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Abstract

We describe three research areas at the Univer-
sity of York, UK, which impact on the reliability of
robot operation in human environments. These are (i)
how the use of multiple visual-cues, such as corners,
lines, colours and textures can improve the adaptabil-
ity and robustness of mobile robot visual navigation,
(ii) how the use of novel, neurally motivated, architec-
tures can improve system dependability, and (iii) how
concepts from high integrity, or safety critical, sys-
tems engineering can help solve dependability prob-
lems. Firstly, we give a description each of these sep-
arately, and subsequently we conclude the paper by
discussing how the ideas are related and how they may
be integrated in a dependable robotic system.

1  Multi-cue computer vision

Our work in computer vision is particularly aimed
at highly robust visual navigation (using a standard
CCD camera) for mobile robots in indoor environ-
ments. Our focus on indoor environments means that
planar regions in the scene will be common. In partic-
ular, floors which are planar to some approximation
is a fundamental assumption. Apart from this ground
planarity requirement, we impose no further restric-
tions and ultimately aim to be able to navigate in
a broad range of indoor scenes. This is a challeng-
ing problem, since, as the vehicle moves around, the
various visual cues that aid navigation disappear and
reappear in the robot’s visible environment. This has
motivated us to use multi-cue systems to improve de-
pendability, where, initially, we are looking at corner
points, edges, colour and texture. Of these cues, cor-
ner points are the most fundamental in our system as
they can be used to recover scene structure in near
real-time.

In this section, we will describe a method of mo-
bile robot navigation using visual ground plane de-
tection. Corner points are tracked through an image

sequence and grouped into coplanar regions using a
method which we call an H-based tracker. This al-
lows us to detect ground plane patches and the colour
within such patches is subsequently modelled. These
patches are then grown by colour classification to give
a ground plane segmentation, which is fundamental
to our navigation system. In remainder of this sec-
tion, we detail the current operation of this system,
but firstly we lay down some guiding principles for
building dependable visual navigation systems.
1.1 Guiding principles

Our guiding principles for a framework for depend-
able visual navigation are as follows:

e Navigational information is bound up in a diverse
range of visual cues, many of which are not always
available due to scene variation. There must be
a correspondingly diverse set of visual processing
modules which make explicit this information.

e Wherever possible, modules must also provide a
measure of how they think they are performing
(The standard linear way of doing this is to pro-
vide a covariance matrix associated with a state).

e Minimal assumptions must be made concerning
scene context and scale. Thus early processing
modules must employ methods that can operate
at multiple scales (eg wavelets, scale space, pyra-
mid methods).

e The system should employ visual cues that com-
pliment each other in terms of the constraints
they provide for solving particular navigational
tasks.

e When there are insufficient constraints to disam-
biguate a situation, multiple hypotheses must be
maintained. This means that data must be pro-
cessed using a set of possible models and a mech-
anism must be in place to monitor how well each



hypothesised model is performing, and to choose
the most appropriate response.

e The system should degrade gracefully. As cues
(or constraints) disappear, the robot’s behaviour
should degrade gracefully.

e Only task relevant information should be made
explicit. For example, it is not necessary to build
a full Euclidean reconstruction of the environ-
ment, when navigating across a scene.

e Within the framework, manual threshold selec-
tion should be eliminated and a minimal set of
thresholds should be selected automatically. This
could be based on the output of early visual pro-
cessing, such examination of the spatial frequency
content of the image.

e Overall, there must be means of understanding
image context and using this context, the frame-
work should be able to adapt in order to integrate
visual cues appropriately.

Currently our multi-cue system only employs cor-
ner and colour cues in order to automatically segment
the ground plane, with no a priori colour model. We
are in the process of adding edge and texture cues to
the system. The following sections describe how the
system works, but first we outline some theory, which
enables us to test whether tracked corner points are
coplanar.

1.2 Background theory
(i) Planar projective invariants:

One approach used to detect coplanar points is the
direct use of projective invariants, as exemplified by
[8]. This uses the fact that if we have four collinear
points in the scene, say a,b,c,d, then a ratio of ra-
tios of distance (the cross ratio) is a projective in-
variant. This fact can be extended to five points in
a general position on a plane, since, using projective
constructions, we can get two sets of four collinear
points, which are invariant if and only if the original
five points are coplanar. Figure 1 shows this construc-
tion. The point groupings l,d, k,a and [, ¢, i, b give the
two invariants as:
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(i) Plane to plane projectivity

Early work on exploiting coplanar relations has
been presented by Tsai and Huang [9], Longuet-
Higgins [5] and Faugeras and Lustman [2]. We sum-
marise the coplanar relation as follows: If a set of cor-
ner features in the scene lie in a plane, and they are
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Figure 1: Projective construction for 5 point planar
invariant

imaged from two viewpoints, then the corresponding
points in the two images (separated by k frames) are
related by a plane-to-plane projectivity or homogra-
phy, H, such that:

)\Xi = HXi_k (2)

where x represents a homogenous image coordinate
(z,y,1)T, H is a 3 by 3 matrix representing the ho-
mography and A is a scalar. Since this equation is valid
up to a scale factor, H has only eight degrees of free-
dom, and it is normal practice to choose A such that
element hss in H is set to unity. Eight degrees of free-
dom requires that we have four corresponding copla-
nar features in general position (no three collinear),
since each pair of corresponding points then provides
two independent constraints, and H can be deter-
mined by standard linear methods.

Equation 2 suggests a method of grouping corner
features into coplanar sets. Namely, if we can select a
set of four coplanar corresponding point pairs which
are in a sufficiently general configuration in both im-
ages (each point is unique and no three are collinear),
then H can be computed and used to check whether
other points in the scene lie in the same plane.

1.3 Navigation using an H-based tracker
and colour cues

In our system, we aim to use primarily H relations
to detect the ground plane and planar projective in-
variants to help bootstrap this process. We call our
system an H-based tracker. We now give a top down
description of our algorithm.

H-based tracker algorithm
We first run an initialisation stage where we

1. Detect corners using a standard (Plessey-Harris)
corner detector.



2. Track these points over n frames using a Kalman
filter, with a standard motion model (of velocity)
and cross correlation to determine matches.

This generates a reasonable disparity between cor-
responding corner points in frame 1 and frame n be-
fore attempting to estimate H. In subsequent frames
we search for correspondences between frame i and
frame 4 — n. Thus from frame n 4+ 1, we run the H-
based tracker. The key modification from the basic
tracker used in the initialisation stage is that two pro-
cess models are employed in the state prediction and
data association stages of the tracker. The first stage
is the standard motion model used in the initialisa-
tion stage. The correspondences generated from this
allows bootstrapping of the ground plane H by testing
a population of putative H matrices. This is a sam-
ple consensus approach similar to RANSAC [3], but
the samples are not selected randomly. H matrices
can then be used as a model to predict and associate
measurements in an iterative manner. To summarise
these steps we

1. Bootstrap the system by computing a population
of putative H matrices for the corner points which
have their vertical component of image motion in
a downwards direction (i.e. are below the horizon
line).

2. Select the dominant H model i.e. that which
verifies the largest number of corner associations.
The corners points that are verified are deemed
inliers.

3. Recompute H by applying orthogonal least
squares to the inliers.

4. Retest the data associations of corner points to
tracks using the least squares estimate of H to
get an updated set of inliers.

5. Iterate around the previous two steps until the
number of inliers stabilises.

6. Check that the coplanar points extracted are
ground plane points by computing the plane nor-
mal.

It is possible to remove all of these coplanar corners,
and repeat the whole procedure to find further signif-
icant co-planar corner groupings in the scene. Indeed,
it may be necessary to do this if we find that the dom-
inant plane can not the ground plane due to the com-
puted plane normal. In subsequent frames, we simply
sample from the group of points that are deemed to

be in the ground plane and choose a suitable selection
of basis points to compute a new H.

We now describe our method of combining corner
and colour cues to extract a first estimate of the nav-
igable image region. At present, our implemented
method is fairly basic, but our results illustrate how
effective the general technique of combining cues can
be. Our algorithm is as follows:

1. Corner points are tracked and classified as either
on the ground plane or off the ground plane, using
the H-based tracker described above.

2. Ground plane corner points are then grouped into
one or more ground plane patches. These are
collections of ground plane points where the dis-
tance to the nearest neighbour ground plane point
within a patch is below a threshold.

3. A bounding polygon for these corner points de-
fines an image region in which the colour space
of the ground plane is modelled. (Currently we
use a simple bounding ellipse in normalised colour
space.)

4. Thus the region(s) classified as the ground plane
(i.e. within the bounding polygons) can then be
grown by classifying small image regions as either
ground plane colour or not ground plane colour.
This process only needs to operate on the image
below the extracted horizon line.

1.4 Ground plane extraction results

Figures 2 and 3 illustrate the H-based tracker and
colour region growing processes respectively. (For
clarity, figure 2 only shows the strongest corner fea-
ture within a 20 by 20 pixel window.) The corners
marked with a cross have been matched to previous
positions, as shown by their trailing lines, and have
been used to estimate the H matrix by orthogonal
least squares. Other crosses, which are also inside the
bounding polygon, are corners not used in the H ma-
trix estimation, but whose correspondences lie within
the matching ellipse associated with this H matrix,
and so are deemed to lie on the same plane.

Once the bounding polygon has been extracted, the
colour space of the ground plane is sampled, and a re-
gion growing algorithm expands the polygon to edges
in the image where there is a change in colour. Figure
3 highlights the final ground plane region extracted
from this technique. Note that we can ignore regions
segmented above the extracted horizon line, which is
shown, along with the epipole, in the upper half of
figure 2. Notice how the ground plane detected can
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Figure 2: Tracked and grouped corners

extend into regions there are no corners due to the
texture gradient of the imaged carpet. Obviously, the
technique works well in this particular case, because
the ground plane has sufficient corner features, and
the colour space of the ground plane is unimodal (i.e.
homogenous). However, in further work we aim to de-
velop a range of techniques, a selection of which can be
automatically deployed depending on the image con-
text.

2 Novel architectures

The second idea we describe, which is relevant to
dependable robots, is the use of fine-grained fault-
tolerant architectures. Here at York, we have been
developing systems based on neuraly plausible archi-
tectures, that is systems whose design is directed by
the low level operation of biological computation sys-
tems. These systems appear to have certain advan-
tages for dependable operation.

A major feature of neural architectures is the use
of threshold logic (TL) rather than conventional logic
systems found in current computer systems. These
gates operate by summing the inputs to the gate, and
applying a threshold to determine the output. In such
a system, a logical AND operation is implemented by
applying a threshold equal to the number of inputs to
the gate, and a logical OR operation is implemented
by applying a threshold of 1. This enables the systems
to implicitly tolerate failures and continue to function
under failure. In the case of an AND gate, if an input
to a gate fails, the gate can still operate if the threshold
is reduced.

Clearly, an approach to robustness that operates at
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Figure 3: Ground plane region extraction

the gate level, rather than at higher levels of abstrac-
tion, may result in higher overall dependability, and
better use of resources, since errors are masked at the
earliest possible stage of processing. To use TL com-
puter systems new architectures and algorithms are
needed to exploit the advantages that they provide.
Work at York has developed neural architectures for
image analysis [6], that are capable of fault tolerance
[1], and which exploit the advantages of TL.

3 Safety critical issues

The third and final research area we discuss is the
use of safety critical analysis techniques to robotic ap-
plications.

If a robot were to be used in a safety critical ap-
plication, for example when it operates in a human
environment where it can potentially cause injury, is
necessary to prepare a safety case to demonstrate that
it is sufficiently dependable. This poses several chal-
lenges. First, with software-based systems, it is nor-
mal to require software to behave predictably, which
conflicts with the flexibility needed in robotic applica-
tions. Second, it is hard to define requirements, and
to characterise what is meant by safe behaviour, as
the robot must be able to operate in any environment
and to recognise and avoid hazardous situations, such
as unprotected drops. To address these issues requires
the design to be altered so the robot is “aware” of haz-
ards, and to program in “safe” behaviours in the pres-
ence of hazards. The safety case then needs to show
that the robot will (with a high degree of certainty)
adopt a safe behaviour in the face of uncertainty in
the interpretation of sensory information.



3.1 Approach to Demonstrating Safety

There are many strategies for demonstrating safety,
e.g. showing that a new design is “no worse than” an
existing system. We have developed techniques for ar-
guing about safety, including documenting these com-
mon forms of argument as patterns [4]. However, with
novel systems such as autonomous robots, we cannot
adopt such a strategy. Instead we need to argue from
first principles, and show that the robot will behave
safely under all circumstances. This involves showing
validity of the requirements, and that the implemen-
tation meets those requirements.

With the sorts of robots being considered require-
ments are problematic. The most practical approach
seems to be to ascribe to actions, or sequences of
planned actions, within specific scenarios, a proba-
bility which indicates the likelihood that the actions
are hazardous. In broad terms we can then classify
planned action sequences as

e Almost certainly hazardous.
e Almost certainly safe.
e Uncertain status.

The requirements are then for the robot to plan
a sequence of actions, for example mobile robot ma-
neuvers, which is safe to an acceptably high degree of
probability. In the course of executing its maneuvers,
the robot may make new observations, which make
previously safe planned maneuvers, hazardous. In this
case, new routes and maneuvers must be planned, and
their safety evaluated, and dynamically re-evaluated
in the light of new observations. Ultimately the robot
must stop if it cannot find a safe route. The design
must therefore be modified to incorporate this form of
“fail safe” architecture.

Interpretation of a robot’s sensory data is always
subject to some degree of uncertainty, and the thresh-
old for classification of actions as hazardous (for exam-
ple, maneuvering near drops, steep slopes, and areas
around humans), should be biased to minimise false
negative “hazardous” classifications, at the expense of
an increase in the number of false positive classifica-
tions. Note that there will normally be an acceptable
level of failures, e.g. one every 10,000 hours of op-
eration, and this will need to be used to guide the
extent to which the classification algorithms need to
be biased.

In practice, biasing the algorithms to avoid hazards
means that the robot is more likely to stop (become
unavailable). Some trade-off studies will be necessary
in order to show that there is a satisfactory balance

between availability and the likelihood of unsafe move-
ment of the robot. To support this, statistical analysis
will be needed on the type of algorithms described in
section 1 (modified to provide the required bias), and
the distribution of features in the environments where
the robots will be used. This analysis will be used
to evaluate the probability of unsafe misclassification,
i.e. classifying an area as safe when it is not.

The design will also be required to be fault-tolerant,
as outlined in section 2, so the algorithms will need
to be modified so that the robot stops when there
is insufficient remaining operational hardware to clas-
sify scenes with acceptable accuracy. Showing that
the requirements have been implemented correctly is
largely a software engineering issue, but is rather non-
standard due to the nature of the requirements and
algorithms. However it is further complicated by the
need for the algorithms to be fault-tolerant. Here we
need to assess the designs to ensure that the “fail safe”
bias, adopted to handle the uncertainties in assessing
the environment, are not affected by the strategies for
tolerating hardware failures. This will require failure-
directed verification activities, e.g. testing to show
that the algorithms behave the same way under failure
as they do under when all the sensors are working cor-
rectly. Overall, the safety case strategy will be based
on an assessment of the probability of erroneous clas-
sification due to the uncertainties in the algorithms,
and the likelihood of uncontrollable hardware failures.

3.2 Broader Issues

The tradition in industries developing safety criti-
cal systems is to introduce new technologies progres-
sively, e.g. using novel materials in low criticality
components on aircraft before using them for major
wing components. This is intended to reduce the risk
that imperfect analysis of the design will allow through
residual design faults which permit unsafe behaviour.
A similar approach would be required for the form of
robot described in this paper.

In fact we have already assumed that it is accept-
able for the robot to stop, under uncertainty or failure.
In itself, this is a “low risk” application. It is prudent
to try out the approach on such systems before using
the technology in more demanding applications, e.g.
where the robots have to continue operating (albeit
at greater risk of hazardous behaviour) after failures.
However the first stage is to try out the classes of de-
sign modification outlined above on a robot used in
a non-critical application in order to show that the
suggested strategy is valid.



4 Conclusions

We have been developing novel Computer Vision
techniques, which can be used to enable robots to nav-
igate in unfamiliar territory. These algorithms will
need to be adapted to bias the system to fail safe
if such a robot is to be used in safety critical appli-
cations. We have also considered approaches to im-
plementing these algorithms, and noted the need for
fault-tolerance mechanisms to be introduced.

We have discussed possible approaches to showing
the safety of such systems, and noted some of the gen-
eral issues in introducing such new technology into
critical applications.

The need to show safety may be seen as an imposi-
tion, but it is possible that it could be used more con-
structively. We have previously demonstrated that it
is possible to use safety cases as an active tool in safety
monitoring [7] for relatively conventional systems. It
would be interesting to explore the possibility of doing
the same with a robot, using the safety case to define
a “safe envelope” in which the robot could operate.
This would be an interesting avenue of research for
the future.
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