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Abstract

We present novel, pose invariant 3D shape descriptors
and we test the performance of these descriptors, when ap-
plied to the problems of nose identification and localisa-
tion in 3D face data. We generate an implicit radial basis
function (RBF) model of the facial surface and construc-
tion of our novel features is based on sampling this RBF
model over a set of concentric spheres to give a spherically-
sampled RBF (SSR) histogram. In addition to providing a
feature identification mechanism, SSR histograms can be
processed, with very little computational overhead, to es-
timate the volumetric intersection of the object (face) and
a bounding sphere, centred on any object surface point. A
minimisation of this volume, at an appropriate scale, can
be used to both define and localise the facial nose tip to an
arbitrary resolution. We test our descriptors on a subset
of the particularly challenging University of York 3D face
database. This data set consists of 1736 3D faces, with
facial expression variations, pose variations, data spikes
and missing parts. Noses vertices are identified at a rate
of 99.6% on unseen subjects and our approach significantly
outperforms three variants of spin images.

1. Introduction
Recently, there has been a lot of research interest in both

3D face processing [12], [16] and 2D/3D face processing
[15], [6]. Appearance based methods have proved compet-
itive in terms of achieving state-of-the-art performance in
2D face recognition. It is possible to adapt these methods,
such as fisherface [2], to work with 3D data [9]. The re-
sults have been promising, because of the excellent back-
ground segmentation and explicit, discriminating 3D data.
A requirement for such methods to work well is that all
the data has a common alignment, which is usually ren-
dered as a fronto-parallel view. We have developed a pro-
cess for highly repeatable 3D face alignment, when that 3D
face data is potentially noisy and has missing parts due to
spectacles, beards and self-occlusion. The four steps of this

process are as follows: (i) filter the data automatically, (ii)
identify the nose tip vertex and refine (interpolate) the nose
tip location, (iii) find the face orientation and (iv) generate
a pose-normalised depth map ready for recognition. Find-
ing the nose tip location is a key step, because we can then
align a face to a 3D upper face template using either ‘itera-
tive closest points’ (ICP) [3] on nose-centred data for small
pose angles (typically, less than 30 degrees), or the method
of ‘isoradius contours’ [13] for arbitrary pose angles. In this
approach, an isoradius contour allows pose alignment to be
implemented as a simple process of 1D signal correlation.

This paper focuses on 3D feature identification and lo-
calisation, and exemplifies our novel 3D surface represen-
tations by describing step (ii) above, nose tip identification
and localisation, subject to pose variations and noisy data.
Historically, several researchers have sought to extract pose
invariant 3D surface descriptors. Notable early examples
from the 1990’s include Stein and Medioni’s ‘splash’ rep-
resentations [14], Chua and Jarvis’ ‘point signature’ rep-
resentations [7] [15] and Johnson and Herbert’s ‘spin im-
ages’ [10]. Of these methods, spin images have been taken
up most widely by the research community [1], perhaps
because they are intuitive and simple to compute. Re-
cent work, for example, has focussed on matching multi-
resolution pyramids of spin images [8] in order to speed up
the matching process. Other researchers have used spin im-
ages to localise 3D facial features [5] and implement face
recognition from 3D shape information derived from shad-
ing [11].

Our techniques are underpinned by a radial basis func-
tion (RBF) model of the 3D facial surface and so, in the fol-
lowing section, we provide a brief overview of RBF mod-
elling. In section 3, we describe our 3D surface descriptors,
while in section 4, we describe how these descriptors are
used in a cascaded filter and refinement approach to nose
localisation. In section 5, we test the performance of these
descriptors on a 3D face dataset, which is noisy and has
both pose variations and facial expression variations. The
performance is compared to three variants of spin image
representation. A final section is used for conclusions.
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2. RBF surface modelling
RBFs have been used extensively for interpolating scat-

tered 3D point cloud data [4]. To briefly recap this work, a
radial function has a value at some point in n-dimensional
space x, which only depends on its 2-norm relative to an-
other point, called a “centre”. Hence, in our case of 3D
space, the radial function value is constant over a sphere. A
radial basis function uses a weighted sum of basis functions
to implicitly model a surface, where the basis function may
be linear, Gaussian, cubic spline or some other function,
which is radial in form. Formally, we follow reference [4]
and define a radial basis function, s, as:

s(x) = p(x) +
Nc∑
i=1

λiΦ(x− xi) (1)

where p is a polynomial (linear or quadratic), λi are the
RBF coefficients, Φ is a real valued function called the basis
function and xi are the Nc RBF centres.

In fitting a 3D surface, s is chosen such that s(x) = 0
forms a surface that smoothly interpolates the data points
xi. Thus the RBF model parameters implicitly define the
surface as the set of points where the RBF function is zero.
This is called the zero isosurface of the RBF function. Note
that one can not simply solve the equation s(xi) = 0 for
our N data points, as this yields a trivial solution of s(x) =
0 everywhere. Constraints where s is non-zero need to be
used. Since we may readily generate ‘off-surface points’
using surface normal data, s can be chosen to approximate
a signed distance to surface function.

Thus we can generate normals, generate off surface
points using the normals, and then fit the parameters of the
RBF function. Once we have the RBF function parameters,
we may evaluate the function at any arbitrary 3D point x,
which gives the signed distance to surface at that point. By
convention points below the facial surface (inside the head)
are negative and those above the facial surface are positive
and those on the surface, zero.

3. Spherically sampled RBF (SSR) descriptors
In spin images [10], a surface point uses it’s associated

surface normal to form a basis with which to encode neigh-
bouring points. Neighbouring point positions are encoded
in cylindrical coordinates, as the radius in the tangent plane
and height above the tangent plane. All points are binned
onto a fixed grid. Corresponding 3D points across a pair of
similar objects can be matched by a process of correlation
of spin images or any other matching metric. Issues in spin
image generation include (i) noise affecting the computa-
tion of the local surface tangent plane and (ii) problems of
appropriate bin size selection. Due to these problems, we
were motivated to make use of an RBF model to generate

Figure 1. Sampling of s(x) in a balloon image

invariant 3D surface descriptors, which we call spherically
sampled RBF (SSR) surface descriptors.

3.1. SSR shape histograms (‘balloon images’)

Here we propose a new kind of local surface representa-
tion, which can be derived readily from the RBF model and
we call this an SSR shape histogram. To generate such an
SSR shape histogram, we first distribute a set a n sample
points evenly across a unit sphere, centered on the origin.
To do this, we employ the octahedron sub division method,
which, for K iterations, generates n = αβK points. The
constants are [α, β]T = [8, 4]T and we use K = 3, which
gives n = 512. The sphere is then scaled by q radii, ri,
to give a set of concentric spheres and their common centre
is translated such that it is coincident with a facial surface
point. (Note that this can be a raw vertex, but can also be
anywhere between vertices, on the zero isosurface).

The RBF (‘signed distance-to-surface’) function, s, is
then evaluated at the N = nq sample points on the con-
centric spheres and these values are normalised by divid-
ing by the appropriate sphere radius, ri, giving a set of val-
ues in the range -1 to 1. If this normalised value sn = s

ri

is binned over p bins, then we can construct a (pxq) his-
togram of normalised RBF values, which may, for visual-
isation purposes, be rendered as a ‘balloon image’. Note
that the balloon analogy comes from incrementally inflat-
ing a sphere through the 3D domain of the RBF function, as
shown in figure 1, and this is consistent with Johnson and
Herbert’s [10] ‘spin image’ naming of their cylindrically en-
coded shape histogram. Examples of balloon images for the
(protruding) nose and (flat) forehead are given in figures 2
and 3 respectively.

3.2. SSR convexity values

Clearly, the convexity of the local surface shape around
some point is related to the overall brightness of the bal-
loon image. This motivates us to consider how SSR his-



Figure 2. SSR histogram for the (protruding) nose

Figure 3. SSR histogram for the (flat) forehead (same subject)

tograms may be processed to give a pose invariant convex-
ity value for high resolution, repeatable feature localisation.
For example, if we wish to localise the nose tip, we may
first define the nose tip as the point on the facial surface,
where a sphere centred on that point and the face have min-
imum volumetric intersection. We then need to consider
how to calculate the volumetric information from the SSR
histogram and our approach is illustrated in figure 4. In this
figure, the point p is on the object (face) surface, the upper
left part of the figure is above the object surface (s(x) > 0)
and the lower right part of the figure is below the object
surface (s(x) < 0). We have illustrated three concentric
spheres (solid lines) of radius (r1, r2, r3), separated by ∆r
over which the RBF function is sampled and we consider
three co-radial samples for each of these radii at x1, x2 and
x3 respectively, noting that s(x1) > 0, s(x2) < 0 and
s(x3) > 0. The dashed circles in the figure indicates the
position of (non-sampling) concentric spheres that bound
volumetric segments, and these have radii, ρi midway be-
tween the sampling spheres, namely at ρi = (ri+ri+1)

2 .
In order to determine an estimate of the total volumetric
intersection between the outer (dashed) sphere in the fig-
ure of radius ρ3 = r3 + ∆r

2 , we need to sum the all the
volumetric contributions centred on radial sampling direc-
tions with s(x1) < 0, over all sampling radii and all sam-

pling spheres. In figure 4, the central shaded volumetric
segment contributes to the intersection, but the two outer
shaded volumes do not. Note that the segments centred on
the larger radii have bigger volumes, and thus a weighting
vector needs to be applied to the summation. Thus the vol-
umetric intersection, Vp, at point p is given by:

Vp =
k

n
vTn− (2)

where k = 4π
3 is a constant related to the volume of a

sphere, n is the total number of sample points on a sphere,
vT is a vector containing the q volumetric weights (one for
each radius) that increase with the cube of radius, and n− is
a vector where each element is the count of the total number
of sample points on a given sphere in which s(x) < 0.

An equivalent, but more elegant approach, is to define a
metric that is a relative measure of the volume of the sphere
that is above the object surface compared with the volume
of the sphere below the object surface. With this in mind,
we define a SSR based convexity value for the point, p, as

Cp =
k

n
vT [n+ − n−] (3)

where n+ is a vector in which each element is the count of
the total number of sample points on a given sphere where
s(x) > 0. With this metric, a highly convex shape (a spike),
will have a value close to 1.0, a highly concave shape (a pit)
will have a value close to -1.0 and a flat area will have a
value close to zero. This can be clearly seen from equation
3, where the elements in n+ and n− will be similar, giving
a near zero vector on the right of the equation. In its sim-
plest form, a very approximate SSR convexity value can be
computed using a single sphere, which makes the volumet-
ric weighting vector v in equation 3 redundant. We use this
form in this paper, which amounts to averaging the signs of
the RBF function:

Cp =
1
n

n∑
i=1

sign(si) (4)

In order to illustrate the potential of this technique, a
sampling sphere is moved over a facial surface (figure 5a),
which illustrates the RBF distance-to-surface values by a
colour mapping. The resulting SSR convexity map is shown
in figures 5(b),(c),(d). A surface is rendered over this plot
to aid visualisation, where the lighter areas have a convex-
ity value near to +1 and the darker areas are close to -1 (i.e.
concave). The figure indicates that, in this case, the nose is
the peak convexity value in the map.

4. Nose tip identification and localisation
Computing an SSR convexity map over all vertices is

computationally expensive, thus we identify the raw nose tip



Figure 5. (a) Sampling the RBF function (b,c,d) The SSR convexity map from three views

Figure 4. Computing the SSR convexity value

vertex via a cascaded filtering process, as illustrated (from
left-to-right) in figure 6. We then apply a localisation re-
finement by maximising the SSR convexity value, in the
local vicinity of the identified raw vertex, using a local high
density RBF-derived zero isosurface (see top-to-bottom in
figure 6). The concept here is to use progressively more
expensive operations to eliminate vertices. The constraints
(thresholds) employed at each filtering stage are designed to

be weak, by examining trained nose feature value distribu-
tions, so that the nose tip itself is never eliminated. Concep-
tually, this amounts to considering every vertex as a candi-
date nose position, where all but one vertex are ‘false pos-
itives’. Then, at each stage, we apply a filter to reduce the
number of false positives, until we have a small number of
candidates at the final stage, at which point our most expen-
sive/discriminating test is used to find the correct vertex.

The feature that we use in filter 1 is a distance to local
plane (DLP), which has already been to remove data spikes.
The filter uses a weak threshold, which is four standard de-
viations below the average DLP value for trained noses. In
filter 2, we compute SSR convexity values using a single
sphere of radius 20mm and, again, we set a weak thresh-
old. At this stage, we have multiple local maxima in SSR
convexity value (see figure 5) and so we find these local
maxima and eliminate all vertices that are not local max-
ima. Finally we use SSR shape histograms by finding the
minimum Mahalanobis distance in ‘balloon image space’
to select the correct nose vertex. This raw vertex is refined
by maximising the SSR convexity value over a local high
density zero isosurface of the RBF function.

Figure 7 shows the nose candidates for each stage in the
filtering process for a challenging test image. (3D vertices
are mapped into the registered bitmap for visualisation.)



Figure 6. The cascade filter for nose-tip identification

5. Evaluation
We have evaluated our RBF derived shape descriptors on

a subset of the particularly challenging University of York
3D face database. This data set has 1736 3D faces of 280
different people (subjects) and contains facial expression
variations, pose variations and missing parts. The modal
mesh resolution in the dataset is 3mm-4mm. We have found
it convenient to split our evaluation into two categories of
performance metric, namely:

1. A feature identification metric, measured as the per-
centage of correctly identified nose-tip features. This
metric measures the performance of SSR shape his-
tograms in a simple classification scheme, when com-
pared to three variants of spin images.

2. A feature localisation metric, measured as the RMS
repeatability of the localisation of the nose-tip. This
metric measures the performance of the SSR convexity
value in providing a repeatable nose localisation.

5.1. Nose identification experimental methodology

Examining the filtering stages in figure 6, one might rea-
sonably ask: why not just take the nose candidate outputs
from filter 3 (the local maxima of SSR value), compute the
Mahalanobis distance to the training set of SSR values and
select the minimum distance as the identified nose vertex?
This is a good question, because if we can not improve on
this nose identification performance, then filter 4 (using bal-
loon images or spin images) is, at best, a waste of processing
time and may even be detrimental to the overall identifica-
tion performance. Therefore, we apply this metric in place
of filter 4 as a baseline test (control).

Overall, we have applied five nose identification meth-
ods, each of which use the minimum Mahalanobis distance

as the nose identification criterion. The training and test-
ing data, however, is different in each case, and is as fol-
lows: (1) Baseline test using SSR convexity values. (2)
Standard spin images (spin-image type 1), where cylindri-
cal polar coordinates, (r, h), of local vertices are binned. (3)
Our own variant of spin image (spin-image type 2), which
bins a radius and angle above/below the local tangent plane
(r, tan−1(hr )). (4) A spin image which bins (log(r), h)
(spin-image type 3). This is often used to give higher weight
to closer vertices. (5) SSR shape histograms (balloon im-
ages). Our experimental methodology was as follows:

1. A registered bitmap for each of the 1736 images was
displayed and a human operator was asked to click
their best estimate of the nose tip position using a
mouse, and the 2D mouse clicks were stored on disk.

2. Our nose vertex identification process, described by
the filters in figure 6, was applied to the database, such
that we found a set of candidate nose positions (filter 3
outputs), which were locally maximal values of SSR
convexity. Our process uses weak thresholding and
hence always finds the nose tip vertex (this was man-
ually verified), but there are typically up to 10 other
false positives, which occur on the chin, Adam’s ap-
ple, shirt collars, quiffs of hair and spectacle frames.

3. We mapped each of these 3D nose candidates into
their associated, registered 2D bitmap images and the
bitmap position closest to the manual nose click (in
step 1), was stored on disk as the correct nose vertex.
This allowed us to collect training data for nose fea-
tures and allowed us to establish a ground truth for the
testing phase of nose identification.

4. We randomly selected 100 subjects (of the 280) and for
each of these persons, we randomly selected a capture



(a) Filter 1 output (High DLP) (b) Filter 2 output (High SSR convexity)

(c) Filter 3 output (Local convexity peaks) (d) Raw nose (dot), refined nose (cross)

Figure 7. 3D vertex outputs of the cascade filter and refine process mapped into 2D image

condition to give 100 training 3D images.

5. For each of these 100 training 3D images, we con-
structed a SSR shape histogram, using 8 radii of 10mm
to 45mm in steps of 5mm and 23 bins for normalised
RBF values. This gave SSR shape histograms (or
balloon images) of dimension (8x23). We also con-
structed three variants of spin images, as described
above. These were constructed to the same resolution
as the balloon images, namely (8x23) resolution, using
a maximum radius of 45mm and a height of ± 45mm.

6. We applied principal components analysis (PCA) to all
four sets of training data, reducing the shape descriptor
dimensionality from 184 to 64.

7. For all nose candidates (filter 3 outputs) on all test im-
ages, we calculated the Mahalanobis distance to the
trained data for all five methods above. For each test
image, the vertex with the minimum Mahalanobis dis-
tance was identified as the nose and stored.

8. We then counted, for each of the five methods, what
percentage of noses were correctly identified.



Figure 8. Nose ID performance: 1. SSR values, 2,3,4 Spin-image
variants 5. SSR histograms

5.2. Nose identification results

In our database of 1736 3D images, we used 100 images
of 100 individuals as training data, leaving a test set A, of
515 3D images, which contains the remaining images of
these 100 individuals, not used in the training set, and test
set B, which contains 1121 3D images of individuals who
never appear in the 3D training set.

The results of nose identification are given in table 1 and
these are displayed as a bar graph for test set B in figure
8. Note that we obtained a 91.7% rate of successful nose
identification by using the SSR convexity values. Using
SSR histograms improved this figure to 99.6%, whereas use
of spin images degraded the system performance to around
70% and hence should be considered inappropriate for the
approach adopted here. There are several reasons why SSR
histograms outperformed spin images in this experiment:

1. Spin images require a normal estimate, and this nor-
mal varies greatly close to the nose tip, due to the high
surface curvature. Furthermore, the normal estimate
is corrupted by residual noise and missing parts. SSR
histograms, however, do not require a normal estima-
tion at all and hence are immune to such effects.

2. The data in our data set has missing parts, particularly
around the eyes, when the subject is wearing specta-
cles. These missing parts corrupt spin images, but have
little effect on SSR histograms, because the RBF func-
tion is defined everywhere in 3D space.

3. Spin images, in the form used here, use raw vertices
and so the data density is a function of the raw mesh
resolution. In contrast a SSR histogram can sample the
RBF function to any required density. (Here we used
512 samples on each of 8 spheres, giving 4096 data
elements in each SSR histogram).

5.3. Nose localisation experimental methodology

To make a preliminary evaluation of our nose locali-
sation refinement (inter-vertex interpolation) approach, we
used 80 3D facial scans in arbitrary poses, each of which
had a registered 2D image. We compared our approach both
with a simple automatic method and a manual method, in
which a user was asked to select a raw 3D coordinate for
each of the 80 images, by viewing the surface and rotating
it in 3D. In the simple automatic method, the face is rotated
through a raster scan of pan and tilt angles within a 45 de-
gree cone and the nearest point to the camera acquires a
vote. The vertex with the highest number of votes is cho-
sen as the nose coordinate. This is called the NPH (nearest
point histogram) method. Our experimental procedure was
as follows:

1. Manually locate (by cursor click) three 2D features in
the 2D bitmap image: we use the outer corner (exocan-
thion) of the left and right eyes and the midpoint of the
upper vermillion line, which is the upper lip’s junction
with the face (labiale superius).

2. Interpolate to determine the corresponding 3D coordi-
nates, using texture coordinates in the raw 3D file, and
use these 3D locations to define a face frame (i.e object
centred rather than camera centred frame).

3. Transform the computed nose position from the cam-
era frame to the face frame.

4. Examine the within-class (single subject) repeatability
of nose localisation in the face frame, using an RMS
metric.

5. Use the average within-class RMS value to compare
with the manual method and NPH methods.

5.4. Nose localisation results

The repeatability results of our SSR localisation method,
the NPH method and the manual method are given in figure
9. We can clearly see that the NPH method is poor and that
our SSR method slightly outperforms the manual method.
In part, that is to be expected, since the manual method op-
erates on raw vertices at the original mesh resolution (3-
4mm), whereas the nose refinement method interpolates a
higher density (2mm resolution) zero isosurface using the
RBF model. The results do, however, inspire confidence in
the method, and give repeatable results in the presence of
noise. Finally, one has to remember that errors in manually
locating face frame features and in 2D-to-3D registration
appear across all of these results.



SSR values Spin image 1 Spin image 2 Spin image 3 SSR histograms
Test set Fails % Pass Fails % Pass Fails % Pass Fails % Pass Fails % Pass
test A (515 images) 48 90.7% 185 64% 153 70.3% 152 70.5% 3 99.4%
test B (1121 images) 93 91.7% 400 64% 316 70.8% 339 70% 4 99.6%

Table 1: Nose identification results using five different methods

Figure 9. Nose location repeatability RMS(mm) in the three face
frame dimensions

6. Conclusions

We have presented the spherically-sampled RBF (SSR)
histogram, also called a balloon image, which is based on
sampling RBF functions on concentric spheres, at arbitrary
resolutions in 3D space. These representations are pose in-
variant and yield shape descriptors that do not require a po-
tentially noisy local surface normal estimate. Also, they are
relatively immune to missing parts, as the RBF function is
defined everywhere in 3D space. Our experiments on nose
vertex identification, using a challenging dataset of 1736
3D faces, indicate that these factors appear to be important
when characterising high curvature surfaces in the presence
of noise, missing parts and limited resolution data.

We have shown that it is possible to derive a SSR con-
vexity value from the SSR histogram, which describes the
volumetric intersection between a sphere and the object of
interest (face). A notable issue here is that this feature, in
essence, is derived as a summation, which has the effect
of suppressing (averaging) noise, where many conventional
3D surface features, such as curvature, are based on differ-
encing, whose effect is to amplify noise.
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