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Abstract
We describe the basic structure of monocular

model-based visual localisation (MBL) algorithms,
which may be used to guide mobile robots in a va-
riety of human environments. For such applications,
we address the dependability and safety issues, which
are rarely dealt with in the robotics literature. First
we investigate various scenarios that may occur in the
operation of the standard MBL algorithm, in order
to identify the main hazards that may lead to system
failure. We then propose both commissioning and op-
erational solutions to minimize the risk of a hazardous
situation occurring, with the aim of providing a tem-
plate for the implementation of a highly dependable
MBL system, without a serious compromise on the
system availability

1 Introduction
The Robotics and Computer Vision communi-

ties have developed various approaches for localising
robots using on-board cameras. We have adopted
a specific single camera (monocular) approach called
“model-based localisation” (MBL), where a 3D model
of the environment (connected edge segments) is
stored in a database. The camera viewpoint relative
to this model can be computed if features from a real
image of the environment can be matched to the cor-
rect corresponding features of the stored 3D model
and if a camera model is known. This approach was
pioneered by Lowe [2] and an improved fully projective
formulation was developed by Araujo et al [1].

In the case when mobile robots share the same en-
vironment as humans and are large enough to present
an injury risk, we need to address dependability and
safety issues. In particular, visual sensor systems have
a high dimensional input space, with a correspond-
ing large variability in input pattern presented to the
robot. We need to predict ways in which we may en-
counter incorrect interpretation of this highly variable

sensor data, which may lead to system failure. For
example, one can envisage a situation where the MBL
system in some sense fails, causing the robot to col-
lide with a stack of shelves in a factory, which could
then fall and injure people in the vicinity. Although
large robots in human environments should always be
equipped with a ‘last-resort’ mechanical safety mech-
anism, such as a large flexible bumper, which, when
flexed, causes the robot to stop as soon as possible,
there is still a residual safety concern with such colli-
sions and so minimisation of the number of these inci-
dents will be desirable in terms of constructing a safe
system and a corresponding safety argument. The fo-
cus of this paper is as follows: Our primary aim is to
examine the dependability issues of a standard model-
based visual localisation algorithm and its ability to
guide the robot with minimal risk of an unsafe fail-
ure, namely a collision with the mapped environment.
This will be done in the context of maintaining a high
system availability; that is our secondary aim is to
minimise the time in which the robot is in a halted,
fail-safe state.

Note that this does not include system-wide is-
sues, such as the dependability of the sensors, soft-
ware and computing platform and the dependabil-
ity of any obstacle avoidance systems. Such systems,
particularly human obstacle avoidance, must undergo
their own dependability scrutiny and the obviously
the way in which the various system components in-
teract must also be examined. Although such issues
are outside the scope of this paper, an overall con-
cern is to reduce the level of trust required of the sen-
sors/software/computing system, making it simpler to
develop the required level of dependability.

The structure of the paper is as follows: In the
following section, we provide context by outlining the
structure of a standard MBL algorithm and discussing
timing issues, uncertainty bounds and the mainte-



nance of tracking lock in the algorithm. Section 3
then defines how the fail-safe system may work and
identifies the main algorithmic hazard in the system.
Section 4 investigates various scenarios that may oc-
cur in the operation of the standard MBL algorithm,
in order to identify typical event sequences that may
lead to the generation of either hazards or fail-safe
actions. Section 5 proposes both commissioning and
operational solutions to minimize the risk of a haz-
ard occurring, with the aim of providing a template
for implementation of a highly dependable MBL sys-
tem, without a serious compromise of the system avail-
ability (defined as the time when the robot is not in
fail-safe, halted mode) and without placing great de-
mands on the integrity of the implementation of the
algorithms.

2 Outline of model-based localisation
In this section, we first overview dual sensor

predictor-corrector systems, then we discuss the al-
gorithm structure given in figure 1. Finally we discuss
both sensor sampling issues associated with this algo-
rithm and the need to maintain uncertainty bounds
on the pose estimate.

2.1 Dual sensor predictor-correctors
Although it is possible to develop MBL systems

that use only vision sensors, often we cannot make po-
sition estimates at a sufficiently high frequency, due
to both the computational intensiveness of the data
processing task and the lack of availability of non-
occluded reference targets in the camera field of view
at all times. As a result, typically such systems are
equipped with one or more proprioceptive sensor sys-
tems. These sensor systems estimate robot position by
integrating the measured robot motion over time. Ex-
amples of such sensor systems include odometry sys-
tems, using, for example, wheel encoders and inertial
navigation systems. The advantage of such systems
is that their results are always available and so can
be sampled at a relatively high frequency to give an
up-to-date estimate of pose (position and orientation).
However, the well known problem with such systems,
is that their estimates are subject to significant drift
over time, making them unsuitable as single sensor
systems. Systems which combine internal propriocep-
tive sensor systems with sensors that can measure po-
sition with respect to known external reference points
can eliminate the drawbacks of both types of system.
The proprioceptive system compensates for the rel-
atively low frequency positional update of the vision
system, whilst the drift in the proprioceptive system is
corrected by the external reference measurement pro-
vided by the vision system. In a sense, one can think

of the proprioceptive system predicting the underly-
ing pose state, whilst the vision system periodically
corrects this in a process of sensor fusion. The key
to fusing the data from both sensor systems is a good
understanding of the noise characteristics associated
with each sensor system’s pose estimate.

2.2 The algorithm structure

The term “model” in this MBL approach refers to
the fact that a 3D model of the robot’s environment
is stored in a database, which can be accessed by the
robot localisation system. We are not concerned here
with how the world map is acquired or with simultane-
ous localisation and map building (SLAM) techniques,
except that we assume that any errors in the mapping
process are small compared to sensor measurement
errors (this assumption, of course, needs to be vali-
dated in any practical application of MBL). The data
stored relates to straight edges in the scene, referenced
to some arbitrary, right-handed Euclidean coordinate
frame called the world frame. Straight edges are often
used as they are strong features in many man-made in-
door and outdoor scenes and there are well developed
feature extraction techniques to extract such features
from raw images. Other possibilities include corners
and Lowe’s local scale-invariant features [3]. It should
be noted that another model is required for MBL sys-
tems, namely a model of the intrinsic properties of
the camera. Such as model defines the way in which
3D objects in a camera centered frame are projected
onto the image plane and captured in the pixel-based
coordinates of that image plane. A camera model is
obtained by performing a camera calibration, which
can also remove the effects of radial distortion.

Given the model of the camera and the model of the
environment, we only need to know a good estimate of
the pose of the camera (and hence robot) with respect
to the world frame (this pose is also known as the
extrinsic camera parameters) in order to predict where
the modelled world edges are likely to appear in the
image. This “project world model” process is shown
at the top of figure 1. Note that in the case of a ‘fixed
camera’ mobile robot confined to a ground plane, the
pose will only have 3 DOF.

As shown in figure 1, a raw image is fed into the
system, from which a simple standard edge detector,
such as the Sobel operator is used to detect edgels,
that is, pixels on a sufficiently large intensity gradi-
ent in the (possibly smoothed) image. The projected
model edges and image edgels are then matched us-
ing the edge matcher module, shown in figure 1. This
module searches in a direction perpendicular to the
model edges in order to detect edgels within a search
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Figure 1: Model-based localisation system

Figure 2: Model (solid line) and edgels (dashed line)

window of the model edge, which have a similar ori-
entation and significant strength. Figure 2 shows an
example of a typical model projection from the esti-
mated pose and edgels extracted from a camera at the
true pose. Note that the usual graphics techniques of
back face culling are employed, so that hidden edges of
the model are not generated. Here the estimated dis-
tance of the camera to the box shape is closer than the
actual distance to the box and examples of the search
lines are shown at the back right edge of the model.
Obviously correct data-to-model (edgel to edge) asso-
ciation is crucial to the successful operation of MBL
and this association features strongly in our depend-
ability discussion.

The question now is, assuming we have correct
data-to-model association and we have measured the
disparity between data and model, how do we refine
the camera pose estimate in order to reduce the over-
all disparity between model edges and data edgels?
Due to the non-linear nature of this problem, an iter-
ative process is required, which forms the core of the

MBL algorithm and this is shown by the loop which
is boxed in figure 1. For the mathematics of the core
algorithm, the interested reader is referred to Trucco
and Verri [5] and Araujo et al [1]. In summary, the
solution can be cast in the form of a multidimensional
Newton-Raphson minimisation problem, where we lin-
earise the non-linear projective effect of pose change
on the data-to-model error at each step, update our
pose estimate and re-compute the disparity until we
reach convergence, or convergence fails (divergence or
maximum iterations reached).

If the system converges to a strong match solution,
then the measured pose is output from the optimisa-
tion loop and passed, along with its measure of un-
certainty, to the input of the fusion module, where
it is fused using the current estimate of propriocep-
tive uncertainty to give an update of the estimated
camera pose and associated uncertainty, which can be
then used to control the speed and steering of robot
manoeuvres.

2.3 Timing issues

The large data rate of raw video data will not al-
low feature extraction and matching to be achieved
at this a standard 25Hz or 30Hz frame rate without
the use of special purpose hardware. What would be
a more reasonable frame processing rate? A typical
human walking pace is about 1.5m/s and a reason-
able estimate of maximum speed of a mobile robot in
a human environment may be 1m/s (less for larger
robots). Thus if we would like to maintain position
updates for a maximum every 10cm travelled, a frame
rate of 10Hz is required. On a standard 2GHz, 512MB
PC, using VGA size images (640x480), frame rates of
1Hz are more typical and it may be necessary to pass
several proprioceptive sensor pose samples, which are
not fused with vision data, directly to the robot con-
troller.

Figure 3 illustrates a situation, where, due to the
high visual data rate, proprioceptive sensor sampling
is 10 times the visual sensing rate (useful frame rate).
In time section A, the edgels are extracted from the
image, in time section B, the iterative pose optimi-
sation executes and in some of the remaining time in
section C, the new pose estimate and associated uncer-
tainty is computed. Note that in time section C, the
fusion of frame 1 data must occur with proprioceptive
data up to and including sample 0, which occurs (al-
most) simultaneously with frame 1 capture. The pose
and associated uncertainty at time sample 10, must
then be computed using the visually corrected pose
and uncertainty at time sample 0 and the retrospec-
tive proprioceptive data from time samples 1 to 9. In
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Figure 3: Sensor sampling

this manner, we can deal with the time lag associated
with the frame processing time of the MBL system.

2.4 Pose uncertainty estimation
The MBL algorithm in addition to estimating the

camera/robot pose state, must also estimate the un-
certainty in that state, both for sensor fusion purposes
and also to determine whether a collision with the
mapped environment is possible. Obviously, the es-
timate of this uncertainty should be derived from the
modelled noise distribution on each sensor system con-
tributing to the pose state estimate.

We would really like the boundary of our uncer-
tainty bounds on robot pose to represent the boundary
within which the pose probability is greater than zero
and where the pose probability is zero at all points
outside this boundary. However, the best models for
the probability density distribution of measurements
from a sensor are often not finitely bounded. A com-
mon model used is the normal or Gaussian distribu-
tion, which never actually reaches zero at an arbitrary
distance from the mean and so it is common practice
to cut the tails of the distribution at n standard devi-
ations from the mean. A typical value for n would be
three, giving a 3SD (three standard-deviation) bound
that indicates the confidence that the robot is within
the uncertainty bounds is 99.7% and 0.3% that it is
outside these bounds. This means that even if the er-
ror model is very good (i.e. the actual sensor noise
distribution is very close to normal), we would still
expect to see 3 in 1000 measurements being randomly
generated outside the 3SD uncertainty bound, due to
random sensor noise.

3 Fail-safe operation and hazards
We envisage an environment, where the allowable

uncertainty in position may vary at different positions
within the environment. This is intended to reflect
the fact that robot pose uncertainty should be signifi-
cantly less when maneouvering close to any structures
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Figure 4: Map showing positional uncertainty

in the environment, than when it is moving across an
open space. The simplest scheme may be to say that
the uncertainty in robot position should never infringe
within a certain safety margin from any mapped struc-
ture, shown by the dashed line in figure 4, otherwise
the system should fail-safe, which in this case is to
stop as quickly as is deemed to be safe (without skid-
ding or losing the robot’s load). Figure 4 illustrates
six robot estimated positions (solid circles) A, B, C, D,
E and F with their associated positional uncertainty
bounds (ellipses), velocities (arrows) and true posi-
tions (hollow circles). Here the uncertainty bounds
of positions A and B (and E and F) are deemed ac-
ceptable, whereas those of positions C and D are not.
More sophisticated approaches may dynamically alter
such boundaries depending on, for example, predicted
time to contact, so if robot orientation is known to
sufficiently high accuracy, it would be possible to al-
low the robot in situation D to continue to operate
whereas in situation C the robot should still fail-safe.
Positions E and F show situations where we have a
hazard, that is the true robot position is outside the
estimated uncertainty bounds. Again, assuming good
orientation estimates, situation E poses no immediate
threat of collision, whereas in situation F, the hazard
is about to cause a system failure, namely a collision
with the environment.

3.1 The mismatched filter hazard

Here we define a hazard as a physical situation, of-
ten following from some initiating event, that can lead
to an accident [4]. The implications of this are that
when a hazard exists, no other events are required for
an accident to occur, in effect, the hazard is the full
precondition for the accident. Whether or not the ac-



cident occurs depends on the specific environmental
conditions whilst the hazard is present. With this in
mind, we have identified the main algorithmic hazard:
The main algorithmic hazard is an over-confident es-
timate of camera/robot pose, such that the estimated
pose is outside the estimated uncertainty bounds asso-
ciated with that estimated pose.

In tracking algorithms, such as the Kalman filter,
this is known as a “mismatched filter” [6]. The longer
such a hazard condition exists, the more probable a
collision with the mapped environment becomes. The
need to avoid this hazard condition compels us to
maintain large uncertainty bounds on the pose esti-
mate. For example, if it was deemed that the sensor
noise models were Gaussian, as discussed in section
2.4, then we could make the uncertainty bounds n

standard deviations wide, where n is arbitrarily large.
However, increasing n yields exponentially diminish-
ing returns in terms of the reduction in the number
of hazards and thus we are essentially trading large
amounts of system availability (when system is not in
a fail-safe, stopped mode) for only marginal improve-
ments in system dependability. This focusses our ef-
fort on accurate maintenance of both the pose and the
pose uncertainty bounds.

3.2 Recovering tracking lock.
In addition to generating high system availability,

maintenance of a low uncertainty in pose has a self-
sustaining effect. The smaller the positional uncer-
tainty, the more likely the vision system is to converge,
and given that it converges, it is more likely to con-
verge on the correct model-to-data association. This
is the concept of maintaining “lock” when tracking: it
is easier to maintain lock on the environment model
when the uncertainty in pose, particularly orientation
uncertainty, is low. However, it has to be assumed that
at some point the system will lose lock and this lock
will need to be recovered to prevent the system be-
coming totally unavailable and stuck in fail-safe state.
There are two scenarios for recovering tracking lock:

1. When tracking lock is lost, the uncertainty in pose
will grow until it infringes the safety-margin, in
which case fail-safe will be triggered. The system
will then try to reduce the uncertainty in pose
by searching for the correct pose over the full un-
certainty in pose. As an indicative example, we
could sample in steps of 0.2m over the full po-
sitional uncertainty and every 1 degree over the
full orientation uncertainty. If the positional un-
certainty was around 4m2 and orientation uncer-
tainty around 10 degrees, we would have around
1000 poses to test, from which we could choose

the best model-data match from those that con-
verge. If the system has hit fail-safe at an orienta-
tion where there are no visible features, the robot
would be stuck and require human intervention to
put it back online. One solution to prevent this
would be to allow the camera to pan in order to
view modelled world features.

2. For small enough uncertainty bounds, we can per-
form the above search as the robot continues to
maneouvre and reduce the uncertainty bounds
before the safety-margin is infringed.

4 Scenarios in the system operation
In this section, we systematically consider various

scenarios in MBL system operation in order to iden-
tify situations when the visual system cannot provide
a pose update, situations when the system must fail-
safe, and situations where hazards may occur. It is im-
portant to note that, unlike figure 1, the flow charts
presented in figures 5, 6 and 7 do not represent al-
gorithms, but rather an informal schematic of data,
processes and events. For example, at the bottom of
figure 6, the system may not know whether a correct
data association has occurred and therefore does not
know if it is providing a valid output or an invalid out-
put. Similarly in figure 7, the fusion process does not
know whether valid or invalid vision data is presented
at its input.

4.1 Proprioceptive update
Firstly, we will look at the proprioceptive sensor

operation. Figure 5 illustrates the update and un-
certainty bound check when the proprioceptive sensor
system only is sampled. Due to the integrating nature
of this type of sensor system, the uncertainty bounds
tend to grow monotonically and at each update we
need to check if they infringe upon the safety margin
of the mapped environment (the dotted line in figure
4). If they do, then the robot must fail-safe, that is,
stop in as short a distance as is deemed safe.

4.2 MBL pose/uncertainty update
Secondly, consider a pose and uncertainty bound

update using a captured frame of visual data, as shown
in figure 6. The current pose estimate from the lat-
est proprioceptive pose update is used to generate the
predicted view using the world model. Note that it
may be found that no parts of the modelled environ-
ment are visible in the region of the predicted field of
view, in which case, no output can be achieved from
the MBL visual system. Furthermore, due to poor
lighting, fog (if outdoors) or lack of visual features
in the actual camera field of view, few or no edgels
may be generated. Again, in this case, no output can
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be generated. Both cases are easily automatically de-
tectable. Given an available model and edgels, the
MBL system attempts to make an association between
model (edges) and data (edgels), by searching up to a
maximum distance in a direction perpendicular to the
model edge. The iterative optimiser then alters the
MBL system’s estimated pose in order to reduce the
distance between the model edges and data edgels. If
this process fails to converge, then, again, no output
can be achieved. If convergence is achieved, then some
form of metric should determine how good the match
is, which could, for example, be the mean-square error
separation of matched edgels to model edges. Again,
if this is below a threshold, the system may decide
not to use the vision data and no output is achieved.
Even if this test is passed, there is no guarantee that a
correct model-data association has been made. Only
if the association is actually correct is a valid vision
output achieved, as shown in figure 6.

4.3 Pose/uncertainty update via fusion
In fusing the pose data from the two sensor sys-

tems, we aim to determine what the most probable
pose of the robot is and the probability density distri-
bution around that pose (which define the uncertainty
bounds). Before we do that, we need to determine
whether the two data sets are consistent with each
other. To check this, the matching process may use,
for example, a thresholded metric such as the Maha-
lanobis distance, which measures the distance between
the two sensor estimates normalised with respect to
their covariances. Depending on whether the outputs
from the two sensor systems can be fused, the situ-
ations that we arrive at illustrated at the bottom of
figure 7 and reading from right to left are:

1. The system has maintained “lock”, namely the
vision system has converged on the correct data-
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model association and this matches with the pro-
prioceptive pose estimate. Thus the uncertainty
bounds are low and the true robot position is
within these uncertainty bounds. This is the sit-
uation we hope to be in most of the time.

2. The system has lost “lock” in that there is no
pose output from the vision system at all or no
pose output that matches with the propriocep-
tive system pose estimate. Thus the vision pose
estimate, if any, is discarded, and relatively high
uncertainty in pose remains. Because of this, the
system is more susceptible to future hazards and
scenarios of no availability due to fail-safe.

3. The system believes that it has locked to the
world model and has high confidence in its pose
estimate, which is reflected in its low uncertainty
bounds. However, it has not correctly associated
data with model and the true robot position is
outside the uncertainty bounds. This is a haz-
ard and is a full precondition for a collision with
structures in the mapped environment.

In conclusion, we note that there may be many sit-
uations in which ambiguity exists in terms of the pro-
jected model. That is, due to repeated structures in
the environment, which are in close proximity to each
other, it will be possible for the data edgels to lock
onto the wrong part of the world model, such that the
match between data edgels and model edges is very
good. This false lock generates a mis-matched vision
based pose estimate which is consistent with the pro-
prioceptive pose estimate and thus we are likely to have
a true pose which is outside the uncertainty bounds of
the pose estimate, i.e. a hazard.

5 Proposals to avoid hazards
A key factor in avoiding the hazard condition of a

mismatched filter, is to avoid situations in which there
is pose ambiguity due to the appearance of the world
model being similar within the uncertainty bounds of
the pose. Firstly we propose a means of systematically
adding features to the environment in the commission-
ing phase to remove instances of potential matching
ambiguity over the predicted maximum pose uncer-
tainty bounds for a given pose. Secondly we propose
an operational procedure to fail-safe if the robot ex-
ceeds these predicted safe uncertainty bounds.

5.1 Commissioning proposal
If we can keep the uncertainty bounds of pose small,

then there is inherently less risk of ambiguity in the
environment causing a hazard. Smaller uncertainty
bounds can be maintained if we can see parts of the

modelled environment at all poses. Thus one obvi-
ous proposal in commissioning is to add features to
the environment and environment map such that some
mapped features can be seen from all poses. The main
concept, however, in our commissioning proposal re-
quires us to find a safe uncertainty bound for a given
pose estimate. The definition of such a bound, which
may consist of several disjoint regions, is the bound
within which no ambiguity can exist in the viewed
environment for a given pose. We suggest two ap-
proaches to generate this bound: The first is to search
for all regions of ambiguity over all poses. Due to
the computationally intensive nature of the task, the
search would have to be directed by a number of
heuristics. For example, we could cluster parts of the
modelled 3D environment into groups with similar 3D
structure and then generate possible camera view di-
rections which are cast out into the environment to
generate mutually ambiguous pose regions in the en-
vironment where the view of the modelled world looks
similar. If the actual pose uncertainty bound for a
given pose overlapped with one of these regions, then
a fail-safe would be required.

A second approach, which significantly reduces the
search space, would be to run a Monte Carlo simula-
tion of the the robot and its dual sensor systems op-
erating within the intended map of the environment.
The detail of this procedure is as follows:

1. Carefully model errors in the sensor systems and
validate these models with real vehicle tests over
a range of maneouvres (different turning circles
and speeds, different locations within the environ-
ment). It is essential that we can show that the
sensor models accurately reflect the real sensor
data, in order to build a strong safety argument.

2. For each pose, simulate all (typical) paths used
to reach that pose and thus determine the max-
imum pose uncertainty bounds likely to be en-
countered at that particular pose. The simulation
will be a Monte Carlo simulation in that noise
will be injected at every update step in the algo-
rithm, where the noise is randomly sampled from
the probability distributions modelling each sen-
sor system. An important point here is that, in
the simulation at least, we know the true data-
to-model association and so given that no associ-
ation errors occur, we can predict the likely max-
imum uncertainty bounds for any pose.

3. Shrink the predicted maximum uncertainty
bounds at each pose due to any safety-margin in-
fringements.



4. Over the space of possible poses, search for viewed
ambiguity within these pose uncertainty bounds
and if ambiguity exists, add strong features to
environment map to remove the ambiguity.

One can imagine the end result of this process as
follows: If we express the pose (x, y, θ) on a 3D graph,
then as we move around in this space, a 3D uncer-
tainty ellipsoid (or more complex shape) changes the
size and direction of its axes. This ellipsoid at any 3D
pose defines the uncertainty bound over which we have
checked for and eliminated viewed environment model
ambiguity from the operation of the MBL system.

5.2 Operational proposal
We now discuss how to avoid hazards once the sys-

tem has been commissioned and is operational.

1. If pose uncertainty in any dimension exceeds the
largest possible bounds computed in commission-
ing, then fail-safe, as we have not checked for pose
ambiguities outside this range of pose variation.

2. If two different poses within the uncertainty
bounds converge with a similar high match score,
then fail-safe. Although this is not likely to hap-
pen, due to the commissioning stage, there may
be an occlusion that makes one part of the envi-
ronment match to the edgels as well as another
part. An alternative to this is to weight the match
scores for each pose by the pose probability den-
sity at that pose, so that for two identical vision
match scores, the pose nearest to the mean of
the current pose estimate will be selected. It is
recommended that this only be used if there is
a significant difference between the values of the
two weighted match scores.

3. When in fail-safe state, uncertainty bounds may
have grown large due to occlusion by for exam-
ple a person walking through the camera field of
view. If that person remained in the field of view,
then the robot may not be able to lock onto the
environment model in order to reduce pose uncer-
tainty. In this case the robot would have to wait
for a significant change in edgel data before re-
running the search for the best match within the
uncertainty bounds. If this never happens, then
the robot is effectively stuck in this state and hu-
man intervention will be required.

6 Demonstrating safety
To demonstrate safety it would be normal to pro-

duce a safety case, comprising a safety argument. Here
the safety argument would have three elements:

1. Environment and algorithm definition make false
lock (and hence a mis-matched filter) extremely
unlikely (see section 5.1).

2. Algorithm is correctly implemented (outside the
scope of this paper).

3. System behaves safely when the positional uncer-
tainty is too large (see section 5.2).

This argument would need to be backed up by evi-
dence from commissioning, software development, etc.
Thus the approach described here gives the basis for
demonstrating system safety.

7 Conclusions
In this paper, we have outlined the structure of

model-based visual localisation algorithms and iden-
tified various scenarios in the operation of such sys-
tems that may lead to hazard conditions. We have
then proposed solutions for both the commissioning
phase of such systems and the operational phase in
order to minimize the risk of the main identified al-
gorithmic hazard, namely an over-confident pose esti-
mate. The basic idea is to generate ‘safe uncertainty
bounds’, within which there can be no ambiguity in
the viewed environment. Thus mis-matched filter haz-
ards are avoided and we can maintain a high overall
system availability. Our approach also provides a clear
and transparent way of demonstrating safety.
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