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ABSTRACT

We evaluate a new approach to face recognition using a variety 
of surface representations of three-dimensional facial structure. 
Applying  principal  component  analysis  (PCA),  we  show that 
high levels of recognition accuracy can be achieved on a large 
database  of  3D  face  models,  captured  under  conditions  that 
present  typical  difficulties  to  more  conventional  two-
dimensional approaches.  Applying a range of image processing 
techniques we identify the most effective surface representation 
for use in such application areas as security, surveillance, data 
compression and archive searching.

1. INTRODUCTION

Despite significant advances in face recognition technology,  it 
has  yet  to  achieve  the  levels  of  accuracy  required  for  many 
commercial  and  industrial  applications,  mainly  due  to  the 
inaccuracies caused by the environmental circumstances under 
which  images  are  captured.   Variation  in  lighting,  facial 
expression and orientation all significantly increase error rates, 
making it necessary to maintain consistent conditions between 
query and gallery images for the system to function adequately. 
However, this approach eliminates some of the key advantages 
offered by face recognition: a passive biometric in the sense that 
it does not require subject co-operation. 

The  use  of  3D face  models  is  motivated  by  a  number  of 
factors.   Firstly,  by relying purely on  geometric shape,  rather 
than  colour  and  texture  information,  we  render  the  system 
invariant to lighting conditions.  Secondly, the ability to rotate a 
facial  structure  in  three-dimensional  space,  allowing  for 
compensation of variations in pose, aids those methods requiring 
alignment  prior  to  recognition.   Finally,  additional 
discriminating information is captured, when compared with 2D 
systems.  As an example, eye separation can be recovered from 
both sets of data, but nose depth can only easily be recovered 
from three-dimensional  data.  We do  recognise,  however,  that 
two-dimensional  colour-texture  information  provides  a  rich 
source of discriminatory information,  which is forfeit  if three-
dimensional  data  alone  is  used.   Therefore,  the  focus  of  this  
paper is to determine the ability of three-dimensional data alone 
to form the basis of a face recognition system, as compared to 
2D systems.  Additional research can then identify methods of 
reintroducing normalised two-dimensional texture data in order 
to reduce error rates further.

We investigate the use of facial surface data, taken from 3D 
face  models,  as  a  substitute  for  the  more  familiar  two-
dimensional  images.   We take  a  well-known  method  of  face 
recognition,  namely the eigenface approach described by Turk 
and Pentland [1] and adapt it for use on three-dimensional data.  
Testing a range of surface representations and distance metrics, 

we  identify  the  most  effective  methods  of  recognising  faces 
using three-dimensional surface structure.

In order to test this method of face recognition, we require a 
large database of 3D face models.  However, until recently, 3D 
capture methods have been slow and cumbersome, requiring the 
subject  to  remain  perfectly  still.   For  these  reasons,  three-
dimensional  face  recognition  has  remained  relatively 
unexplored, when compared to the wealth of research focusing 
on  two-dimensional  face  recognition.   Although  some 
investigations have experimented with 3D data [2,  3,  4],  they 
have had to rely on small test sets of 3D face models or used 
generic face models to enhance two-dimensional images prior to 
recognition [5, 6, 7].  However, this research demonstrates that 
the  use  of  three-dimensional  information  has  the  potential  to 
improve face recognition well beyond the current state of the art. 
With  the  emergence  of  new  3D  capture  equipment,  the 
population of a large 3D face database has now become viable 
and being  undertaken  at  The University  of  York  as  part  of  a 
project  facilitating  research  into  three-dimensional  face 
recognition technology [8].

2. RELATED WORK

In  this  section,  we  discuss  previous  research  exploring  the 
possibilities offered by three-dimensional geometric structure to 
perform face recognition.  To date, the majority of research has 
focused  on  two-dimensional  images,  although  some  have 
attempted  to  use  a-priori  knowledge  of  facial  structure  to 
enhance  these  existing  two-dimensional  approaches.   For 
example, Zhao and Chellappa [5] use a generic 3D face model to 
normalise  facial  orientation  and  lighting  direction  in  two-
dimensional images.  Using estimations of light source direction 
and pose, the 3D face model is aligned with the two-dimensional 
face image and used to project a prototype image of the frontal  
pose  equivalent,  prior  to  recognition  by  linear  discriminant 
analysis.  Recognition accuracy on the test set is increased from 
approximately 81% (correct match within rank of 25) to 100%. 
Similar results  are witnessed in  the Face Recognition  Vendor 
Test [9], showing that pose correction using Romdhani,  Blanz 
and Vetter’s 3D morphable model technique [6] reduces error 
rates when applied to the FERET database.

Blanz,  Romdhani  and  Vetter  [7]  take  a  comparable 
approach,  using  a  3D  morphable  face  model  to  aid  in 
identification  of  2D  face  images.   Beginning  with  an  initial  
estimate of  lighting  direction  and face shape,  Romdhani  et  al 
iteratively alter shape and texture parameters of the morphable 
face  model,  minimising  difference  to  the  two-dimensional 
image.   These  parameters  are  then  taken  as  features  for 
identification, resulting in 82.6% correct identifications on a test 
set of 68 people.

Although  these  methods  show  that  knowledge  of  three-
dimensional  face  shape  can  aid  normalisation  for  two-
dimensional  face  recognition  systems,  none  of  the  methods 



mentioned  so  far  use  actual  geometric  structure  to  perform 
recognition.  Whereas Beumier and Acheroy [2] make direct use 
of  such information,  testing  various  methods  of  matching  3D 
face models, although few were successful.  Curvature analysis 
proved ineffective, and feature extraction was not robust enough 
to  provide  accurate  recognition.   However,  Beumier  and 
Acheroy  were  able  to  achieve  reasonable  error  rates  using 
curvature values of vertical surface profiles.  Verification tests 
carried out on a database of 30 people produced equal error rates 
(EER) between 7.25% and 9.0% on the automatically  aligned 
surfaces and between 6.25% and 9.5% when manual alignment 
was used.

Hesher et al [10] take a similar approach to our base method, 
using PCA of range images and euclidean distance to perform 
recognition.   Matching  37  range  images  produces  a  correct 
identification  rate of 94%, when training is performed on the 
gallery set.  However, it is not demonstrated how successful the 
system is when the training and test set are disjoint and no other 
surface representations are tested.

Chua et al [4] take a different approach, applying non-rigid 
surface recognition techniques to the face structure.  An attempt 
is  made to  identify  and  extract  rigid  areas  of  facial  surfaces, 
creating  a  system  invariant  to  facial  expression.   The 
characteristic  used to  identify  these rigid  areas  and ultimately 
distinguish between faces is the point signature, which describes 
depth values surrounding local regions of specific points on the 
facial surface.  The similarity of two face models is computed by 
identifying and comparing a set of unique point signatures for 
each  face.   Identification  tests  show that  the  probe  image  is 
identified correctly for all people when applied to a test set of 30 
depth maps of 6 different people.

Another  method,  proposed  by  Gordon  [3],  incorporates 
feature localisation.  Using both depth and curvature information 
extracted from three-dimensional face models, Gordon identifies 
a  number  of  facial  features,  including  head  width,  nose 
dimensions and curvatures, distance between the eyes and eye 
width.   These  features  are  evaluated  using  fisher’s  linear 
discriminant,  determining  the  discriminating  ability  of  each 
individual feature.  Findings show head width and nose location 
are particularly important features for recognition, whereas eye 
widths  and  nose  curvatures  are  less  useful.   Recognition  is 
performed by means of a simple euclidean distance measure in 
feature space.  Several combinations of features are tested using 
a database of 24 facial surfaces taken from 8 different people,  
producing results ranging from 70.8% to 100% correct matches.

3. THE 3D FACE DATABASE

As mentioned previously,  there is little three-dimensional face 
data  publicly  available  at  present  and  nothing  towards  the 
magnitude of data required for development and testing of three-
dimensional face recognition systems.  Therefore, we introduce 
a new database of 3D face models, collected at The University 
of  York,  as  part  of  an ongoing  project  to  provide  a publicly 
available 3D Face Database of over 5000 models [8].  The 3D 

Figure 1.  Face models taken from the UOY 3D face database

models are generated using a 3D camera, which operates on the 
basis of stereo disparity of a high-density projected light pattern. 
For the purpose of these experiments, we will be using a subset 
of  the  3D  face  database,  acquired  during  preliminary  data 
acquisition sessions.  This set consists of 330 models taken from 
100 people under the ten conditions shown in figure 1.

During  capture  no  effort  was  made  to  control  lighting 
conditions.   In  order  to  generate face models  at  various  head 
orientations,  subjects  were  asked  to  face  reference  points 
positioned  roughly  45° above  and  below  the  camera,  but  no 
effort was made to enforce a precise angle of orientation.  

3D face models are orientated to face directly forwards using 
our  orientation  normalisation  algorithm  (not  described  here) 
before being converted into depth maps.  The database is then 
separated into two disjoint sets: the training set consisting of 40 
depth maps (type 1, figure 1) and a test set of the remaining 290 
depth maps.  Both sets contain subjects of various race, age and 
gender and nobody is present in both the training and test sets.

4. SURFACE REPRESENTATIONS

In  previous  work  we  have  shown  that  the  use  of  image 
processing  techniques  can  significantly  reduce  error  rates  of 
two-dimensional  face  recognition  methods  [11,  12],  by 
removing  unwanted  effects  caused  by  environmental  capture 
conditions.  Much of this environmental influence is not present 
in  the  3D  face  models,  but  pre-processing  may  still  aid 
recognition  by  making  distinguishing  features  more  explicit. 
We test a number of surface representations, which may affect 
recognition error rates, derived by pre-processing of depth maps, 
prior to both training and test procedures, as described in table 1.

5. DEFINING SURFACE SPACE

We define surface space by application of PCA to the training  
set of facial surfaces, taking a similar approach to that described 
by Turk and Pentland [1]  and used in previous investigations 
[11, 12].  Consider our training set of facial surfaces, stored as  
orientation  normalised  60x105  depth  maps,  represented  as 
vectors of length 6300.  We begin by reducing dimensionality to  
a practical value, while maximising the spread of facial surfaces 
within the subspace, by application of PCA to the training set of 
M (40)  depth maps {Γ1,  Γ2,  … ΓM}, computing  the covariance 
matrix,



Where  Φn
 is  the  difference  of  the  nth depth  map  from  the 

average ψ.  Eigenvectors and eigenvalues of the covariance 

    
Figure 2. The average surface (left) and first eight eigensurfaces

matrix  are  calculated  using  standard  linear  methods.   The 
resultant  eigenvectors  describe  a  set  of  axes within  the  depth 
map  space,  along  which  most  variance  occurs  and  the 
corresponding eigenvalues represent the degree of this variance 
along  each  axis.   The  M eigenvectors  are  sorted  in  order  of 
descending  eigenvalues  and  the  M`(40)  greatest  eigenvectors 
chosen to represent surface space.  We term each eigenvector an 
eigensurface, displayed as range images in figure 2.

6. VERIFICATION OF FACIAL SURFACES

Once surface space has been defined, we project any face into 
surface  space  by  a  simple  matrix  multiplication,  using  the 
eigenvectors calculated from covariance matrix C.

)( Ψ−Γ= T
kk uω  for k = 1…M` .

Where uk is the  kth eigenvector and ωk is the kth weight in the 
vector ΩT = [ω1, ω2, … ωM`].  The vector Ω is taken as the ‘face-
key’ representing a person’s facial structure in surface space and 
compared by either euclidean or cosine distance metrics.

      
In addition, we can also divide each face-key by its respective 
eigenvalues, prior to distance calculation, removing any inherent 
dimensional  bias  and  introducing  two  supplementary  metrics, 
the  Mahalanobis  distance  and  weighted  cosine  distance.  An 
acceptance (facial surfaces match) or rejection (surfaces do not 
match) is determined by applying a threshold to the calculated 
distance.   In  order  to  evaluate  the  effectiveness  of  the  face 
recognition methods, we compare each of the 290 surfaces in the 
test set with every other surface (41,905 verification operations). 
False acceptance rates (FAR) and false rejection rates (FRR) are 
calculated  as  the  percentage  of  incorrect  acceptances  and 
rejections  after  applying  a  threshold.   Varying  the  threshold 
produces a series of FAR, FRR pairs, which plotted on a graph 
produces  an  error  rate  curve (figure  3),  from which  the  EER 
(where FAR equals FRR) is taken as a single comparative value.

7. RESULTS

Results are presented as error rate curves and bar charts of EERs 
(figure 3).  The results clearly show that dividing by eigenvalues 
to  normalise  vector  dimensions  prior  to  distance  calculations, 
significantly decreases error rates for both euclidean and cosine 
distance, with the Mahalanobis metric providing the lowest EER 
for  the  depth  map  system.   The  EERs  produced  show  that 
surface gradient representations provide the most distinguishing 
information, with horizontal derivatives giving the lowest EERs 
of all,  using the weighted cosine distance metric.  In fact, the 
weighted cosine distance returns the lowest EER for the majority 
of  surface  representations,  excepting  a  few  particular  cases. 
However, the most effective surface representation seems to be 
dependent on the distance metric used for comparison.

8. CONCLUSION

We  have  shown  that  a  well-known  two-dimensional  face 
recognition method can be adapted for use on three-dimensional 
face models.  Tests have been carried out on a large database of 
three-dimensional facial surfaces, captured under conditions that 
present  typical difficulties  when performing  recognition.   The 
error rates produced from the three-dimensional baseline system 
(19.1% EER using  euclidean  distance)  are  notably  lower that 
those  gathered  in  similar  experiments  using  two-dimensional 
images (25.5% EER) [12].  Although a more direct comparison 
is required,  using a common 2D/3D test  database, in  order to  
draw  any  quantitive  conclusions,  initial  results  suggest  that 
three-dimensional face recognition has distinct advantages over 
conventional two-dimensional approaches.

Experimenting with a number of surface representations, we 
have discovered that facial surface gradient is more effective for 
recognition  than  depth  and  curvature  representations.   In 
particular,  horizontal  gradients  produce  the lowest  error  rates, 
seeming  to  indicate  that  horizontal  derivatives  provide  more 
discriminatory information than vertical.  Another advantage is 
that gradients are likely to be more robust to inaccuracies in the 
alignment  procedure,  as  the  derivatives  will  be  invariant  to  
translations along the Z-axis.

Curvature representations do not seem to contain as much 
discriminatory information as other surface representations.  We 
find  this  surprising,  as  second  derivatives  should  be  less 
sensitive to inaccuracies of orientation and translation along the 
Z-axis.  However, this could be a reflection of inadequate 3D 
model resolution and high noise content.

Testing four distance metrics has shown that the choice of 
method for face-key comparisons has a considerable affect on 
resulting error rates.  The euclidean and cosine measures seem 
tailored to specific surface representations, suggesting that some 
create  a  surface  space  in  which  between-class  deviation  is 
predominantly  angular,  whereas  others  produce  more  radial 
deviation.   It  is  also  evident  that  dividing  each  face-key  by  
respective  eigenvalues,  normalising  dimensional  distribution, 
usually improves results for both euclidean and cosine distances.  
This  indicates  that  the  distribution  along  one  surface  space 
dimension  is not  necessarily  proportional  to  its discriminating 
ability and that face-keys become more discriminative when all 
dimensions are weighted evenly.  However, this is not the case 
for some surface representations with higher EERs, suggesting 
that  these  representations  incorporate  only  a  few  dominant 
useful  components,  which  become  masked  when  weighted 
evenly with the majority of less discriminatory components.

Error rates of the optimum 3D eigensurface system (12.7% 
EER)  are  substantially  lower  than  the  best  two-dimensional 
systems  (20.4%  EER  and  17.8%  EER)  tested  under  similar 
circumstances in our previous investigations [11, 12].  Although 
we recognise the differences between these experiments (most 
notably the lack of  a common 3D/2D test  set),  the results  do 
show that geometric face structure is useful for recognition when 
used  independently  from  colour  and  texture  and  capable  of 
achieving high levels of accuracy.  Given that the data capture 
method  produces  models  invariant  to  lighting  conditions  and 
provides the ability to recognise faces regardless of pose, makes 
this  system  particularly  attractive  for  use  in  security  and 
surveillance applications.  However, more testing is required to 
identify the limitations of the eigensurface method, although one 
obvious  issue is  the system’s reliance on  accurate  orientation 



normalisation.  A better approach would be to generate a surface 
representation that was invariant to orientation.
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Table 1.  Brief descriptions of surface representations with the convolution kernels used.

 
Figure 3. Error rate curves for the base line depth map system (left) and EERs of all 3D face recognition systems using a variety of 

surface representations and distance metrics (right)
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