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tAn approa
h whi
h uses multiple sour
es of visual information (or visual 
ues) to iden-tify and segment the ground plane in indoor mobile robot visual navigation appli
ations ispresented. Information from 
olor, 
ontours and 
orners and their motion are applied, in
onjun
tion with planar homography relations, to identify the navigable area of the ground,whi
h may be textured or non-textured. We have developed new algorithms for both the
omputation of the homography, in whi
h a highly stable two point method for pure transla-tion is proposed, and the region growing. Also, a new method for applying the homographyto measure the height of a visual feature to the ground using an un
alibrated 
amera is alsodeveloped. Regions are segmented by 
olor and also by their sizes and geometri
 relation andthese region boundarys are extra
ted as 
ontours. By 
ontrolled manoeuvres of a mobile robot,the methods of 
oplanar feature grouping developed in this paper are not only appli
able to
orner 
orresponden
es but also to 
ontours. This leads to robust, a

urate segmentation ofthe ground plane from the other image regions. Results are presented whi
h show the validityof the approa
h.Keywords: Visually-guided robot navigation, Grouping and segmentation, Multiple 
ue systems.
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1 Introdu
tionIn this paper, we fo
us on the dete
tion and segmentation of the ground plane for visual navigationof mobile robots in indoor environments. The fundamental assumption is that the 
oors are planarto some approximation. Apart from this basi
 requirement, we impose no further environmentalrestri
tions and aim to be able to navigate robustly in a broad range of indoor s
enarios. (Note,however, that sin
e our robot has a blind area around its wheels, we also need an initial positionassumption, su
h that the robot starts on the 
oor and 
an make a small motion, typi
ally 0.1m,to initialise our ground plane dete
tion algorithms before 
olliding with an obsta
le.) On
e therobot begins to manoeuvre, s
ene stru
ture is automati
ally measured. In our approa
h, we applythe planar homography, H, and multiple visual 
ues for ground plane segmentation, whi
h aim toimprove performan
e and robustness in 
omparison to single visual 
ue system. The re
overed Hmatrix, in 
onjun
tion with a 
ross ratio 
onstru
t, is further applied to measure the height of avisual feature above the 
oor in terms of the height of the 
amera opti
al 
enter. This providesa means to both dete
t the ground and obsta
les using an un
alibrated 
amera. To make theapproa
h robust, spe
i�
 vehi
le manoeuvres are applied to probe the stru
ture of the s
ene and,in this way, the 
omputation of the H matrix is greatly simpli�ed and is more stable.2 Outline of the ground plane segmentation pro
edureHere we give a brief high level des
ription of our algorithm for segmenting the ground plane.1. Extra
t visual features in the image. In parti
ular, the Plessey 
orner dete
tor and Cannyedge dete
tors are used.2. Perform a 
olor based region segmentation based on a quadtree split-merge algorithm anddetermine the boundary of ea
h region.3. The robot moves and all the 
orners, 
ontours and regions are tra
ked to get the 
orrespon-den
e over one or more frames.4. Feature tra
ks are used to determine whether the motion between a pair of frames is (approx-imately) pure translation. This determines whether H is 
omputed from a general 4-point
orresponden
es method or a more stable 2-point 
orresponden
e method for pure transla-tion.5. For pure translation, all available 
orner 
orresponden
es are used to get the vanishing pointand we 
hoose the available features (
orners/edges/region boundary) from the region nearestto the 
amera (the `seed region') for the 
omputation of the horizon line and hen
e thehomography (H matrix). It is not ne
essary that any 
orner 
orresponden
es exist withinthis region, as 
orresponden
es on the boundary of the region 
an be used. The orientationof the horizon line 
an 
he
k if this region 
an not be the ground plane, in whi
h 
ase therobot 
an take evasive a
tion. (It does not, however, guarantee that it is the ground plane asit may be near-parallel. In future, virtual parallax 
he
ks need to be added to disambiguatesu
h planes.)6. If the seed region is deemed to be on the ground plane, the 
omputed homography is usedto 
he
k the boundary of all other regions to test whether they are 
oplanar with the groundplane.Thus a ground plane segmentation 
onsisting of several (possibly) di�erent 
olor regions isobtained, in any arbitrary topology (eg adja
ent or not adja
ent regions, 
ompa
t or non-
ompa
tregions, et
). In the following se
tions, we des
ribe this pro
ess in more detail. Sin
e the 
ornerand edge dete
tors used are standard, we start with region segmentation and go on to des
ribe
omputation of the ground plane homography and ground plane region grouping.



3 Region SegmentationTo �nd the ground plane, regions in the image must be segmented and re-grouped into a 
o-planarset. We apply a split and merge te
hnique for automati
 region growing. In 
ontrast to otherapproa
hes, our approa
h generates both non-textured and textured regions. The pro
edure is asfollows:� Split the image using the quadtree method on the basis of 
olor di�eren
e. The varian
e ofthe 
olor di�eren
e in the blo
k is used to determine whether the blo
k is divided further.� Regions are 
lassi�ed by their area and this 
an be 
ombined with the de
omposition pro
e-dure. Ea
h region is represented by the 
oordinates of the top-left 
orner, the mean 
olor ofthe blo
k and the dimensions of the blo
k.� Using the mean 
olor of the largest blo
k as the initial seed, �nd all blo
ks with similar
olor (the di�eren
e of mean 
olor less than threshold) in the tree stru
ture to form a list of`similar 
olor' blo
ks, then merge all geometri
ally adja
ent blo
ks in the list. These blo
ksare marked on the blo
k tree as one single region.� Repeat the above pro
edure for the unmarked blo
ks in the tree, until no further blo
ks 
anbe merged.After grouping blo
ks with similar 
olor properties, there remains some small (eg. less than4 by 4 pixels) blo
ks. They may be adja
ent to ea
h other but with signi�
ant di�erent 
olorsand hen
e 
an only be merged by the geometri
 adja
en
y relation. Su
h regions are texturedareas in the image. Some blo
ks merged in su
h a way may be non-
oplanar but are separated by
oplanarity 
he
king at a later stage. This 
oplanarity 
he
king 
an be done by both 
orners and
ontours inside the region, in addition to the region boundary itself.4 Grouping 
oplanar features using homographies4.1 Computation of the H MatrixA planar homography (or plane to plane proje
tivity) de�nes relations of images of points on aplanar surfa
e at two view-points. Let Xi be a set of points whi
h are 
oplanar in the 3D world.The images of Xi from two view-points are related by a plane to plane proje
tivity or homography,H, su
h that, �xi2 = Hxi1: (1)where � is a s
alar, xi1 and xi2 are homogenous image 
oordinates of the images of point Xi, H isa 3 by 3 matrix representing the homography. As homogenous 
oordinates are de�ned up to a s
alefa
tor, the H matrix has only eight degrees of freedom. On
e the H matrix of the ground planefrom two viewpoints has been re
overed, it 
an be used to 
he
k whether other feature points inthe s
ene lie in the same plane and hen
e a 
oplanar point set 
an be 
onstru
ted. Note, however,Eq-1 does not provide quantitative measurement for non-
oplanar points. Early work on exploiting
oplanar relations has been presented by Tsai and Huang [9℄, Longuet-Higgins [10℄ and Faugerasand Lustman [13℄.TheHmatrix has eight degrees of freedom and it 
an be determined by standard linear methods.Four 
orresponding point pairs in general position (no three 
ollinear) provide eight independent
onstraints and the solutions of the linear system de�nes theHmatrix up to a s
aling fa
tor. Whenthe number of point pairs is more than four, a standard least square method 
an be used, usuallyin 
onjun
tion with some form of sample 
onsensus to reje
t outliers. (For pure translation theeigenve
tors of the H matrix indi
ate the plane normal/horizon line and distinguish it from otherplanes.) However, we have noted that there are several disadvantages with using approa
hes whi
hdire
tly use four or more image 
orresponden
es and, as an alternative, we propose a horizon line



- vanishing point (2-point) method, whi
h exhibits greater robustness when the robot undergoespure translation. Consider two 
amera 
entered 
oordinate systems, frame 1 and frame 2, so thatwe 
an write X2 = RX1 + T; (2)whereX1 andX2 are the 
oordinates of the same 3D point, expressed in frames 1 and 2 respe
tivelyand where R and T are the rotation and the translation matri
es en
oding the relative position ofthe two 
oordinate systems. Now assume that X1 is a point on the plane de�ned by:AX1 + B Y1 + C Z1 + 1 = 0: (3)This is a plane whi
h does not pass through the origin (i.e. the opti
al 
enter of the 
amera) andN = (A;B;C)T is the plane normal. Thus we have NT X1 = �1 and denoting T = kt, where k isa s
alar and t is a unit ve
tor, we have:X2 = RX1 � ktNT X1 (4)= (R � ktNT )X1:The images of the s
ene point 
an be written as:x2 = P(R � ktNT )P�1x1 (5)= Hx1:where P is the (unknown) 
amera model. For a pure translation, R = I, and so H has the formH = P(I � ktNT )P�1= I � kPtNTP�1: (6)We note that Pt is the vanishing point, vp, and NTP�1 is the horizon line, vlT , in the image.Thus, we have H = I� kvpvTl (7)As shown in Fig-1, two 
orresponding point pairs fully de�ne the horizon line and the vanishingpoint. Given that we know the vanishing point and horizon line, s
alar k 
an be re
overed bysubstituting any one known 
orresponding point pair and thus the H matrix 
an be re
overed.From 7 we have x2 = x1 � kvpvTl x1 (8)Sin
e this equation is de�ned up to a s
ale fa
tor we have�x2 = x1 � ksxt (9)where sxt = vpvTl x1 = [sxt; syt; s℄T . Normalising homogenous ve
tor x2 givesx2 = x1 � ksxt1� ks ; y2 = y1 � ksyt1� ks (10)Thus we have two estimates of the s
alar k askx = x2 � x1s(x2 � xt) ; ky = y2 � y1s(y2 � yt) (11)Now suppose there are n (n � 2) sets of 
orresponding point pairs, indexed as (0 � i < n),then a least squares �t 
an be applied to obtain the s
alar k, as



k = 12n n�1Xi=0 (kxi + kyi) (12)On
e k has been 
omputed, H 
an be re
overed by Eq-7. Compared with using 4 point 
orre-sponden
es to 
ompute H, this approa
h generates a \well formed" H matrix. By this we meanthat it en
odes a motion of pure translation and its eigenve
tors are the points on the horizon line.This is valuable in terms of 3D re
onstru
tion relative to the ground plane.In pra
ti
e, the vanishing point 
an be 
omputed by using all 
orner 
orresponden
es, not justthose on the ground plane. Interse
tion of the two lines whi
h join ea
h pair of end points of thelo
i of the 
o-planar point pair is a point on the horizon line (see �g 1). These interse
tion points
an generate the horizon line using robust approa
hes su
h as RANSAC.
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01Figure 1: Two 
orresponding point pairs fully de�ne the vanishing point and the horizon line.The image region nearest to the 
amera is the best 
andidate region for the initial ground planetest and the features nearest to the 
amera 
an be used to 
ompute the horizon line. If the nearestfeatures are not two 
orresponding point pairs (
orners) but image 
ontours, the 
orrespondingpoints 
an be de�ned by 
hoosing a point on one 
ontour, 
onstru
ting a line passing through thispoint and the vanishing point, and �nding the interse
tion of this line with the remaining 
ontour.4.2 Height above the ground planeWe note that the H matrix does not provide a quantitative measurement of how far a point isfrom the plane whi
h de�nes the homography. This may be problemati
 in pra
ti
e, sin
e theassessment of a measurement error is ne
essary and the measurement of the height of a potentialobsta
le above the ground is a fundamental requirement to �nd the navigable region. Here, weshow that, using an un
alibrated 
amera, this 
an be done under pure translation in terms of theheight of the 
amera opti
al 
enter.
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Our aim is to re
over the height of 
orner point A shown in �gure 2, when the robot undergoespure (forward) translation, t (and thus the s
ene point translates t units towards the robot). PointA is the a
tual position of the 
orner point relative to the 
amera before the translation and pointC is the position of the 
orner after the translation. Points A0 and C 0 are the proje
tions of thesea
tual 
orner positions onto the ground plane. Points a and 
 are the image positions of the 
ornerat positions A and C respe
tively and b is the predi
ted image position of the 
orner point, if the
orner point were to lie in the ground plane. Image point b is 
omputed from the re
overed Hmatrix as b =Ha.Now the height of the 
orner point relative to the height of the 
amera opti
al 
entre ishr = hh
 = 1� Dh
 (13)Using similar triangles, and denoting the distan
e between points x and y as d(x; y), we notethat: Dh
 = d(OC)d(OC 0) = d(AC)d(A0C 0) (14)For pure translation, d(A;C) = d(A0; B0), so thathr = 1� d(A0B0)d(A0C 0) (15)Now, the four image points (a; b; 
; Vp), where Vp is the vanishing point, and the 
orrespondingfour ground plane points (A0; B0; C 0;1) are 
ollinear. The 
ross ratio for this set of points remainsinvariant under proje
tion and so we 
an write:d(A0B0)d(A0; C 0) = d(a; b) d(
; Vp)d(a; 
) d(b; Vp) (16)Hen
e we 
an 
ompute relative height as:hr = 1� d(a; b) d(
; Vp)d(a; 
) d(b; Vp) (17)This 
an be interpreted as the height of point A units of height h
.Note that this approa
h only needs the ground plane homography, H, and the tra
ked image
orresponden
es a and 
 of the feature to determine the height above the ground plane. Bythresholding the measured height above the plane, the method 
an be used to 
he
k for groundplane points, whi
h 
an be driven over, and for suÆ
iently high feature points whi
h 
an be drivenunder. Note that this is a
hieved without 
amera 
alibration.We note that a similar idea has been proposed by Criminisi et. al [14℄. He proposed a methodto 
ompute the distan
e (refered to a 
ommon s
aling fa
tor) between a plane parallel to somesome referen
e plane. However, we have removed the 
onstraint of needing a known vanishingpoint of a referen
e dire
tion from Criminisi's method and our method 
an be applied to 
omputethe height from any isolated point to the referen
e plane.4.3 Ground plane segmentationThe region segmentation pro
edure, des
ribed in se
tion 3, generates a list of regions whose bound-aries are dete
ted. The region nearest the 
amera is assumed to be the most likely 
andidate for aground plane region and features within this region are tra
ked and used to 
ompute the H matrix(the horizon line validates that the region is approximately the 
orre
t orientation). If validated,this region is used as the \ground region seed". The boundaries and feature points in the adja
entregions are then used to 
he
k whether it is 
oplanar with the ground region seed (by using theheight measurement method des
ribed in the previous se
tion). The ground region is thus grownby 
ombining the adja
ent 
oplanar regions.



5 Experimental resultsIn this se
tion, experimental results validating our ground plane segmentation approa
h are pre-sented. Image sequen
es were grabbed by a 
amera mounted on a mobile robot whi
h moved inthe pure translation mode.In the experiment des
ribed here, we try to merge an ellipti
al 
oplanar pat
h (a pie
e of whitepaper on the ground) with the ground plane seed region and separate a box shaped non 
o-planarpat
h (an obsta
le!) from the ground plane seed region (see Fig-3(a)). The region growing yieldeda ground seed region whi
h has two holes on it, one ellipti
al and one roughly re
tangular (Fig-3(b)). The three 
ontours on the region were automati
ally tra
ked (Fig-3(
)) and subsequently
oplanarity 
he
king was applied. The estimation of the height ratio of the ellipse and obsta
leregion boundaries are plotted in Fig-4. The ellipse region was then automati
ally merged to theground plane as in Fig-3(d), as it is 
ush with the 
arpeted area shown in Fig-3(b).

(a). Raw data. (b). Initial seed region.

(
). Tra
king the region boundarys 
on-tours. (d). The ground region.Figure 3: Separation of the obsta
le by 
o-planarity 
he
king.6 Con
lusionsWe have presented a method of ground plane segmentation for mobile robot visual navigationappli
ations, whi
h employs multiple sour
es of visual information, in 
onjun
tion with planarhomographyies. In parti
ular, we illustrated how, for pure translation, a homography 
an be
omputed from just two pairs of 
orresponding 
orner features. We also showed how, for puretranslation, we 
an determine the height of 
orner features above the ground plane using there
overed homography and a 
onstru
t based on the 
ross ratio. This allows us to dete
t pointswhi
h 
an be driven over, as their height is measured to be 
lose to zero, and points whi
h aresuÆ
iently high to drive under. Our experimental results have shown the viability of the approa
h
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(a). Estimation of height of the in-planeboundary. (b).Estimation of height of the obsta
leboundary.Figure 4: Co-planarity 
he
king for the 
ontours inside the region.over long image sequen
es, and we plan to expose our pro
edures to a wide range of s
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