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Abstract

We describe our approach to segmenting moving road vehicles from the color

video data supplied by a stationary roadside CCTV camera and classifying

those vehicles in terms of type (car, van and HGV - Heavy Goods Vehicle) and

dominant color. For the segmentation, we use a recursively updated Gaussian

mixture model approach, with a multi-dimensional smoothing transform. We

show that this transform improves the segmentation performance, particu-

larly in adverse imaging conditions, such as when there is camera vibration.

We then present a comprehensive comparative evaluation of shadow detec-

tion approaches, which is an essential component of background subtraction

in outdoor scenes. For vehicle classification, a practical and systematic ap-

proach using a kernelized support vector machine is developed. The good

recognition rates achieved in our experiments indicate that our approach is

well suited for pragmatic vehicle classification applications.
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subtraction

1. Introduction

Traffic monitoring is an important tool in the development of intelligent

transport systems (ITS) involving the detection and categorization of road

vehicles. We consider the case of a nominally static camera observing a road

scene, such as is the case in many visual surveillance applications and we aim

to categorize vehicles into their type (car, van, HGV - Heavy Goods Vehicle)

and color. Our system is intended to be used for intelligent surveillance sys-

tems for crime detection, security and road charging schemes. For example,

it is a common offence to swap a licence plate from a small vehicle (car)

to a large vehicle (van) in order to reduce road charges, which are derived

using automatic number plate recognition (ANPR). A system such as ours,

used in conjunction with ANPR and database connectivity, would be able

to determine whether the licence plate belongs the particular vehicle type

and color. Given that the vehicle type provides detailed information on the

traffic composition, it is also likely to be widely useful from a transportation

operation perspective

To achieve our goal, we generate a background/foreground image seg-

mentation. In real applications, cameras are often mounted on metal poles,

which can oscillate in the wind, thus making the segmentation problem more

difficult. To deal with this kind of problem, a spatio-temporal filtering im-

provement to Zivkovic’s recursively updated Gaussian mixture model (GMM)

approach [37] is proposed.

Another main challenge in the application of background subtraction is
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identifying shadows that objects cast, which also move along with them in

the scene. Shadows cause serious problems while segmenting and extracting

moving objects due to the misclassification of shadow points as foreground.

Thus, we present a comprehensive evaluation of shadow/highlight detection

across different color spaces, and quantitative analysis results of our complete

foreground/background segmentation system with shadow removal in several

real-world scenarios. This is valuable to those developing pragmatic visual

surveillance solutions that demand a high quality foreground segmentation.

Central to our system are a set of kernelized support vector machine

(SVM) classifiers operating on measurement-based feature (MBF) vectors

and color properties of the foreground blob corresponding to the segmented

vehicle. MBF vectors encode the size, aspect ratio, width and solidity of this

foreground blob. Note that solidity is a scalar specifying the proportion of

the pixels in the convex hull of the foreground blob that is in the foreground

blob itself.

For vehicle segmentation and classification, occlusions must also be prop-

erly dealt with to ensure accuracy. Occlusions occur when one vehicle appears

next to another and blocks the line of sight either partially or completely.

In addition, the image of a vehicle can be occluded by other objects, such

as buildings and bridges along the road. Occlusions of this type should be

regarded as the result of poor roadside camera placement and, in most cases,

should be avoidable. Vehicle occluding vehicle, however, is more problematic

and can result from very dense traffic flow. Occlusion reasoning becomes in-

dispensable for vehicle detection under congested scenarios in urban traffic,

when vehicle spacing becomes minimal and vehicle occlusions increase drasti-
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cally. Once vehicles occlude each other, it becomes very difficult to segment

them [35]. Many approaches turn to using the vehicle’s appearance, thus

relying on various models to determine an occluded vehicle’s position. Seg-

mentation of several vehicles from a single foreground moving object can be

done only through some prior knowledge of the objects’ appearance and/or

behaviour. Note that, in this paper, we do not present a solution to vehi-

cles occluding each other. Rather, our method is limited to small accidental

occlusions.

In the following section, we discuss relevant prior work, we then present

our GMM-SVM based approach to vehicle type and color classification. This

is followed by an evaluation section and finally conclusions are presented.

2. Related literature

There is a lot of existing literature concerning the application of computer

vision techniques to the analysis of urban traffic and a good review is provided

by Buch et al. [4], which compares the latest research results. One recent

approach by Nieto et al. [22] uses 3D models to detect and classify vehicles

by integration of temporal information and model priors within a Markov

Chain Monte Carlo (MCMC) method. Our approach is based on Gaussian

Mixture Model (GMM) based background modelling for segmentation and

Support Vector Machines (SVM) for classification and we present previous

literature for each of these approaches in the following two subsections.

2.1. Background modelling and segmentation

To segment moving objects, a background model is built from the static

camera image data and objects are segmented if they appear significantly
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different from this modeled background. A GMM was proposed by Fried-

man and Russell [12] and it was refined for real-time tracking by Stauffer

and Grimson [27]. The algorithm relies on the assumptions that the back-

ground is visible more frequently than any foreground regions and that it

has models with relatively narrow variances. The system can deal with real-

time outdoor scenes with lighting changes, repetitive motions from clutter,

and long-term scene changes. Many adaptive GMM model have been pro-

posed to improve the background subtraction method since that original

work. Power and Schoonees [24] presented a GMM model employed with a

hysteresis threshold. They introduced a faster and more logical application

of the fundamental approximation than that used by Stauffer and Grimson

[27]. The standard GMM update equations have been extended to improve

the speed and adaptation of the model [17]. Martel-Brisson and Zaccarin [20]

extend the GMM to deal with shadows. Many researchers have adapted this

model for traffic analysis [16, 33, 34]. All these GMMs use a fixed number of

components. Zivkovic and Heijden [37] presented an improved GMM model

that adaptively chooses the number of Gaussian mixture components for each

pixel on-line, according to a Bayesian perspective. We call this method the

Zivkovic-Heijden Gaussian mixture model (ZHGMM) in the remainder of

this paper and it forms the basis of our improved method.

We also deal with shadows in our work. Prati et al. [25] present a com-

prehensive survey of moving shadow detection approaches. It is important to

recognize the type of features utilized for shadow detection. Some approaches

improve performance by using spatial information working at a region level

or at a frame level instead of pixel level [10]. Finlayson et al. [11] proposed a
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method to remove shadows from a still image using illumination invariance.

Cucchiara et al. [9] proposed the detection of moving objects, ghosts and

shadows in HSV color space and gave a comparison of different background

subtraction methods.

2.2. Support vector machines for vehicle type classification

For vehicle classification, prior related work includes that of Baek et al.

[2], who presented a vehicle color classification based on the SVM. The imple-

mentation results showed 94.92% of success rate for 500 outdoor vehicles with

5 colors. Ambardekar et al. [1] used optical flow and knowledge of camera pa-

rameters to detect the pose of a vehicle in the 3D world. This information is

used in a model-based vehicle detection and classification technique employed

by their traffic surveillance application. Ma and Grimson [19] proposed an

approach to vehicle classification under a mid-field surveillance framework.

They discriminate features based on edge points and modified SIFT descrip-

tors [18]. Eigenvehicle and PCA-SVM were proposed and implemented to

classify vehicle into trucks, passenger cars, van and pick-ups [36].

In our paper, both vehicle type and vehicle color classification are based

on kernelized SVMs. The SVM is a nonlinear generalization of the generalized

portrait algorithm developed in Russia in the sixties [32][31]. It is firmly

grounded in the framework of statistical learning theory, which has been

developed over the last three decades by Vapnik [28][29][23]. Intuitively,

given a set of points which belong to one of two classes, an SVM finds the

hyperplane leaving the largest possible fraction of points of the same class

on the same side, while maximizing the distance of either class from the

hyperplane. According to [29][30], this hyperplane minimizes the risk of
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misclassifying examples of some unseen test set.

The solution of binary classification problems using SVMs is well devel-

oped. Multi-class problems (such as object recognition and image classifi-

cation [6]) have typically been solved by combining independently produced

binary classifiers. In the one-vs-all (OVA, or one-vs-rest) method, one con-

structs k classifiers, one for each class. The mth classifier constructs a hyper-

plane between class m and the k -1 other classes. If, for example, the classes

of interest in an image include car, van and HGV, classification would be ef-

fected by classifying car against non-car (i.e. HGV and van) or HGV against

non-HGV (i.e. car and van). This method has been used widely in the

support vector literature to solve multi-class pattern recognition problems

[3][26][21]. Alternatively, one-vs-one (OVO, or all-vs-all) approach involves

constructing an SVM for each pair of classes resulting in k(k−1)/2 classifiers.

For each distinct pair m1 and m2 , we run the learning algorithm on a binary

problem in which examples labeled y = m1 are considered positive, and those

labeled y = m2 are negative. All other examples are simply ignored. When

applied to a test point, each classification gives one vote to the winning class

and the point is labeled with the class having most votes. This approach can

be further modified to give weighting to the voting process.

3. GMM-SVM-based Vehicle Type and Color Classification

In this section, we present our approach to road vehicle type and color

classification, which is based on GMMs for segmentation and SVMs for clas-

sification. Firstly, we give an overview of our system, to show how all the

different parts fit together. After this, we present our spatio-temporally
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smoothed segmentation process, then we discuss how we can remove shad-

ows in several different color spaces and how we can improve the accuracy

of the GMM from a video which is acquired by a shaking camera (these are

evaluated later in the paper). Finally we discuss how to represent color for

the purposes of color classification.

3.1. System overview

Our system is constructed from three modules: background learning, fore-

ground extraction and vehicle classification. Figure 1 illustrates the flow

chart of this system, where MDGKT in the background learning module

is our multi-dimensional Gaussian kernel density transform employed for

spatio-temporal smoothing. Other stages in this flow chart are either ex-

plained later in this paper or are self-evident. Note that dilation and erosion

are standard morphological operations applied to a binary image, where con-

tiguous areas of either ones or zeros are grown (dilation) or shrunk (erosion)

by the radius of some so-called structuring element [14]. Morphological open-

ing is an often-used methodology in image processing. Opening of a binary

image is erosion followed by a dilation using the same structuring element

for both operations.

3.2. Applying spatio-temporal smoothing to ZHGMM-based segmentation

In order to improve the stability and robustness of the ZHGMM back-

ground learning algorithm, we have used a Multi-Dimensional Gaussian Ker-

nel density Transform (MDGKT) as a pre-process. Thus the basis of our

background modeling process is to employ the ZHGMM algorithm, aug-

mented with the MDGKT. Typically, an image is represented as a two-
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Figure 1: Flow chart of the overall system. MDGKT is the module employed for spatio-

temporal smoothing. Dilation and erosion are standard morphological operations applied

to a binary image.

dimensional matrix of p-dimensional vectors, where p=1 in the gray-level

case, p=3 for color images, and p > 3 for multispectral images. The space

of the matrix is known as the spatial domain, while the gray, color or mul-

tispectral is known as the spectral domain [7, 8]. For algorithms that use

image sequences, there is also the temporal domain.

We define k(x) to be a kernel profile (we use Gaussian), then over spatial

and temporal domains this is given as:
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where xs is the spatial part and xt is the temporal part of the feature vector,

ℎs and ℎt are the kernel bandwidths, and D is the corresponding normaliza-

tion constant.
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3.3. Shadow removal

The previous section showed promising initial qualitative results for the

ZHGMM augmented with MDGKT background subtraction algorithm. How-

ever, the algorithm is susceptible to both global and local illumination changes

such as shadows and highlight reflections (specularities). These often cause

subsequent processes, such as tracking and recognition, to fail. We give a

comparison of several different shadow removal methods, working in different

color spaces below. For clarity, we distinguish two different foreground seg-

mentations: segmentation F1, is the foreground segmentation which includes

shadows (raw background subtraction output), while F2 is the foreground

segmentation after we have removed shadows.

3.3.1. Shadow removal in RGB space

RGB color. The observed color vector is projected onto the expected color

vector obtained from the background model, and the ith pixel’s brightness

distortion is a scalar value (less than unity for a shadow) describing the

fraction of remaining ’brightness’. This may be obtained by minimizing [13],

Φ (�i) = (Ii − �iEi)
2 (2)

where Ii = [IRi, IGi, IBi] denotes the ith pixel value in RGB space, Ei =

[�Ri, �Gi, �Bi] represents the ith pixel’s expected (mean) RGB value in the

modeled background. The solution to equation (2) is an alpha value equal

to the inner product of Ii and Ei, divided by the square of the Euclidean

norm of Ei. Color distortion is defined as the orthogonal distance between

the observed color and the expected color vector. Thus, the chromaticity

distortion of the ith pixel is CDi = ∥Ii − �iEi∥. If we balance the color
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bands by rescaling the color values by the pixel’s std si = [�Ri, �Gi, �Bi], the

brightness and chromaticity distortion are

�i =

∑

�∈R,G,B I�i��i/�
2
�i

∑

�∈R,G,B [��i/��i]
2

(3)

CDi =
√

∑

�∈R,G,B

(I�i − �i��i)
2 /�2

�i (4)

Then the pixel in the foreground segmentation (F1) may be classified as

either a shadow or highlight reflection on the true background as follows:
⎧



⎨



⎩

Sℎadow CDi < �1 and �3 < �i < 1

Higℎligℎt CDi < �1 and �i > �2

(5)

�1 is a selected threshold value, used to determine the similarities of the

chromaticity between the modeled background and the current observed im-

age. If there is a case where a pixel from a moving object in the current

image contains a very low RGB value, then this dark pixel will always be

misclassified as a shadow, because the value of the dark pixel is close to the

origin in RGB space and all chromaticity lines in RGB space meet at the

origin. Thus a dark color point is always considered to be close or similar to

any chromaticity line. We introduce a threshold �3 to avoid this problem.

This is defined as: �3 = 1/(1 − �) , where � is a lower band for the normal-

ized brightness distortion. We also introduce a threshold �2 on normalised

brightness distortion, in order to detect highlights. An automatic threshold

selection method was provided by Horprasert et al. [13].

Using intensity information only. Let the brightness of a pixel value of the

modeled background be sbi = Rbi + Gbi + Bbi, and assume that this pixel is

covered by a shadow in frame t and let sti be the observed brightness value
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for this pixel at this frame. Then, the pixel in the foreground segmentation

(F1) may be classified as either a shadow or highlight reflection on the true

background, as follows:
⎧



⎨



⎩

Sℎadow �1 < sti/sbi ≤ �2

Higℎligℎt �3 < sti/sbi
(6)

where �1, �2 and �3 are selected threshold values used to determine the

similarities of the normalized brightness between the background image and

the current observed image.

3.3.2. Shadow removal in HSV color space

HSV color space explicitly separates chromaticity and luminosity and has

proven easier than RGB space to set a mathematical formulation for shadow

detection [9, 25]. For each pixel in F1, that initially has been segmented as

foreground, we check if it is a shadow on the background according to the

following consideration.
⎧

















⎨

















⎩

Sℎadow �1 < VIi/VBi < �2 and ∣HIi −HBi∣ < �H

and ∣SIi − SBi∣ < �S

Higℎligℎt VIi/VBi > �3 and ∣HIi −HBi∣ < �H

and ∣SIi − SBi∣ < �S

(7)

with 0 < �1, �2, �H , �S < 1 and �3 > 1, where HIi, SIi, VIi and HBi, SBi,

VBi are H, S, V channels in the current image and modeled background

respectively.

3.3.3. Shadow removal in YCbCr and Lab color spaces

We now consider the luminance and chrominance color space (YCbCr) to

remove shadows from the results of background subtraction. If a shadow is
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cast on a background, the shadow darkens a point in the background. The

luminance distortion is �i = Y I
i /Y

B
i , and chrominance channels difference is

CHi =
(∣

∣

∣CI
bi − CB

bi

∣

∣

∣+
∣

∣

∣CI
ri − CB

ri

∣

∣

∣

)

/2,

where Y I
i , C

I
bi, C

I
ri and Y B

i , CB
bi , C

B
ri are Y, Cb, Cr channels in the current

image and modeled background respectively. A pixel in the F1 is classified

as follows:
⎧



⎨



⎩

Sℎadow �i < 1 and CHi < �1

Higℎligℎt �i > �2 and CHi < �1

(8)

where �1 < 1 and �2 > 1. There is a similar criterion for shadow removal in

Lab space.

3.4. Vehicle color representation

The use of color histograms leads to very simple and low-level methods

for color classification. Since we are dealing with discretely sampled data

from color images, we use discrete densities stored as m-bin histograms. The

basic idea is that we divide RGB space up into a set of equal-sized cubic

regions and map these regions into a 1D histogram that can be populated by

the colors of the pixels in the segmented foreground region (F2).

If all possible colors in three channels in a 24-bit image are quantised,

there are 2563 bins. Such a histogram would be sparsely populated. Very

fine quantization of the color space is probably unjustified for images in

which the illumination may be variable, and there is additional noise on the

color video. 16 bins histogram for each color is reasonable, but it still needs

a large amount of memory and computation cost, particularly in terms of

the embedded hardware (i.e. in camera) implementation that we aimed to
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develop. Therefore, we use a much coarser quantization of the color space,

namely 8 bins along each color axis, giving color histograms with 512 =

83 bins. If we increased the number of bins, the computation time would

dramatically increase.

4. Evaluation

In this section, we present a quantitive evaluation of our system. Firstly,

we evaluate the segmentation system, which includes background subtraction

and shadow removal in the various color spaces previously described. We

present experiments that demonstrate how our system alleviates the negative

impacts of camera vibration. Finally, we detail the evaluations of vehicle type

classification and vehicle color classification.

4.1. Online training using MDGKT

A sample RGB frame is shown in Fig.2(a). The black ’X’ in the centre

of the red rectangle shows the position of a sample pixel stream over a video

(596 frames) in an area where no intruding object appears over time. A

Gaussian kernel was chosen as the kernel profile. For this particular pixel,

the standard deviation (std) of the blue and red channels in the original video

in the temporal domain is 1.834 and 1.110 respectively, but the std values

of the same channels using MDGKT smoothing are only 1.193 and 0.832.

Figures 2(b) and (c) show the scatter plots of the original and MDGKT

image (red, blue) values of the same pixel in the temporal domain. Fig.2(c)

shows that the distribution of MDGKT image is more localized within two

Gaussian components of the mixture model, illustrating the effect of the

spatio-temporal filtering in the spectral domain. A Gaussian mixture of two
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components is required to model the blue channel intensity distribution. The

ground truth GMM (blue trace) and the estimated GMM distribution (red

trace) using the MDGKT of the blue channel of the sample pixel are shown

in Fig.2(d).

(a) (b)

(c) (d)

Figure 2: The effect of spatio-temporal filtering. (a) A sample image showing a sample

pixel. (b) and (c) the scatter plots of the sample pixel’s color (blue and red channels)

distribution in the original images and MDGKT images respectively. (d) The modeled

GMM component (red trace) and the actual distribution (blue trace) of the blue channel

values of the sample pixel in the temporal domain.
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The MDGKT algorithm described above allows us to identify the fore-

ground pixels in each new frame while updating the description of each pixel’s

background model. This procedure is effective in determining the boundary

of moving objects, thus moving regions can be characterized not only by

their position, but also size, aspect ratio, moments and other shape and

color information. These characteristics can be used for later processing and

classification, for example, using a support vector machine [15].

To give an initial qualitiative understanding of the performance of the

algorithm, we used a dynamic scene to do some preliminary segmentation

evaluation. The results are shown in Fig. 3, where (a) and (d) are original

images: one is an outside scene, while the other is an indoor scene. Figures 3

(b) and (e) are the results of the basic ZHGMM algorithm, while (c) and (f)

are the results of ZHGMM augmented with our MDGKT algorithm. Note

that the results shown are pixel-based results without the application of

any post-processing. For online training using MDGKT, the speed of this

method is real-time (25 frames per second) for a C++ implementation on a

standard PC. Also, note that, for a background model learning alpha value

of 0.001, any sudden increase in background lighting, or any moving object

that becomes stationary (eg a parking car), will have fully merged into the

background model after 105 frames (just over 4 seconds at 25fps).

4.2. Evaluation of segmentation with shadow removal

This section demonstrates the performance of the proposed algorithms

above on several videos of both indoor and outdoor scenes, using an image

size of 320×240. A quantitative comparison of two GMMs (ZHGMM and
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(a) (b) (c)

(d) (e) (f)

Figure 3: Comparative results of ZHGMM (b and e) segmentation and ZHGMM aug-

mented with MDGKT (c and f)

ZHGMM augmented with MDGKT) with different shadow removal methods

is presented. A set of videos to test the algorithms was chosen and, in order to

compute the evaluation metrics, the ground truth for each frame is necessary.

We obtained this ground truth by segmenting the images with a manual

classification of points as foreground, background and shadow regions. We

prepared 41 ground truth frames in a ‘walking people’ sequence, and 26 in

a ‘moving car ’ sequence. We did not annotate the frames which have been

used for GMM learning. All shadow removal methods in five color spaces

using the two GMM methods have been fully implemented. Three metrics
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for the segmentation evaluation: true positive rate (TPR), true negative rate

(TNR) and false positive rate (FPR) are defined as follows:

TPR =
TP

TP + FN
(9)

TNR =
TN

FP + TN
(10)

FPR =
FP

FP + TN
(11)

where TP is true positive pixels, FP is false positive pixels, TN is true

negative pixels and FN is false negative pixels. Quantitative results of TPR

and TNR are reported in Table 1, which illustrate that the results in RGB

color space provide the best segmentation in terms of the combined values

of TPR and TNR (the larger values are better).

One may ask why RGB performs better than other color spaces for shadow

removal, for the set of parameters that we have used, particularly since other

studies have suggested that HSV is a better color space for this. Firstly,

for each system, we tried to get the best performance by adjusting each

threshold parameter in sequence. This does not mean that a global optimum

of performance will be found and, furthermore, it is likely to be easier to

tune a system in this way, when the system has fewer parameters (our RGB

system has 3 parameters, whilst our HSV system has 5). Secondly, when

bounding the variables of a color space with thresholds, we are bounding

them with planes that, when mapped into other color spaces become curved

surfaces. It is likely that some color spaces will work better than others

simply because we can linearly bound the training examples better in one

space than another. Our sequential tuning approach worked best in RGB
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Table 1: Experimental quantitative results

ZHGMM MDGKT

TPR TNR TPR TNR

RGB 0.8548 0.9838 0.9552 0.9853

Lab 0.7165 0.9828 0.8499 0.9846

YCbCr 0.6183 0.9811 0.6748 0.9811

Intensity 0.6077 0.9628 0.6356 0.9714

HSV 0.5039 0.9671 0.6327 0.9712

space, although future work could give a stronger result by performing a grid

search over the full parameter space for each method and by using a larger

body of test data.

Fig.4 shows sample frames 9 and 17 of the ‘walking people’ video, 3 and 8

of the ‘moving car ’ video. Each two-by-two block of images refers to the same

frame in the original video. The top-left image is the original frame. The

bottom-left image is the foreground segmentation (F1) results. In this image,

all colored pixels are the foreground segmentation output of the ZHGMM

augmented with MDGKT algorithm, while the black pixels represent the

modeled background. The colored pixels are categorized as foreground object

(colored yellow), shadow (colored green) or highlight (colored red) by our

shadow removal algorithm operating in RGB color space. Note that the

highlight reflections appear to be not very strong, with only a few pixels

colored red. This is because the resolution of the image in the figure is very

low and the red pixels are hard to see. The shadow and highlight reflection

pixels are then removed and this is then followed by a post-processing binary
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morphology stage of dilatation and erosion to remove sparse noise. This

gives the final foreground segmentation, as shown in the bottom right image

of each two-by-two block. Finally, the top-right image in each block is a

synthetic image, created by using the final foreground segmentation as a mask

to extract the foreground object from the original frame, and superimposing

this on the background model (mean value of each pixel). Clearly these

synthetic images are largely shadow-free. The two videos in Fig.4 are scenes

with very strong shadows.

The receiver operating characteristic (ROC curve) is used to analyse our

system’s performance. This plots TPR against FPR for a binary classifier

as the threshold used to discriminate between the two classes is varied. For

a GMM, any input distribution can be converted to ROC curves. One may

combine multiple ROC plots for different values of some of the algorithm’s

fixed parameters. In this case, the learning rate � in the ZHGMM is the

most significant parameter of interest. To produce a ROC curve, the learning

rate �frame is set up as an evenly distributed value ranging from 2 to 200

frames, in increments of 4 frames. The �frame is converted to � value by

the formula � = 1 − eln0.9/�frame . For the ‘moving car ’ sequence, under the

optimal threshold of Mahalanobis distance (threshold = 7), the ROC curve

is shown in Fig.5. The lower rates of FPR towards the left of the graph are

more interesting; for example, when FPR = 0.0074, the TPR of ZHGMM

with MDGKT is 0.7377, but the TPR of ZHGMM only is 0.6639. The

ROC curve show that ZHGMM with MDGKT performs much better than

ZHGMM alone.
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Figure 4: Foreground segmentation results in RGB colour space. Each two-by-two block

of images refers to the same frame in the original video. The top-left image is the original

frame. The bottom-left image is the foreground segmentation results. The black pixels

represent the modeled background. The foreground object is colored yellow, with shadows

colored green and highlights colored red. The bottom right image is the final foreground

segmentation after shadow and highlight removal. The top-right image is a synthetic

shadow free image composed of the foreground object overlayed onto the background

model.

4.3. Evaluation of segmentation with camera vibration

In order to illustrate that MDGKT can improve the accuracy of GMM

background subtraction in terms of camera vibration in RGB color space,

both ZHGMM and ZHGMM augmented with MDGKT are compared us-

ing video acquired by a pole mounted road side CCTV camera under very

21



Figure 5: ROC curve of the ‘moving car ’ sequence. The ROC curve show that ZHGMM

with MDGKT performs much better than ZHGMM alone, particularly at lower FPR

values.

strong wind weather conditions. 781 frames are included in the video. 113

frames including foreground objects (vehicles) have been manually annotated

to evaluate the algorithm. The image size is 320×240 pixels, 25 frames per

second. A sample image with annotated ground truth (red silhouette) is given

in Fig.6(a). The white ‘X’ shows the sample point. The ground truth location

of this sample pixel stream over all frames has been annotated. The x and y

coordinates of the sample point are given in Fig.6(d). The variance of x and y

coordinates are 4.918 and 5.115 pixels, respectively. The maximum variance

range along x direction is [-8, 9] pixels, along y direction is [-11, 6] pixels.

Fig.6(b) and (e) illustrate the background subtraction results from ZHGMM
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using our MDGKT approach. Fig.6(c) and (f) show the background subtrac-

tion result from ZHGMM. (b) and (c) are the raw background subtraction

result. Yellow pixels are foreground, green pixels are shadow and black pixels

are background. Shadow removal is performed, followed by binary morpho-

logical opening (dilation and erosion) to remove noise. A diamond-shaped

structuring element with 4 pixels as the distance from the structuring el-

ement origin to the points of the diamond is used. However, erosion and

dilation alone cannot eliminate the larger noise elements after background

subtraction and shadow removal. Small objects with an area of less than 200

pixels have been removed by connected component area calculation. The

final foreground objects masks are given in Fig.6(e) and (f). The TPR of the

ZHGMM with MDGKT algorithm and the ZHGMM (only) algorithm are

0.7840 and 0.5823, respectively. These experimental results illustrate that

our MDGKT can improve the accuracy of GMM background segmentation,

when the roadside camera is subject to wind-induced vibration.

4.4. Evaluation of SVM-based vehicle type classification

There is a lot of readily available software that uses SVMs to solve clas-

sification problems. In this research, the SVM-KM toolbox [5], which is a

library of MATLAB routines, was used to handle multi-class classification

problems. Our system classifies different vehicle types, in particular car, van

and HGV. The foreground blob containing the vehicle is obtained using the

improved background subtraction method based on the MDGKT. The size

and width of the foreground blob is determined and normalized using the the

known size of the licence plate. The size of the licence plate is easily deter-

mined, since it is retroreflective and is shown as a high intensity image region
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(a) (b) (c)

(d) (e) (f)

Figure 6: Experimental results for a video is acquired by a vibrated road side CCTV

camera. (a) A sample image with annotated ground truth (red silhouette) and the sample

pixel (white ’X’) used to annotate ground truth location. (d) Scatter plot x and y coor-

dinates of sample pixel stream over the video. (b) and (e) background subtraction result

from ZHGMM using MDGKT. (c) and (f) background subtraction result from ZHGMM.

The foreground object (colored yellow), shadow (colored green) and background (colored

black).

when illuminated using high intensity LEDs from within the ANPR camera.

Totally 254 vehicles have been detected (car: 101, van: 92, HGV: 61). We

extract a simple silhouette feature vector, whose components include size and

width (normalized), aspect ratio, and solidity of the vehicle foreground blob.

The observation vectors were normalized to a standard score (z = (x− �) /�,

� and � are the mean and standard deviation of the raw vector x ; the mean

and standard deviation variation of z is from 0 to 1). Note that, if some
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parts of the vehicle are the same color as the background, then there can be

holes or ‘drop outs’ in the foreground segmentation. In practice, this did not

appear to be a significant problem, and most of our measures, other than

solidity (ie. width, size, aspect ratio) are fairly robust to this.

For our kernelized SVM, our data was partitioned into two halves: one

half was used for training and the other half was used for our testing and

validation strategy. A process of averaging the classification performance

over 10 runs with different random selections of training and test sets was

used to evaluate the classification method. Note that it is very difficult to

visualize the shape of a separating boundary between two classes of vehicle

in a high dimensional space. Therefore, we find the best SVM kernel and

associated parameters simply by trying a selection of the most commonly

used kernels and by doing a coarse grid search in the associated parameter

space. If we assume  = 1, there is one parameter, C, which needs to be

determined for the Gaussian kernel, and two parameters, C and d, for the

polynomial kernel. In order to obtain a good value for C (so that the classifier

can accurately predict unknown data), a 2D grid-search on C and d values

(for example C = 2−5, 2−3, ..., 215, d=1,2,3) was used. We found that he

best results for our vehicle type classification were achieved using a Gaussian

kernel with C=100.

The sensitivity, specificity and accuracy of classification results of both

OVA and OVO are given in Table 2. Note that the accuracy figure is com-

puted using the sum of the true positive and true negative classifications,

divided by the total number of classifications. In addition, the associated

confusion matrices are given Table 3. From these tables, we know that OVO
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Table 2: The comparison of OVO and OVA for vehicle type classification

OVO OVA

Sensitivity Specificity accuracy Sensitivity Specificity accuracy

Car 0.7797 0.9384 0.9016 0.8835 0.9338 0.9134

Van 0.6907 0.8408 0.7835 0.6222 0.7805 0.7244

HGV 0.7347 0.8780 0.8504 0.5574 0.8601 0.7874

Table 3: The confusion matrices for vehicle type classification

OVO OVA

car van HGV car van HGV

Car 0.9010 0.0990 0 0.9109 0.0891 0

Van 0.0978 0.6087 0.2935 0.1304 0.7283 0.1413

HGV 0.0492 0.3934 0.5574 0.0656 0.3443 0.5902

and OVA do not have significant differences in performance, but OVO per-

formance is slightly better than that of OVA on our data, especially for van

classification.

4.5. Evaluation of vehicle color classification

Figure 7: Three different vehicle types and colors (black car, white HGV and red van).
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Table 4: Results of vehicle color classification

Color Number Sensitivity Specificity Accuracy

Black 101 0.8772 0.9963 0.9610

White 220 0.9952 0.9213 0.9610

Red 64 1.0 1.0 1.0

For color classification experiments, selected samples are randomly segre-

gated into two sets, where half of the samples are used for training and half

for testing. The observation vector is constructed by 8-bin 3D histogram in

RGB color space. A normalized vector (sum of the vector elements is unity)

of 83 = 512 components is obtained. Figure 7 shows our own real data, where

three different vehicle types and colors are illustrated (black car, white HGV

and red van). Table 4 gives experimental results with the associated con-

fusion matrix given in Table 5. The results were obtained using OVA with

a polynomial SVM kernel, and parameter settings C=1000 and d=2. From

the confusion matrix, we find that red vehicles are unambiguously distin-

guishable, the classifier has 100% recognition rate on our data set. Black

and white classifications are slightly less successful, but the performance still

leads to a useable system where suspect vehicles can be flagged for checking

by a human operator.

5. Conclusions

Online learning of adaptive GMMs on nonstationary distributions is an

important technique for moving object segmentation. This paper has pre-

sented an improvement to an existing adaptive Gaussian mixture model,
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Table 5: Confusion matrix for vehicle color classification

Black White Red

Black 0.9804 0.0196 0

White 0.0636 0.9364 0

Red 0 0 1.0

using a multi-dimensional spatio-temporal Gaussian kernel smoothing trans-

form for background modelling in moving object segmentation applications.

The model update process can robustly deal with slow light changes (from

clear to cloud or vice versa), blurred images and camera vibration in very

strong wind. The proposed solution has significantly enhanced segmentation

results over a commonly used recursive GMM. We have given a comprehen-

sive analysis of performance results in a wide range of environments and using

a wide variety of color space representations. The system has been success-

fully used to segment objects in both indoor and outdoor scenes, with strong

shadows, light shadows, and highlight reflections and we have verified our

system with rigorous evaluation. We have found that working in standard

RGB color space provides the best results.

We have presented a method to perform automatic vehicle classification.

It is a two-step algorithm. The first step is type recognition. The type vec-

tor components are size, width, aspect ratio and solidity of the foreground

(vehicle) blob. The second step is color recognition. In order to save mem-

ory space and computation complexity, the system uses an 8-bin 3D color

histogram as the vector for SVM classification.
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