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Abstract. We present a new method of segmenting planar regions when
an uncalibrated camera undergoes (near) pure translation. We show that,
for pure translation parallel to a plane, the relation between the two
views, when expressed in a reciprocal-polar ( 1

r
, θ) space, is a pure shift

in the ( 1
r
) dimension for a given value of θ. Furthermore, we show that

the magnitude of these shifts follows a sinusoidal form along the θ di-
rection over a maximum of π radians. This allows planar image motion
to be accurately detected and recovered by 1D correlation. Simultane-
ous planar pixel grouping and recovery of the plane homography, thus
amounts to a robustly fitting a sinusoid to shifts of maximum correla-
tion in reciprocal-polar space. The phase of the recovered sinusoid cor-
responds to the orientation of the vanishing line of the plane and the
amplitude is related to the magnitude of the camera translation.

1 Introduction

In this work1, a new method of segmenting planar regions when a camera un-
dergoes pure translation is presented. It has been demonstrated as a practical
approach to monocular mobile robot obstacle detection or, equivalently, mobile
robot ground plane segmentation. The essence of the paper is the reciprocal-polar
image (and the use of sinusoid models to segment planes within that space),
which is new, although related ideas have been presented in the literature. For
example, Pollefeys et al [3] suggested a polar rectification (r, θ) to aid stereo
matching. Wolberg and Zokai [4] have used the well-known log-polar transfor-
mation to aid affine motion recovery. Both of these allow more general motion
than our transformation, but do not give the main benefit of the reciprocal-polar
transformation, which allows correlation based matching over large camera mo-
tions. The use of intensity correlation means that there can be low density (or
even zero) corner features on the plane of interest (eg ground plane). Thus our
method gives good performance compared to other plane segmentation schemes
particularly when the camera motion is large and the density of corner features
on the plane of interest is low. We summarise the advantages as follows:
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1. It renders image motion, for a given radial direction on a planar surface, into
a pure shift. This allows image motion to be recovered by direct correlation
methods (in addition to the usual feature correspondences), which fail in the
original image space for large image motions, due to perspective distortion.
In reciprocal-polar space, for a given epipolar line (i.e radial direction relative
to the focus of expansion), distant points on a plane (i.e. points close to the
focus of expansion) move the same amount as points on the same plane,
which are close to the camera.

2. The amount of radial image motion expressed in reciprocal-polar space, fol-
lows a sinusoidal variation, where the phase of the sinusoid is the orientation
of the vanishing line of the plane (plane horizon) and the magnitude of the
sinusoid is dependent on the magnitude of the translation, camera intrin-
sic parameters and the proximity of the plane. This allows planar grouping
down to pixel level, using a simple sinusoid model, given that there is some
local texture around the pixel. In terms of (robust) least squares extrac-
tion of models (here, homographies), you get better solutions if you can use
more data associated to that model. This is why our method can improve
on methods based purely on feature matching approaches, particularly in
scenes where the features on the plane of interest (ground plane) are sparse.

3. The method works even in the absence of feature correspondences on the
ground plane, although feature correspondences are not precluded from being
classified as ground plane or obstacle using the sinusoid model. Indeed, in the
absence of local texture, we cannot segment on a pixel basis, and contours
of smooth regions can be matched (using the focus of expansion, or epipole)
and classified using the sinusoid model.

4. Compared to other approaches in mobile robot visual navigation, it is simple
to distinguish the ground plane from other planes in the scene, using some
a-priori knowledge of the camera roll orientation with respect to the ground
plane. Usually the roll angle is very close to zero, so the vanishing line and
phase of the sinusoid are close to zero. Planes at other orientations relative to
the ground plane have different phase sinusoids. Planes parallel to the ground
plane (eg tops of obstacles) and below the camera have the same phase but
all have a larger amplitude sinusoid than the ground plane. Planes above
the camera and parallel to the ground plane (eg the ceiling, if visible) have
a phase shift of π relative to the ground plane’s sinusoid model.

2 The Relation Between Planar Homography (H) and
Fundamental Matrix (F) Under Pure Translation

In pure translation of the camera, one may consider an equivalent situation in
which the camera is stationary, and the world undergoes a translation -t. In
this situation, points in 3D space move on straight lines parallel to t, and the
imaged intersection of this parallel lines is the focus of expansion (FOE) v in
the direction of t. It is evident that v is also the epipole e and e′ for both views,
and the imaged parallel lines are epipolar lines.
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F = [e′]× = [e]× = [v]×. (1)

where [•]× is a skew-symmetric matrix corresponding to the vector.
Let Xi be a set of points which are coplanar in 3-D Euclidean

space. The images of Xi from two view points are related by a
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Fig. 1. Two corresponding point pairs fully
define the FOE and vanishing line

plane to plane projectivity or homog-
raphy H, such that, λxi2 = Hxi1.
where λ is a scalar, xi1 and xi2 are
homogenous image coordinates of the
images of point Xi , H is a 3×3
matrix representing the homography.
Note that two corresponding point
pairs fully determine the H-matrix un-
der pure translation parallel to the
plane. Suppose the cameras are cal-
ibrated with the world origin at the
first camera and the intrinsic param-
eters constant.

P = K[I|0] P′ = K[R|T]. (2)

and the world plane πE has coordinates πE = (nT , d)T so that H = K(R −
λtnT )K−1. Where λ = 1

d , For a pure translation, R=I , and so H has the form
H = I − λ(Kt)(K−Tn)T . We note that Kt is the FOE v = η(xf yf 1)T , and
K−Tn is the vanishing line l = v(av bv 1)T corresponding to plane πE . Thus
we have

H = I − kvlT . (3)

Where k is a constant scalar. Because two corresponding point pairs fully define
the FOE and vanishing line, so H-matrix can, in theory, also be fully determined
by the two corresponding matches (Fig. 1). However, in our robust method, we
recover the FOE using the algorithm given in the following section. We then
determine the vanishing line orientation using the phase of a sinusoid fitted
to feature matches and/or correlation maxima in reciprocal-polar space, using
RANSAC and least-squares (SVD).

3 Recovering the Focus of Expansion

We can detect (near) pure translation by intersecting all lines defined by all
corner correspondences from the image pair and if a large percentage of inter-
sections lie in a small area (such as 90% of intersections should lie within a 50
pixels radius), then pure translation is assumed and the FOE is computed. The
question now is: how can we calculate the FOE with high accuracy and high
stability? We have developed a robust method which uses a corner matching
procedure and then uses random sample consensus (RANSAC) and standard
linear methods (SVD) to solve the overdetermined system of linear equations
xi ×x′

i) •v = 0, where xi ←→ x′
i (i = 1, 2, · · · ,n) is any pair of matching points
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in two images and v is the required FOE. After this linear process an iterative
procedure is used to minimise the epipolar distance, f(v), given by:

f(v) =
(

1√
(Fxi)21+(Fxi)22

+ 1√
(FTx′

i
)21+(FTx′

i
)22

) ∣∣x′T
i Fxi

∣∣
where F is the fundamental matrix.

4 Plane Segmentation and Vanishing Line Recovery

Once the FOE has been computed, we shift image coordinates so that each
image is centred on the FOE, using a centering tranlslation matrix, Tc. The FOE
is then at homogenous coordinates v′ = (0, 0, 1)T and vanishing line becomes
l′ = T−T

c l = (av, bv,vT l)T . The homography relating points in FOE centred
coordinates is

H′ = I − kv′l′T =


 1 0 0

0 1 0
−kav −kbv (1 − kvT l)


 =


1 0 0

0 1 0
s µ q


 . (4)

where q = 1−kvT l , s = −kav and µ = −kbv. If the robots translation direction
is parallel to the ground, q = 1, since the FOE lies on the vanishing line for
this special motion. In this specialisation, original H-matrix has four dof, and is
sometimes termed an elation[2]. Under the new homography, we have

(sx′
1 + µy′

1 + q)2(x′2
2 + y′2

2 ) = (x′2
1 + y′2

1 ). (5)

If we define ρ = 1
r , where r is the Euclidean distance between an image point

and the FOE in a frame, then taking square roots of Eq.(5)

f(θ) = ρ2 − qρ1 = s
x′

1

r1
+ µ

y′
1

r1
= ksµ sin(θ + α). (6)

where θ is the angular position of a pixel in a frame centred on the FOE.

ksµ =
√

s2 + µ2, sin α =
s

ksµ
, cos α =

µ

ksµ
, tanα =

av

bv
. (7)

Eq.(6) indicates that we need to find three constants (q, ksµ, α) in order to recover
the homography and that the computation should be implemented in (ρ, θ) image
space (note that a planar homology has five dof, but two have been recovered
in the FOE computation). We call this reciprocal-polar image space. Thus, after
computing the FOE, a cubic-spline based interpolation procedure is used to
generate a reciprocal-polar image for each image in the image pair.

For each pixel in image 1, its position in reciprocal-polar image space is com-
puted, and a 1D window is created around this position along the qρ dimension
(q = 1 for translation parallel to the ground plane, for other translations, q is
easily computed). We then correlate this window along the ρ in reciprocal-polar
image 2, at the same value of θ. This correlation process is possible because of
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(a) (b)

(c)

(d) (e)

(f) (g)

Fig. 2. (a) one of the original images with their matching points (•), feature tracks,
FOE and vanishing line. (b) ground plane points (•) and obstacle points (+). (c)
reciprocal-polar image corresponding to (a). (d) The value of f(θ). (e) 3D sinusoid. (f)
The variation of residual errors (the number of coplanar points is between 54 and 112).
(g) Reprojection errors of several alternative methods.
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(a) (b)

Fig. 3. (a) Correspondences (b) The segmented ground plane points (•) and obstacle
points (+)

(a) (b)

(c) (d)

Fig. 4. (a) Original image 1 (b) The segmented ground plane region (c) Original image
2 (b) The segmented ground plane region

the ’pure-shift’ relation between ρ2 and qρ1, expressed in Eq.(6) and the position
of the maximum value of the correlation is related as a value of fi(θ).

Eq.(6) indicates that correlation maxima and feature correlations in
reciprocal-polar space, which are associated with a planar surface, lie on a si-
nusoid and the constants (ksµ, α) may be recovered by fitting a sinusoid to the
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data for f(θ) . Suppose that we have two value of f(θ) , fi,j measured at two
angles, θi,j , so that

fi = ksµ sin(θi + α), fj = ksµ sin(θj + α). (8)

collecting terms in tan α and rearranging gives

tan α =
fj sin θi − fi sin θj

fi cos θj − fj cos θi
. (9)

Thus, in theory, a pair of f values, at different angular positions, for pixels
belonging to the same plane, allows us to estimate the orientation of the van-
ishing line of that plane. Then, given the phase angle, α, corresponding to the
orientation of the vanishing line, we can compute ksµ from the Eq.(8).

In order to robustly and accurately estimate the vanishing line orientation
from many correlation maxima and feature correspondences in reciprocal-polar
space, many of which will not be associated with the ground plane, a random
sample consensus (RANSAC) [1] and least-squares process is used. Pairs of (θ, f)
values are selected across random values of ρ and θ, with the constraint that there
must be a minimum angular separation between the two θ values. The magni-
tude and phase of a sinusoid that passes through these two (θ, f) coordinates is
computed and the number of inliers stored. An inlier is defined as some image
motion (correlation maxima or feature correspondence) that is within thresh-
old of the putative sinusoid. Thus r < threshold, where r is the residual error:
r = |(ρP ′ − qρP ) − ksµ sin(θ + α)| and P and P′ are correspondences. The si-
nusoid with the maximum number of inliers is used to initialise an iterative
procedure where a standard linear least-squares estimate of the sinusoid param-
eters and the associated set of inliers are computed until the inlier distribution
stabilises or the maximum number of iterations is reached. In this way, co-planar
pixels may be grouped without explicit construction of a homography matrix, al-
though this is easily recovered in the FOE centered frame from the FOE and the
two parameters (amplitude and phase) of the sinusoid. Note that the FOE and
phase of the sinusoid give the vanishing line, and the amplitude of the sinusoid
gives the scale of the translation, related to k, hence we have all the parameters
that we need in equation 3. The homography in the original frame, if required,
can be computed as H = T−1

c H′Tc.

5 Experimental Results and Applications

5.1 Results Using Corner Correspondences

In the first experiment, the camera was moved parallel to the ground plane.
Fig. 2 (a) shows one of the original images with their matching points (•),
feature tracks, FOE and vanishing line. After the FOE was obtained, the images
were then converted to reciprocal-polar (ρ, θ) form, as shown in (c).(d) shows
us the one of the sinusoidal forms of f(θ) for a fixed ρ (and hence fixed r). The
partial sinusoidal curve (θ ∈ [193.25, 315.00]) is clearly shown and represents the
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motion of the ground plane in reciprocal-polar space. (The phase is shown close
to 180 degrees rather than 0 degrees because the direction of y in the image
is directed upwards from the FOE rather than downwards). The 3D sinusoidal
form of reciprocal-polar ground plane motion, which is obtained when ρ (and
hence r) is varied, is shown in (e). In this set of experiments, the number of
coplanar matching points varied from 54 to 112. The mean of residual errors
of ground plane points is 1.558E-5, the standard deviation is 1.393E-5 and the
maximum value is 6.3E-5. But the mean of residual errors of non ground plane
points is 0.00101, the standard deviation is 0.00183 and the maximum value is
0.011. The variation of residual errors of matching points is shown in (f), those
less than 0.00025 are classified as ground plane points. The reprojection errors of
the recovered planar homographies using our new method and several methods
described by Hartley and Zisserman [2] are shown in (g), which shows us that the
accuracy of the new method is very similar to the normalizing transformation
method, and much better than the direct linear transform (DLT) method and
the method of minimisation of symmetric transfer error. Finally, all the coplanar
points and the points that lie on obstacles can be segmented using the sinusoid
model. The result is shown in (b), where ‘ground-plane points’ and ‘obstacle
points’ are marked as (•) and (+),respectively.

In the second experiment, the camera was moved in a forward translation
mode, but in a direction not parallel to the ground. The camera axis and
motion is inclined downwards towards the ground plane. In this situation, at
least two matching points are needed to calculate q. We compute the FOE as
v = (277.73, 302.41), and the vanishing line as l = (0, 0.0005, −0.13). Some cor-
respondences, feature tracks, vanishing line and FOE (o) are shown in Fig. 3 (a)
The segmented ground plane points (•) and obstacle points (+) are shown in
Fig. 3 (b).

5.2 Experiment Using Correlations and Contour Matching

The final experiment presented in this paper, uses correlations within locally
textured regions and contour matching to determine whether smooth (texture-
less) regions should be grouped with the ground plane. Note that an additional
process is required, not described in this paper, which is our own quadtree split-
merge region segmentation algorithm, which extracts homogenous regions of
colour-texture. Smooth (textureless and featureless) regions cannot be classified
as ground plane or non-ground plane as they cannot be matched across an image
pair. Their boundaries, however, can be and, in the case of pure translation, this
matching is easily done by ’casting’ rays from the FOE recovered from all corner
matches (note that there may be little or even no corner correspondences on the
ground!).

Fig. 4 (a) shows an image with two regions on the floor which have little
texture. The first is a circular piece of white paper, which can be driven over,
and the second is a small cardboard box, which can’t. The boundaries of these
regions are extracted and the FOE is used to cast a ray in order to match points
along corresponding boundaries. If the motion of all matched boundary points
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falls within the threshold of the sinusoid model in reciprocal-polar space, it is
classified as belonging to the ground plane, otherwise the region is classified as
an obstacle. Fig. 4 (b) shows the extracted ground region, where the textured
carpet has been classified on a pixel by pixel basis, and the the textureless white
paper region has been included by virtue of its boundary motion being consistent
with ground plane motion in reciprocal-polar space. A second example of pixel
based segmentation is shown in figures 4 (c) and (d). Note that there are some
’drop outs’ in the foreground of the image, but the shape of the segmentation is
excellent, to the extent that even the small black doorstop to the centre right of
the original image 4 (c) has been correctly classified as an obstacle and removed
in image 4 (d).

6 Conclusions

Firstly, we have presented a novel reciprocal-polar (ρ, θ) image rectification,
which transforms planar image motion under pure translation into a pure shift,
irrespective of the degree of perspective distortion of the planar surface. Hence
correlation can be done over large translations for the class of planar homogra-
phies described as ‘elations’, when correlation in the original image space would
fail. Secondly, we have shown that it is possible to group/segment co-planar re-
gions by matching all co-planar pixels which have local intensity variations to
the same half-wave sinusoid. This can be done without explicit computation of
the homography. A nice feature of the algorithm is that all pixels on a plane
(that have some local intensity variation) contribute to the ground plane group-
ing process and (if required) associated homography estimation. Thus you get a
dense (i.e. pixel based) ground plane segmentation. Our results show that our al-
gorithm performs very well to outliers and noises and the stability, accuracy and
robustness performs favourably to other methods in terms of the reprojection
errors of the recovered homography.
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