
Chapter 7
Motion History Histograms for Human Action
Recognition

Hongying Meng, Nick Pears, Michael Freeman, and Chris Bailey

Abstract In this chapter, a compact human action recognition system is presented
with a view to applications in security systems, human-computer interaction, and
intelligent environments. There are three main contributions: Firstly, the framework
of an embedded human action recognition system based on a support vector ma-
chine (SVM) classifier and some compact motion features has been presented. Sec-
ondly, the limitations of the well-known motion history image (MHI) are addressed
and a new motion history histograms (MHH) feature is introduced to represent the
motion information in the video. MHH not only provides rich motion information,
but also remains computationally inexpensive. We combine MHI and MHH into a
low-dimensional feature vector for the system and achieve improved performance in
human action recognition over comparable methods that use tracking-free temporal
template motion representations. Finally, a simple system based on SVM and MHI
has been implemented on a reconfigurable embedded computer vision architecture
for real-time gesture recognition.

7.1 Introduction

Visual recognition of different classes of motion within the context of embedded
computer vision systems has wide-ranging applications. Examples include intel-
ligent surveillance of human and road traffic activity, biometric security, such as
gait recognition, and visually driven interaction and context awareness in “smart”
environments, both of which are related to the application areas of “ambient intelli-
gence” and “ubiquitous computing.”
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The work presented here focuses on the use of video for classifying general hu-
man motions, with a view to deploying our system in a smart home environment and
using it to recognize gestural commands. In particular, our methods are designed to
be appropriate for deployment in a real-time, embedded context. In this sense, we
have developed compact, descriptive motion representations and low complexity
classification algorithms, all of which may be implemented on our flexible stand-
alone video processing architecture, which is based upon field-programmable gate
arrays (FPGAs).

Aggarwal and Cai [1] present an excellent overview of human motion analysis.
Of the appearance based methods, template matching has gained increasing interest
recently [2, 6, 8, 12, 14, 15, 20, 21, 22, 24, 26, 27, 28, 30]. These methods are
based on the extraction of a 2D or 3D shape model directly from the images, to
be classified (or matched) against training data. Motion-based models do not rely
on static models of the person, but on human motion characteristics. Motion feature
extraction is the key component in these kinds of human action recognition systems.

In this chapter, we build a compact human action recognition system based on a
linear support vector machine (SVM) [5, 25] classifier. We address the limitations of
the motion history image (MHI) [3] and introduce a new feature, which we call the
motion history histograms (MHH) [16]. This representation retains more motion in-
formation than MHI, but also remains inexpensive to compute. We extract a compact
feature vector from the MHH and then combine it with the histogram of the MHI
feature in our human action recognition system and get very good performance.

We have started to implement our systems within an FPGA-based embedded
computer vision architecture, which we call “Videoware,” although in our current
implementation, we use MHI features only and embedded implementation of our
new MHH feature is ongoing.

The rest of this chapter is organized as follows: In Section 7.2, we give an
overview of related work. In Section 7.3, we give a brief introduction of the frame-
work of the SVM based human action recognition system. In Section 7.4, we firstly
introduce some fundamental motion features, of which the MHI is the classical ex-
ample. Furthermore, we give a detailed description of the new MHH feature, which
is designed to be more descriptive than MHI features in order to give improved clas-
sification performance. In Section 7.5, we discuss the possible feature combination
and dimension reduction methods in our framework. In Section 7.6, experimental
results derived from a Matlab implementation of our SVM based human action
recognition system are evaluated. In Section 7.7, we give a simple example imple-
mentation and evaluation of an MHI/SVM based gesture recognition system on our
reconfigurable embedded computer vision architecture, which we call “Videoware.”
Finally, we present conclusions.
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7.2 Related Work

The idea of temporal templates was introduced by Bobick and Davis [3, 19]. They
used motion energy images (MEI) and MHI to recognize many types of aerobics
exercise. In [4], they also proposed the motion gradient orientation (MGO) to ex-
plicitly encode changes in an image introduced by motion events. Davis [7] also
presented a useful hierarchical extension for computing a local motion field from
the original MHI representation. The MHI was transformed into an image pyramid,
permitting efficient fixed-size gradient masks to be convolved at all levels of the
pyramid, thus extracting motion information at a wide range of speeds. The hierar-
chical MHI approach remains a computationally inexpensive algorithm to represent,
characterize, and recognize human motion in video.

Schuldt et al. [24] proposed a method for recognizing complex motion patterns
based on local space-time features in video and they integrated such representations
with SVM classification schemes for recognition. The work of Efros et al. [9] fo-
cuses on the case of low resolution video of human behaviors, targeting what they
refer to as the 30 pixel man. In this setting, they propose a spatio-temporal descrip-
tor based on optical flow measurements, and apply it to recognize actions in ballet,
tennis and football datasets.

Weinland et al. [26] introduced motion history volumes (MHV) as a free-
viewpoint representation for human actions in the case of multiple calibrated and
background-subtracted video. They presented algorithms for computing, aligning,
and comparing MHVs of different actions performed by different people from a
variety of viewpoints. Ke et al. [12] studied the use of volumetric features as an al-
ternative to the local descriptor approaches for event detection in video sequences.
They generalized the notion of 2D box features to 3D spatio-temporal volumetric
features. They constructed a real-time event detector for each action of interest by
learning a cascade of filters based on volumetric features that efficiently scanned
video sequences in space and time. Ogata et al. [21] proposed modified motion
history images (MMHI) and used an eigenspace technique to realize high-speed
recognition of six human motions. Wong and Cipolla [27] proposed a new method
to recognize primitive movements based on MGO extraction and, later, used it for
continuous gesture recognition [28].

Recently, Dalal et al. [6] proposed histogram of oriented gradient (HOG) ap-
pearance descriptors for image sequences and developed a detector for standing and
moving people in video. Dollár et al. [8] proposed a similar method where they use
a new spatio-temporal interest point detector to obtain a global measurement instead
of the local features in [9]. Niebles et al. [20] also use spatial-time interest points
to extract spatial-temporal words as their features. Yeo et al. [30] estimate motion
vectors from optical flow and calculate frame-to-frame motion similarity to analyze
human action in video. Blank et al. [2] regarded human actions as three dimensional
shapes induced by silhouettes in space-time volume. They adopted an approach for
analyzing 2D shapes and generalized it to deal the idea with volumetric space-time
action shapes. Oikonomopoulos et al. [22] introduced a sparse representation of
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image sequences as a collection of spatio-temporal events that were localized at
points that were salient both in space and time for human action recognition.

We note that, in some of these methods, the motion features employed are rela-
tively complex [2, 6, 8, 9, 12, 20, 22, 24, 26, 30], which implies significant computa-
tional cost when building the features. Some of them require segmentation, tracking
or other prohibitive computational cost processes [2, 3, 4, 7, 21, 27, 28], which cur-
rently makes them not suitable for real-time embedded vision applications. In our
work, we aim for a solution which uses compact representations, is fast to compute,
and yet gives an improved classification performance over existing compact and fast
methods.

7.3 SVM-Based Human Action Recognition System

In our system, we have employed a linear SVM classifier [5], for two main reasons:
(i) low complexity classification and hence suitable for real-time embedded appli-
cations, (ii) very good performance in many real-world classification problems.

The schematic of our SVM based human action recognition system is shown in
Fig. 7.1, where the training path is given by the solid arrows and the testing path is
given by the dotted arrows. It is composed of four parts: source (data), motion fea-
tures, dimension reduction, and learning. The motion features can be MHI, MMHI,
MGO, and our new feature which we call motion history histograms (MHH).
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Fig. 7.1 SVM based human action recognition system. Compact motion features are extracted
from human action video clips without corner detection, tracking or segmentation. These feature
vectors are compressed by dimension reduction methods. Then they are efficiently combined into
the linear SVM classifier. The parameters of the SVMs obtained from training are used in the
classification process.
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In the training part of this system, combined motion feature vectors, extracted
from fundamental motion features, are used for training SVM classifiers. The pa-
rameters computed are then used in the recognition part. Note that this diagram rep-
resents an architecture (rather than a specific implementation) in which any subset of
motion features may be used and possibly combined in a specific implementation.
This flexibility exists to deal with limitations in the specific embedded hardware
available, such as FPGA gate count, memory, processing speed, data communica-
tion capability and so on.

Although the SVM performs well with very high dimensional feature vectors,
we reduce the dimension of the feature vector to aid embedded deployment of our
algorithm. For this, we use simple algorithms, which are easily implemented on our
FPGA architecture, such as down-sampling or block averaging operations.

The training of the SVM classifier is done off-line using video data, also collected
off-line. After that, the parameters computed for the classifier are embedded in our
FPGA-based architecture.

In the following sections, we will give detailed information on this system.

7.4 Motion Features

In order to generate compact, descriptive representations of motion which are sim-
ple to extract, several techniques have been proposed to compact the whole motion
sequence into a single image. The most popular of such “temporal template” mo-
tion features are the motion history image (MHI), the modified motion history image
(MMHI), and the motion gradient orientation (MGO). Here, we give a brief intro-
duction to the these features.

7.4.1 Temporal Template Motion Features

A motion history image (MHI) [3] is the weighted sum of past images and the
weights decay back through time. Therefore, an MHI image contains the past images
within itself, where the most recent image is brighter than the earlier ones. Normally,
an MHI Hτ(u,v,k) at time k and location (u,v) is defined by

Hτ(u,v,k) =
{

τ, D(u,v,k) = 1
max{0,Hτ(u,v,k−1)−1}, otherwise

(7.1)

where the motion mask D(u,v,k) is a binary image obtained from subtraction of
frames, and τ is the maximum duration a motion is stored. In general, τ is chosen
as the constant 255, allowing the MHI to be easily represented as a grayscale image
with one byte depth. Thus an MHI pixel can have a range of values, whereas a
motion energy image (MEI) is its binary version, which can easily be computed by
thresholding Hτ > 0.
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Ogata et al. [21] use a multivalued differential image to extract information about
human posture because differential images encode human posture information more
than a binary image, such as a silhouette image. They called the feature MMHI.

The MGO feature was proposed by Bradski and Davis [4] to explicitly encode
changes in an image introduced by motion events. The MGO is computed from an
MHI and a MEI. While an MHI encodes how the motion occurred, an MEI encodes
where the motion occurred, the MGO, therefore, is a concatenated representation of
motion (where and how it occurred).

We have tested the performance of these three features on our SVM based hu-
man action recognition system and found that the MHI had the best classification
performance of 63.5% on a large challenging dataset [15]. This overall performance
is far from good enough. In the following, we will look at the MHI feature further
in order to find a way to improve it.

7.4.2 Limitations of the MHI

An example of an MHI is shown in Fig. 7.2, where (a) is one frame from the original
hand waving action video clip and (b) is the MHI of this action.

In order to have a detailed look at the MHI, we have selected the pixels on the
vertical line in the MHI of Fig. 7.2 (b). If some action happened at frame k on pixel
(u,v), then D(u,v,k) = 1, otherwise D(u,v,k) = 0. The locations of these pixels are
(60,11),(60,12), . . . ,(60,80). For a pixel (u,v), the motion mask D(u,v, :) of this
pixel is the binary sequence:

D(u,v, :) = (b1,b2, . . . ,bN) , bi ∈ {0,1} (7.2)

where N + 1 is the total number of frames.
All of the motion masks on the vertical line in Fig. 7.2 (b) are shown in Fig. 7.3.

Each row is D(u,v, :) for one fixed pixel (u,v) and a white block represents ‘1’ and

          

             

(a) Handwaving sample                       (b) MHI of Handwaving 

Fig. 7.2 Example of an MHI. Part (a) is one frame from the original hand waving action video clip
and (b) is the MHI of this action. The vertical line in (b) has the pixels from (60,11) to (60,80).
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Fig. 7.3 D(:, :, :) on the ver-
tical line of Fig. 7.2(b) is
shown. Each row is D(u,v, :)
for one fixed pixel (u,v). A
white block represents ‘1’
and a black block ‘0’. For
example, D(60,50, :) is the
“binarized frame difference
history” or “motion mask” of
pixel (60,50) through time.

black block represents ‘0’ in the sequences. The motion mark D(60,50, :) has the
following sequence:

0000000001101000000000000000000000001010000 (7.3)

From the definition of MHI in Eq. (7.1) it can be observed that, for each pixel (u,v),
MHI actually retains the time since the last action occurred. That is, only the last ‘1’
in the Sequence (7.3) is retained in the MHI at pixel (60,50). It is clear that previous
‘1’s in the sequence, when some action occurred, are not represented. It is also clear
that almost all the pixels have more than one ‘1’ in their sequence.

7.4.3 Definition of MHH

The above limitation of the MHI has motivated us to design a new representation
(the MHH) in which all of the information in the sequence is used and, yet, it re-
mains compact and simple to use.

We define the patterns Pi in the D(u,v, :) sequences, based on the number of
connected ‘1’s:
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P1 = 010
P2 = 0110
P3 = 01110

...
PM = 01 . . .1︸ ︷︷ ︸

M

0

(7.4)

We denote a subsequence CI,k by Eq. (7.5), where I and k are the indexes of
starting and ending frames, and denote the set of all subsequences of D(u,v, :) as
A{D(u,v, :)}. Then, for each pixel (u,v), we can count the number of occurrences
of each specific pattern Pi in the sequence D(u,v, :), as shown in Eq. 7.6, where χ is
the indicator function.

CI,k = bI ,bI+1, . . . ,bk, (1 ≤ I < k ≤ N) (7.5)

MHH(u,v, i) = ∑(I,k) χ{CI,k=Pi|CI,k∈A{D(u,v,:)}}
(1 ≤ I < k ≤ N, 1 ≤ i ≤ M)

(7.6)

From each pattern Pi, we can build a grayscale image and we call this its his-
togram, since the bin value records the number of this pattern type. With all the pat-
terns Pi, (i = 1, ...,M) together, we collectively call them motion history histograms
(MHH) representation.

For a pattern Pi, MHH(:, :, i) can be displayed as an image. In Fig. 7.4, four
patterns P1,P2,P3, and P4 are shown, which were generated from the hand waving
action in Fig. 7.2. By comparing the MHH in Fig. 7.4 with the MHI in Fig. 7.2, it is
interesting to find that the MHH decomposes the MHI into different parts based on
patterns. Unlike the hierarchical MHI described by Davis [7], where only small size
MHIs were obtained, MHH records the rich spatial information of an action.

The choice of the number M depends on the video clips. In general, the bigger
the M is, the better the motion information will be. However, the values within the
MHH rapidly approach zero as M increases. In our experiment, no more than half
of the training data had the sixth pattern P6 and so we chose M = 5. Furthermore
we note that a large M will increase the storage requirement for our hardware based
system.

The computation of MHH is inexpensive and can be implemented by the pro-
cedure in Fig. 7.5. D(u,v,k) is the binary sequence on pixel (u,v) that is com-
puted by thresholding the differences between frame k and frame k− 1. I(u,v) is
a frame index that stands for the number of the starting frame of a new pattern
on pixel (u,v). At the beginning, I(u,v) = 1 for all (u,v). That means a new pat-
tern starts from frame 1 for every pixel. I(u,v) will be updated to I(u,v) = k while
{D(u,v, I(u,v)), ...,D(u,v,k)} builds one of the patterns Pi (1 ≤ i ≤ M) and, in this
case, MHH(u,v, i) increases by 1.
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         (a) MHH(:,:,1)                                           (b) MHH(:,:,2)

                  (c) MHH(:,:,3)                                           (d) MHH(:,:,4) 

Fig. 7.4 MHH example. Four patterns P1,P2,P3, and P4 were selected. This results were generated
from the handwaving action in Fig. 7.2. Each pattern Pi, MHH(:, :, i) has the same size as the
original frame.

Algorithm (MHH)

Input: Video clip f (u,v,k), u=1,...,U, v=1,...,V, frame k=0,1,...,N
Initialization: Pattern M, MHH(1:U,1:V,1:M)=0, I(1:U,1:V)=1

For k=1 to N (For 1) 
 Compute: D(:,:,k)
For u=1 to U (For 2)

For v= 1 to V  (For 3) 
          If  Subsequence Cj={D(u,v,I(u,v)),…,D(u,v,k)}=Pi

Update: MHH(u,v,Pi)=MHH(u,v,Pi)+1
          End If 
                    Update: I(u,v)
        End (For 3)

End (For 2)
End (For 1)
Output: MHH(1:U,1:V,1:M)

Fig. 7.5 Procedure of MHH algorithm.

7.4.4 Binary Version of MHH

Recall that the MEI is a binary version of the MHI. Similarly, we can define the
binary version of an MHH. To do this, we first define the binary version of an MHH
as MHHb , as
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MHHb(u,v, i) =
{

1, MHH(u,v, i) > 0
0, otherwise

(7.7)

7.5 Dimension Reduction and Feature Combination

Referring back to Fig. 7.1, once we have extracted one or more suitable motion
features, we use several techniques to reduce the dimension of the data. These are
described in the following subsections.

7.5.1 Histogram of MHI

The histogram is a property of an image used widely in image analysis. For example,
for a grayscale image, it shows the frequency of particular grayscale values within
the image. Note that MHIs can be rendered as grayscale images, where a value of a
pixel in the MHI records time information, namely when some motion most recently
occurred at this particular pixel location. Thus the histogram of MHI represents the
intensity of motion history. Other features, such as MMHI and MGO, do not offer
this property, while the MHH itself is already a histogram.

7.5.2 Subsampling

Subsampling (or downsampling) is the process of reducing the sampling rate of a
signal. This is usually done to reduce the data rate or the size of the data. Images
typically have a large data size and so subsampling is a general method often used
to reduce data size. Subsampling can be done by selecting odd or even rows and
columns. Wavelet transforms or other filters are often used to extract the low fre-
quency components of the image to get a compact image on larger scales. In this
work, we use subsampling to reduce computational complexity. This can be applied
for all the motion features described here, such as MHI, MMHI, MGO, and MHH.

7.5.3 Motion Geometric Distribution (MGD)

The size of the MHHb representation can be rather large for some embedded im-
plementations and also we seek a more compact representation, which captures the
geometric distribution of the motion across the image. Thus we sum each row of
MHHb (for a given pattern, Pi) to give a vector of size V rows. We obtain another
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vector by summing columns to give a vector of size U rows. Thus using all M levels
in the binarized MHH hierarchy, we obtain a motion geometric distribution (MGD)
vector of size M×(U +V), which is relatively compact, when compared to the size
of the original MHH and MHI features. The MGD vector can thus be represented
by Eq. (7.8):

MGD = {∑u MHHb(u,v, i),∑v MHHb(u,v, i)}
(i = 1,2, . . . ,M) (7.8)

In our work, we prefer to compute the MGD by using the MHHb feature instead
of the MHH feature directly. From our experiments, it has been found that the values
within the MHH decrease significantly for the large patterns. The values for P4 and
P5, for example, are much smaller than those of P1, P2 and P3. Thus, if we use the
MHH directly to compute the MGD, a normalization process is necessary in order to
treat all the patterns equally. However, this normalization process is not an easy task
for our hardware implementation because of limited memory and the requirement to
implement a floating-point processing ability. In contrast, computation of the MGD
from the MHHb feature does not need a normalization process and yet we retain a
satisfactory performance.

7.5.4 Combining Features

(160+120)*5 255

1400+255=1655

MGD

Hist_MHI
(160+120)*5 255

1400+255=1655

MGD

Hist_MHI

Fig. 7.6 Combination between MGD of the MHH and histogram of the MHI from a same video
example. The frame has the size of 160×120. MGD of MHH and histogram of MHI have the size
of (160+120)×5 = 1400 and 255, respectively.

We want to efficiently use the motion features extracted in order to achieve an
improved classification performance, relative to other compact systems. Based on
the simplicity requirement of the system, our two feature vectors are combined in the
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simplest way by concatenating these two feature vectors into a higher dimensional
vector. Fig. 7.6 shows an example of a combination between the MGD of the MHH
and the histogram of the MHI from the same video.

7.6 System Evaluation

In this section, we present the experimental results derived from a Matlab imple-
mentation of our SVM based human action recognition system.

7.6.1 Experimental Setup

For the evaluation of our system, we use a challenging human action recognition
database, recorded by Christian Schuldt [24], which is both large and publicly avail-
able. It contains six types of human actions (walking, jogging, running, boxing, hand
waving, and hand clapping) performed several times by 25 subjects in four different
scenarios: outdoors (s1), outdoors with scale variation (s2), outdoors with different
clothes (s3), and indoors (s4).

This database contains 2391 sequences. All sequences were taken over homoge-
neous backgrounds with a static camera with 25 Hz frame rate. The sequences were
downsampled to the spatial resolution of 160×120 pixels and have a time length of 4
seconds on average. To the best of our knowledge, this is the largest video database
with sequences of human actions taken over different scenarios. All sequences were
divided with respect to the subjects into a training set (8 persons), a validation set (8
persons), and a test set (9 persons).

In our experiment, the classifiers were trained on a training set while classifica-
tion results were obtained on the test set. In all our experiments, the same parameters
were used. The threshold in frame differencing was chosen as 25 and τ was chosen
as 255 for MHI construction. The most suitable choice of the number of patterns
M for MHH computation depends on the video clips and is a trade-off between
the compactness of the representation and the expressiveness of the representation.
Building a frequency histogram of the patterns extracted from the training clips in-
dicates that no more than half of the training data had the sixth pattern. Thus the
number of patterns was chosen to be M = 5.

The size of the MHI is 160× 120 = 19,200, which is the same width as that
of the frames in the videos. In our experiment, the SVM is implemented using the
SVMlight software [11]. In SVM training, choosing a good parameter C value is not
so straightforward and can significantly affect classification accuracy [10], but in
order to keep our system simple, the default value of C in SVMlight is used in all of
the experiments.

Fig. 7.7 shows examples in each type of human action in this dataset. In order
to compare our results with those as [12] and [24], we use the exact same training
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Fig. 7.7 Six types of human action in the database: (a) walking (b) jogging (c) running (d) boxing
(e) hand-clapping (f) hand-waving.

set and testing set in our experiments. The only difference is that we did not use the
validation dataset in training. Our experiments are carried out on all four different
scenarios. In the same manner as [12], each sequence is treated individually dur-
ing the training and classification process. In all of the following experiments, the
parameters are kept same.

7.6.2 Performance of Single Features

We have tested the performance of the fundamental motion features MHI, MMHI
and MGO in our system. Fig. 7.8 shows these three motion features extracted from
the action examples shown in Fig. 7.7. In order to keep our system simple for hard-
ware implementation, we use the simplest method to transform the motion features
(MHI, MMHI and MGO) into a plain vector based on the pixel scan order (row by
row) to feed SVM classifier.

Firstly, we tested the system performance on the four different subsets of the
whole dataset. The results can be seen in Fig. 7.9. The correctly classified percentage
on these data subsets indicates how many percent of the action clips in the testing
set were correctly recognized by the system. It is clear that the MHI feature gave the
best classification performance in all four subsets while the MGO feature gave poor
results for all four data subsets. We also can see that subset s2 (outdoors with scale
variation) is the most difficult subset in the whole dataset.

From the experiments, it can be seen that this type of system can get reason-
able results. The MHI based system looks better than the MMHI system in the ex-
periments. The disadvantage for MMHI is that it can only work well in the case
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    (1)                    

    (2)                 

    (3)          
                   (a)                   (b)                     (c)                     (d)                   (e)                     (f)

Fig. 7.8 The (1) MHI, (2) MMHI and (3) MGO for the six actions in the dataset: (a) walking (b)
jogging (c) running (d) boxing (e) hand-clapping (f) hand-waving

of an uncluttered and static background. If there is background motion or noise,
this will be recorded in the feature vector and will reduce the performance of the
classification.

For the whole dataset, the classification confusion matrix is a good measure for
the overall performance in this multiclass classification problem. Table 7.1 shows
the classification confusion matrix based on the method proposed as [12]. Table 7.2
shows the confusion matrix obtained by our system based on MHI. The confusion
matrices show the motion label (vertical) versus the classification results (horizon-
tal). Each cell (i, j) in the table shows the percentage of class i action being rec-
ognized as class j. Thus the main diagonal of the matrices show the percentage
of correctly recognized actions, while the remaining cells show the percentages of
misclassification. The trace of the matrix shows the overall classification rate. In
Table 7.1, the trace is 377.8 and since there are six classes, the overall mean classi-
fication rate is 377.8/6 = 63%.

In comparison with Ke’s method, we use a simple MHI feature rather than large
volumetric features in which the dimension of a feature vector might be a billion,
yet the performance of our system is marginally better on this dataset.

In the second step, we test some low dimensional features based on the fun-
damental motion features. Subsampling is easy to implement in hardware by any
factor of 2 and this can be done in both rows and columns of the motion feature.

Fig. 7.9 Correctly classified
percentage for separate data
subset: s1 (outdoors), s2 (out-
doors with scale variation),
s3 (outdoors with different
clothes) and s4 (indoors).
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Table 7.1 Ke’s confusion matrix [12], trace = 377.8, mean performance = 63%.

Walk Jog Run Box Clap Wave

Walk 80.6 11.1 8.3 0.0 0.0 0.0
Jog 30.6 36.2 33.3 0.0 0.0 0.0
Run 2.8 25.0 44.4 0.0 27.8 0.0
Box 0.0 2.8 11.1 69.4 11.1 5.6
Clap 0.0 0.0 5.6 36.1 55.6 2.8
Wave 0.0 5.6 0.0 2.8 0.0 91.7

Table 7.2 MHI’s confusion matrix, trace = 381.2, mean performance = 63.5%.

Walk Jog Run Box Clap Wave

Walk 53.5 27.1 16.7 0.0 0.0 2.8
Jog 46.5 34.7 16.7 0.7 0.0 1.4
Run 34.7 28.5 36.1 0.0 0.0 0.7
Box 0.0 0.0 0.0 88.8 2.8 8.4
Clap 0.0 0.0 0.0 7.6 87.5 4.9
Wave 0.0 0.0 0.0 8.3 11.1 80.6

Tables 7.3 and 7.4 show the results based on downsampling by a factor of 64 (a fac-
tor of 8 for both row and column) and the histogram of MHI. From the experiments,
we find that this dimensional reduction is detrimental for the MHI. Also, it can be
seen that subsampling of MHI obtains a similar performance to Ke’s method. This
feature performed well in distinguishing the last three groups. On the other hand, the
histogram of MHI did not perform well in terms of overall performance but has the
power to distinguish the first three groups, which demonstrates that the two methods
encode different information.

Table 7.3 MHI S’s confusion matrix, trace = 377.7, mean performance = 62.95%.

Walk Jog Run Box Clap Wave

Walk 56.9 18.1 22.2 0.0 0.0 2.8
Jog 45.1 29.9 22.9 1.4 0.0 0.7
Run 34.7 27.8 36.1 0.0 0.0 1.4
Box 0.0 0.0 0.0 89.5 2.1 8.4
Clap 0.0 0.0 0.0 5.6 88.9 5.6
Wave 0.0 0.0 0.0 12.5 11.1 76.4

Fig. 7.10 shows examples in each type of human action and their associated MHI
and MHH motion features. For the MHH, it is hard to deal with the whole feature
in our hardware system as, with the number of patterns set to 5, the MHH has a
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(a)

(b)

(c)

(d)

(e)

(f)
             (1) Video                (2) MHH(:,:,1)        (3)MHH(:,:,2)          (4) MHH(:,:,3)         (5) MHH(:,:,4)          (6)MHH(:,:,5) 

Fig. 7.10 The six database human actions and associated MHH features: (a) walking (b) jogging
(c) running (d) boxing (e) handclapping (f) hand-waving.

Table 7.4 Hist. of MHI’s confusion matrix, trace = 328.6, mean performance = 54.8%

Walk Jog Run Box Clap Wave

Walk 62.5 32.6 0.0 1.4 1.4 2.1
Jog 12.5 58.3 25.0 0.0 0.0 4.2
Run 0.7 18.8 77.1 0.0 0.0 3.5
Box 4.9 2.8 0.7 17.5 61.5 12.6
Clap 4.9 2.1 0.7 11.1 75.0 6.3
Wave 5.6 3.5 6.9 20.1 25.7 38.2

relatively high dimension of 5×160×120 = 96000. Thus, we constructed a small
sized MHHs by averaging the pixels in an 8×8 block, so that the size of all MHH
feature vectors is reduced to 20×15×5 = 1500. Our MGD feature also has a small
size of (160 + 120)×5 = 1400.

Table 7.5 and Table 7.6 show the results when using features MHHs and MGD
respectively. From these two tables, it is very clear that both MHHs and MGD im-
prove the overall performance. But they failed to classify the “jogging” class. The
reason is that these video clips are quite similar to “walking” and “running.” It is
hard to distinguish between them correctly even by human observation.
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Table 7.5 MHHs’s confusion matrix, trace = 417.3, mean performance = 69.55%.

Walk Jog Run Box Clap Wave

Walk 88.9 1.4 6.3 0.7 1.4 1.4
Jog 56.9 2.1 38.2 0.7 2.1 0.0
Run 22.2 0.7 75.7 0.0 1.4 0.0
Box 0.0 0.0 0.0 96.5 0.7 2.8
Clap 0.0 0.0 0.0 4.2 93.1 2.8
Wave 0.0 0.0 0.0 22.2 16.7 61.1

Table 7.6 MGD’s confusion matrix, trace = 432.6, mean performance = 72.1%.

Walk Jog Run Box Clap Wave

Walk 85.4 4.9 2.8 2.8 2.8 1.4
Jog 65.3 9.2 23.6 2.1 0.0 0.0
Run 18.8 8.3 68.8 1.4 0.0 2.8
Box 0.0 0.0 0.0 91.6 2.8 5.6
Clap 1.4 0.0 0.0 6.3 92.4 0.0
Wave 0.0 0.0 0.0 7.6 6.9 85.4

7.6.3 Performance of Combined Features

In the previous subsection, we found that different features had different power in
distinguishing classes of action. In order to overcome their own disadvantages, we
combine them in the feature space. Table 7.7 shows the confusion matrix obtained
from our system when combined features were used. From this table, we can see that
the overall performance has a significant improvement over Ke’s method, which is
based on volumetric features. Note that good performance is achieved in distin-
guishing all of the six actions in the dataset.

Table 7.7 MGD & Hist. of MHI’s confusion matrix, trace = 481.9, mean performance = 80.3%.

Walk Jog Run Box Clap Wave

Walk 66.0 31.3 0.0 0.0 2.1 0.7
Jog 13.9 62.5 21.5 1.4 0.0 0.7
Run 2.1 16.7 79.9 0.0 0.0 1.4
Box 0.0 0.0 0.0 88.8 2.8 8.4
Clap 0.0 0.0 0.0 3.5 93.1 3.5
Wave 0.0 0.0 0.0 1.4 6.9 91.7

We compared our results with other methods on this challenging dataset and
summarize the correctly classified rates in Table 7.8. From this table, we can see
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that MHH has made a significant improvement in comparison with MHI. Further-
more, the MGD feature gives a better performance than the MHH itself. The best
performance, which gives significantly better classification results, came from the
combined feature, which is based on the histogram of the MHI and the MGD.

Table 7.8 Overall correctly classified rate (%) for all the methods on this open, challenging dataset.
Some of them did not use the difficult part of dataset(Δ ), while some of them did an easier task(∗).

Method Rate(%)

SVM on local features [24]∗ 71.7
Cascade of filters on volumetric features [12] 63
SVM on MHI [15] 63.5
SVM 2K on MHI & MMHI [14] 65.3
SVM on MHHs 69.6
SVM on MGD 72.1
SVM on HWT of MHI & Hist. of MHI [17] 70.9
SVM on MGD & Hist. of MHI 80.3
SVM on spatio-temporal feature [8]Δ 81.2
Unsupervised learning on spatial-temporal words [20] ∗ 81.5
KNN on nonzero motion block similarity [30]Δ∗ 86.0

It should be mentioned here that some results [8, 20, 30] are better than ours
on this dataset. However, these results are not directly comparable with ours. For
example, Dollar et al. [8] achieved a correct classification rate of 81.2%, but the
authors omitted the most difficult part of the dataset (subset 2, outdoor with scale
variation).

Niebles et al. [20] obtained similar results with 81.5% and Yeo et al. [30] ob-
tained 86.0%, but they did an easier task of classifying each complete sequence
(containing four repetitions of same action) into one of six classes, while our method
was trained as the same way as [9, 12, 14, 15, 17]; that is, to detect a single instance
of each action within arbitrary sequences in the dataset. Furthermore, Yeo et al. [30]
did not use the difficult subset 2 of the dataset, as was the case with Dollar et al. [8].

7.7 FPGA Implementation on Videoware

We have developed a hardware architecture called “Videoware” [23], which can be
reconfigured for a wide range of embedded computer vision tasks. At present, we
have not tested our MHH representations within our embedded “Videoware” archi-
tecture, but we did test the performance of an MHI/SVM based gesture recognition
in an embedded context [18].

Our approach has been to implement a video component library (VCL) of generic
image processing, computer vision and pattern recognition algorithms in an FPGA
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Fig. 7.11 Videoware process-
ing architecture.

based architecture as shown in Fig. 7.11. The low level, high bandwidth processes,
such as smoothing and feature extraction, are implemented as hardware IP-cores,
whilst higher level, lower bandwidth processes, such as task-oriented combination
of visual cues, are implemented in a software architecture as shown schematically
in Fig. 7.12. The advantage of this modular approach is that a systems processing
performance can be reconfigured for a particular application, with the addition of
new or replicated processing cores.

“Videoware” has been implemented on a custom made FPGA board as shown
in Fig. 7.13. This board is based on a Xilinx Spartan-III device [29], with 2 MB of
external RAM and 8 MB of external ROM (this memory is also used to configure
the FPGA via a configuration engine). The FPGA size can be selected to match
a system’ s requirements, the board accepting three alternative devices: XC3S1500
(1.5M gates), XC3S2000 (2 M gates) and XC3S4000 (4 M gates). In addition to this
a number of interface boards have also been developed to allow the easy connection
of a camera [13], communications interfaces (e.g., LEDs, RS232), and additional
external memory modules.

The action recognition processing pipeline that we have implemented is shown
in Fig. 7.14. A difference operator is performed on the current and previous frames,
updating a motion history image. The inner product of the MHI and the SVM classi-
fication data sets is then performed, the result of each accumulator then has a specific
offset applied before a threshold is performed, selecting the stored action that most
closely matches the observed motion. In the current implementation this process is
operated in a one shot mode, however, this could be easily expanded to include mo-
tion detection to start and stop this process, i.e., when the difference between two
frames exceeds a threshold the MHI is generated, when it falls below this threshold
the inner product and threshold operations are then performed.
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Fig. 7.12 Video component library configured to form a virtual processing pipeline.

Fig. 7.13 Amadeus ubiq-
uitous system environment
(USE) board.

The current hardware implementation uses a 20 MHz system clock and can cap-
ture and process 100×80 image data at 12.5 frames per second, i.e., one frame every
80 ms. The system is capable of processing 200×160 images, with the addition of
extra memory. In order to test the performance of the FPGA implementation of our
human action recognition system, we recorded a hand motion dataset. In this dataset,
there are only three types of hand motions: horizontal motion, vertical motion, and
“other motion.” We also recognize a “no-motion” case as an extra class.

For each class, we recorded 20 video samples, with the frame size set to 100×80
pixels. We recorded the video clips with a variety of backgrounds to test the system
robustness to this variability. Fig. 7.15 shows some samples in this dataset.

In our experiment, 15 samples were randomly chosen from each class for train-
ing and the other 5 were used for testing. We repeated the experiments 10 times. We
carried out the training on a PC using SVMlight (the default values were used for all
the parameters in this software). Firstly, we extracted MHI features from each video
clip. Then we trained three binary linear SVM classifiers based on these features
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Fig. 7.14 Motion recognition processing pipeline.

Fig. 7.15 Some samples in the hand motion dataset and their MHI features.

to give a 3 parameter matrix containing the weight vector w and bias b. These pa-
rameters were stored in the internal memory of the FPGA chip and were used for
gesture classification. During the classification, three values were obtained from
each SVM classifier and the one with the largest (most positive) value is used to
label the motion.

Table 7.9 shows the average classification rate. The average rate of correct classi-
fication for all gestures is 80%, which is almost identical to our PC based (Matlab)
result on the same data.
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Table 7.9 Hand motion recognition average confusion matrix

Horizontal Vertical Others

Horizontal 94 2 4
Vertical 18 70 12
Others 4 18 76

7.8 Conclusions

In this chapter, we have proposed a new compact SVM based human action recogni-
tion system. It may be applied in security systems, human-computer interaction, and
applications within ambient intelligence, where embedded, real-time vision may be
deployed. The proposed method does not rely on accurate tracking as many other
works do, since most of the tracking algorithms incur an extra computational cost for
the system. Our system is based on simple features in order to achieve high-speed
recognition in real-world embedded applications.

In order to improve the performance of the system, we have proposed a new rep-
resentation for motion information in video and this is called the MHH. The repre-
sentation extends previous work on temporal template (MHI related) representations
by additionally storing frequency information as the number of times motion is de-
tected at every pixel, further categorized into the length of each motion. In essence,
maintaining the number of contiguous motion frames removes a significant limita-
tion of MHI, which only encodes the time from the last observed motion at every
pixel. It can be used either independently or combined with the MHI to give human
action recognition systems with improved performance over existing comparable
compact systems, which do not employ complex articulated models for tracking.

We extract a basic MGD feature vector from the MHH and apply it in the SVM
based human action recognition system. In comparison with local SVM methods by
Schuldt [24] and a cascade of filters on volumetric features by Ke [12], our feature
vectors are computationally inexpensive. Even though we do not use a validation
dataset for parameter tuning in SVM training, we have demonstrated a significant
improvement (around 10%) in the recognition performance, when our method is
applied to a large, challenging public dataset.

A recognition system using the simple MHI features has been implemented on
our FPGA-based embedded computer vision system called “Videoware,” with en-
couraging performance. For the future work, we will implement an improved em-
bedded system, based on combining features from both MHH and MHI, as described
in this chapter.
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