintaining the original aspect ratio. Histogram
based methods were used to set the threshold parameters
automatically on a per-image basis. The edges were thick-
ened by 1 pixel in each direction, as this was found to in-
crease correct classification rates more than thickening by
2 pixels. Thickening improves classification rates because
edge pixel values are being compared directly across the
dataset. This means that if an edge in one sample is just
one pixel off from the location of the same edge in another
sample it will not match across the samples. Thickening the
edges increases the chance that the edge pixels will line up
at least partially. We evaluated the 1 pixel-thickened sys-
tem on our 177 test images using a Euclidean metric in a
k-nearest neighbour (k-NN) scheme. For the 1-NN scheme
we obtained a correct classification rate of 79.1% and for a
3-NN scheme we obtained 81.4%. We view this very sim-
ple solution as a baseline performance which more sophis-
ticated systems can be measured against.

4.2. Square mapped gradients

Square mapped gradients [10] are calculated using the
vertical and horizontal edge responses, sx and sy , returned
by a Sobel edge detector such that:

gx =
s2x − s2y
s2x + s2y

, gy =
2sxsy
s2x + s2y

(1)

When both edge responses are zero, these undefined
numbers were replaced with zeros. The values of gx and
gy were concatenated together to form a feature vector with
two values for each pixel in the input image. If a resolu-
tion of 150 by 150 was used , as with our original Canny
edge based system, this would have been 45,000 features.
Clearly the resolution needs to be reduced to make a fairer
comparison. Petrovic and Cootes recommended a resolu-
tion of 50 by 120 which would produce a feature vector
of 12,000 features which is slightly too low. Using their
proportions and scaling upwards, a resolution of 68 by 162
produces feature vectors of size 22,032. An example of the
feature vector created by square mapped gradients is given
in figure 3. Testing on our test set of 177 vehicles gives
performances of 91.0% and 89.8% correct classification for
1-NN and 3-NN classifiers respectively.

Figure 3. Square mapped gradient features. Left: the original vehi-
cle image. Right: the square mapped gradients feature vector. The
left side of the feature vector shows the gx responses, the right side
shows the gy responses. These have been concatenated to form the
full feature vector.

Figure 4. Harris corner strength output. Left: the original vehicle
image. Right: the corner strength image.

4.3. Harris corners
One of the most well-known and often used interest point

detectors is the Harris detector [5]. We used this detector
along with Noble’s suggested corner strength measure [9],
given by:

CN =
I2xI

2
y − (Ixy)2

I2x + I2y
(2)

where Ix, Iy, Ixy are smoothed image derivatives. An ex-
ample of this Harris corner strength output is given in fig-
ure 4 and it can be seen that the output is rather uniform in
many areas of the image. Clearly, as expected, responses
are only evident where there are local brightness variations
in orthogonal directions. As in the Canny feature test, a fea-
ture vector was comprised of 22,500 elements representing
pixels in a 150 by 150 corner strength image. Testing on
our test set of 177 vehicles gives a performances of 78.0%
using a 1-NN classifier, a performance similar to the Canny
feature (79.1%).

4.4. Recursive partitioning and local normalisation
One of the issues faced by the techniques experimented

with so far is that once the image sample has been nor-
malised with respect to position and scale, the pixels of indi-
vidual structures in the image are assumed to line up across
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samples. Of course these structures do not line up perfectly
across all samples but can be slightly off, mainly due to
variances in the normalisation stage. There are two possi-
ble approaches with dealing with this. The first is to employ
a metric that has a concept of local neighbourhood, in other
words replace the Euclidean metric with an ‘earth mover’
metric [12]. The second is to rethink the feature vector so
that it is less sensitive its alignment due to localisation and
scaling at the normalisation stage. One way to do this is
to recursively divide the image into quadrants and construct
summed feature outputs within the divisions at each level
of the recursion. In this way, feature strength matching at a
high level in the image has an effect on the matching as well
as feature strength matching at the lower level, smaller par-
titions. Thus we have a recursive algorithm that gradually
partitions up the image into smaller partitions, and sums the
feature response at each level into a new feature value.

An advantage of this recursive structure is that feature
strength sums can be normalised in a localised way, such
as dividing by the sum of the feature strength in the associ-
ated higher level region. This ensures that even if a feature
is detected with a much lower strength in one image sam-
ple, it will still match as long as that strength is the same in
proportion to the rest of the feature strengths within its ‘one-
level-up’ region of the image. Our feature vector is formed
in such a way that the feature sums at the lowest level of
recursion will form roughly 2/3s of the feature vector and
will have the most effect on classification. This is preferable
since feature matching in smaller and more precise regions
is likely to be more discriminating than matching them at
higher level regions. (In larger regions, many response dis-
tributions can sum to the same overall response, which re-
duces discrimination.) However, it is important that feature
matching is not too precise since this degrades back into
matching individual pixels; clearly an optimal value for re-
cursion depth needs to be found. Our algorithm partitions
the image into 2 columns by 2 rows each recursion, this
should be suited well to classification using Harris corner
strength since Harris corners are localised to small, com-
pact areas in the image rather than stretching across large
segments. Harris corners were retested using the same con-
ditions as previously, only now using locally normalised
feature strengths to a recursion depth of 5. This gives a
correct classification rate of 94.9% using a 1-NN classifier,
a large improvement over the 78.0% rate found when using
pixel-level matching. It should also be noted that the feature
vector generated using this method is only 1364 features in
size, roughly 5% of the size it was beforehand, thus speed-
ing up classification.

To investigate whether it is actually necessary to include
the feature strengths from higher level regions, a new ver-
sion of the algorithm was coded that only included the nor-
malised feature strengths at the lowest level of iteration.

This resulted in two extra misclassifications compared to
the original algorithm, with an overall correct classification
rate of 93.9%, although we need a larger dataset to verify
that the higher level features are of significance. Another
modification to the algorithm investigated whether the lo-
cal normalisation step was actually more powerful than just
normalising the feature strengths across the strength exhib-
ited by the entire image. This gave very poor results, re-
ducing the overall correct classification rate to just 75.7%.
It would appear that it is the local normalisation step that
gives the algorithm its biggest advantage. A final modifica-
tion used square mapped gradient strengths rather than har-
ris corner strengths and we obtained a 90.4% classification
rate. Since this is still below that attained by Harris fea-
tures this method was abandoned in favour of using Harris
strengths.

4.5. Naive Bayes Classifier
We were motivated to evaluate a Naive Bayes classifier

in order to exploit prior information concerning the relative
frequencies of cars in each class. This classifier uses Bayes’
theorem in order to evaluate the probability of each class
(C), given the observed feature vector (X). The class with
the largest posterior probability, P (C/X), is selected as the
predicted class. Bayes’ theorem gives us

p(C/X) =
P (X/C)P (C)

P (X)
(3)

where P (.) is a probability. P (C) is derived from the rela-
tive frequencies of the different classes in the training data.
Clearly, this should closely correspond to the relative fre-
quencies seen when the system is live. (The integration of
an MMR system with an ANPR system would allow these
prior probabilities to be adaptively learnt over time.) In the
Naive Bayes classifier, the term naive comes from the naive
assumption of independence between the observations as-
sociated with the different dimensions of the feature vec-
tor. Often, as in our case, this is an oversimplification, and
yet the classifier can often give good results. This inde-
pendence assumption allows us to fit separate probability
density functions (PDFs) for each dimension, xi, of the fea-
ture vector X , for each class. Then, when evaluating the
likelihood, P (X/C), for some class, we can simply form
the product of P (xi/C) over all dimensions. This is scaled
by the prior P (C) in equation 3 and the maximum value is
selected over all classes. Note that the denominator P (X)
is the same for all classes and hence does not need to be
evaluated. In our implementation, we used the Naive Bayes
function in MATLAB’s statistics toolbox.

Using this classifier brings locally normalised Harris
strengths up to a 96.0% correct classification rate from
94.9%. Square mapped gradients also improve to 96.0%
from a 93.8% rate. A word of caution is required here
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though. In our ‘leave one out’ testing scenario, the relative
frequencies in the test set correspond closely to the relative
frequencies in the training set and hence we have a very ac-
curate estimate of P (C) in equation 3. In practise, the level
of accuracy in the Bayes Naive classifier may be harder to
replicate, when compared to the k-NN classifier figures.

5. Comparative evaluation
In summary, we tested 10 different classification sys-

tems, by varying the combination of feature extraction
method and classification technique. Our feature extrac-
tion methods include (i) Canny edge detection, (ii) Square
mapped gradients (SMG), (iii) SMG ‘improved’ (by pre-
filtering with a 9x9 Gaussian mask), (iv) Harris cor-
ner strength and (v) Locally normalised Harris strengths
(LNHS). Our classification methods include (i) 1-nearest
neighbour, (ii) 3-nearest neighbour and (iii) Naive Bayes.
Figure 5 shows the comparative performance of each of
these MMR systems.

The Naive Bayes classifier marginally outperforms the
k-NN classifier for both of the feature detectors tested. Im-
proved SMG and LNHS significantly outperform Canny
edge features. When using the k-NN classifier locally
normalised Harris corner strengths slightly outperform im-
proved square mapped gradients but when using the Naive
Bayes classifier they achieve the same classification rate on
our data set. Both ‘improved’ SMG and LNHS using the
Naive Bayes classifier merit further investigation in terms
of their misclassifications. The seven misclassifications in
the 177 classification tests for these two systems are shown
in table 1.

In many cases, both features struggled with classifying
the same classes, such as in the cases of the shared Peu-
geot207, VWGolfMk3, MiniCooper, HondaJazzMk1 and
FordFiestaMk4 failures. The HondaJazzMk1 class accounts
for 3 failures in both approaches. This is surprising since
it is a fairly well populated class in the feature space, with
8 samples in total and 7 samples to match to in the train-
ing set. It may be that the samples in this class do not dis-
play enough stable features across the dataset, and the class
is spread across the feature space. The Peugeot 207 class
may be difficult to classify against the Peugeot 407 class.
Problems with classifying Peugeot vehicles were expected
in the system since they have the license plate located in
a different location to most other car manufacturers. This
causes a poor region of interest to be extracted. The Peugeot
207 and 407 are already fairly similar vehicles, but once the
classifier is unable to use the features from the bonnet and
headlights it makes for a particularly difficult classification,
especially considering the variation in this region of the ve-
hicle. Two other reoccurring misclassifications are sample
121; a VWGolfMk3 sample misclassified both times as a
VWGolfMk2 and sample 202; a MiniCooper sample that

misclassifies differently each time. Upon inspection, noth-
ing of note could be seen in the misclassification of sample
121 except that the VWGolfMk2 and VWGolfMk3 classes
are very similar. In real applications, it may be better to
group models that are highly similar into larger superclasses
that contain several similar models. For example, this could
prevent too many false alarms where the model class does
not match that associated with the ANPR read, whilst still
providing a highly useful automatic surveillance system.

The single image classification speeds in a standard
MATLAB implementation (Intel Core 2 Duo E6600 PC
with 2GB of RAM) for various feature/classifier combina-
tions were (i) LNHS+k-NN, 0.01s, (ii) SMG + k-NN, 0.14s,
(iii) LNHS + Naive Bayes, 0.1s, (iv) SMG + Naive Bayes,
1.48s. Each classification time was calculated as an aver-
age over 5 independent experiments, using the same timing
code located at the same point in the system, and 261 com-
parisons per experiment. A marked difference in speed can
be seen between a k-NN classifier a Naive Bayes classifier.
Another marked difference in speed can be seen between lo-
cally normalised Harris strengths and square mapped gradi-
ents. This is due to the smaller feature vector size of locally
normalised Harris strengths, which is about one twentieth
the size of the square mapped gradients feature vector.

6. Conclusions
Locally normalised Harris strengths (LNHS) classify

faster due to a smaller feature vector size around one twen-
tieth of the size of the square mapped gradients (SMG)
feature vector. LNHS features also slightly outperform
SMG features when using a k-NN classifier on our data
set, although a larger dataset would help statistical signif-
icance arguments. Primarily as a result of their compact-
ness and speed, we propose LNHS as our advocated fea-
ture extraction approach from those evaluated. Although
Naive Bayes improves on our k-NN systems, the improve-
ment is marginal and relies on a good estimate of the priors.
More extensive testing on a larger body of training and test
data is required to further investigate these systems. Our
future work will be to incorporate a passive automatic num-
ber plate localisation system and we will test our system on
a significantly larger dataset. We will also include evalua-
tions based on verification in addition to our current identi-
fication tests, as this may be more appropriate for systems
that integrate MMR and ANPR.
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