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Abstract— The Support Vector Machine (SVM) provides a
robust, accurate and effective technique for patter recognition

and classification. Although the SVM is essentiallya binary

classifier, it can be adopted to handle multi-classlassification

tasks. The conventional way to extent the SVM to nitirclass

scenarios is to decompose an m-class problem intseries of two-
class problems, for which either the one-vs-one (0¥) or one-vs-

all (OVA) approaches are used. In this paper, a prtical and

systematic approach using a kernelised SVM is proped and

developed such that it can be implemented in embedd

hardware within a road-side camera. The foreground
segmentation of the vehicle is obtained using a Gssian mixture

model background subtraction algorithm. The feature vector

describing the foreground (vehicle) silhouette enates size, aspect
ratio, width, solidity in order to classify vehicle type (car, van,

HGV), In addition 3D colour histograms are used togenerate a
feature vector encoding vehicle color. The good regnition rates

achieved in the our experiments indicate that our pproach is

well suited for pragmatic embedded vehicle class@ation

applications.

Keywor ds-support vector maching(SVM); vehicle classification;
Gaussian mixture model; background subtraction

l. INTRODUCTION

In this paper, we present a pragmatic road vehicle

classification system, which automatically detemsinboth
vehicle type (car, van , HGV) and the vehicle cdltom the
video stream provided by a road-side camera. Anoitapt
aspect of our work has been to develop a systenistisample
enough, in terms of feature vectors and classjfitws be
implemented on limited hardware resources embeadtin
the camera itself. This provides the opportunitydevelop
intelligent stand-alone surveillance systems fonerdetection,
security and road charging schemes. Central teyatem are a
set of kernelised support vector machine classifagerating
on feature vectors encoding the size, shape aod paperties
of the foreground blob corresponding to the segetkenehicle.

The support vector algorithm is a nonlinear gefieatbn
of the generalized portrait algorithm developedRirssia in the
sixties [1][2]. However, a similar approach usiimgehr instead
of quadratic programming was taken at the same timthe
US, mainly by Mangasarian [3][4][5]. As such, it fismly
grounded in the framework of statistical learnihgdry, which
has been developed over the last three decadesapnik/
himself [6][7][8]. In its present form, the suppoviector
machine (SVM) was largely developed at AT&T Bell
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Laboratories by Vapnik and co-workers. SVM have nbee
recently proposed as a very effective method fonegd
purpose classification and pattern recognition [Bluitively,
given a set of points which belong to either of telasses, a
SVM finds the hyperplane leaving the largest pdeditaction

of points of the same class on the same side, wiakdmizing
the distance of either class from the hyperplareoAding to
[7]1 [9], this hyperplane minimizes the risk of messifying
examples of the test set.

Prior related work includes that of Baek et al.][1®ho
presented a vehicle color classification basecherSVM. The
implementation results showed 94.92 of successfaat®&00
outdoor vehicle with 5 colors. Ambardekar et all][lised
optical flow and knowledge of camera parametemdetect the
pose of a vehicle in the 3D world. This informatisrused in a
model-based vehicle detection and classificatiochrigue
employed by their traffic surveillance applicatidda et al.
[12] proposed an approach to vehicle classificatiomler a
mid-field surveillance framework. They discriminafeature
based on edge points and modified SIFT descriptors.
Eigenvehicle and PCA-SVM were proposed and impleaten
to classify vehicle into trucks, passenger cars,arad pick-ups
in paper [13]

The paper is organised as follows: In Section 2 w
overview the basic theory of the two class SVM. fiAdlass
SVM classifiers are introduced in Section 3. Coland shape
classification algorithms are described in Sectidnsand 5
respectively Section 6 gives conclusions and furdiecussion.

II.  TwoO CLASSSVM: THEORETICAL OVERVIEW

In this section, we give a very brief review of B¢M and
refer the reader to [8] [9] for further details. \&&sume that we
are given a set S which ha$ training samples of points

x OR™with i=1,2,...,N. Each pointX; belong to either of two
classes and thus is given a lakeh{-11}. The goal is to

establish the equation of a hyperplane that divigllesving all
the points of the same class on the same side wiailémizing
the distance between the two classes and the Hgper[i2].

A hyperplane in the feature space can be descabettie
equation

(w,x) +b=0 1)



wherew R™and b is a scalar. When the training samples argnere X and X, are any support vector from each class

linearly separable, SVM vyields the optimal hyperplane that
separates two classes with no training errors, raagimises
the minimum distance from the training samples b t
hyperplane. There is some redundancy in Eq. (1),véthout
loss of generality it is appropriate to considercanonical
hyperplane [7], where the parameterd are constrained by

min;[(w,x ) +b =1 )

satisfying,a, ,a, >0 andy, =-1, y, =1.
The hard classifier is then

f(x)= sign(<w* : x> + b*) )

So far the discussion has been restricted to the where
the training data is linearly separable. Howevemgéneral this
will not be the case. When the data is not lineadparable,

This incisive constraint on the parameterisation iShere are two approaches to generalising the probtehich

preferable to alternatives in simplifying the foration of the
problem. It states that the norm of the weight @eshould be
equal to the inverse of the distance of nearegsit poithe data
set to the hyperplane.

A separating hyperplane in the canonical form rsasisfy
the following constraints:

ylwx)+b]=1, i =12, N 3)

The optimal hyperplane is given by maximizing thargin p,
subject to the constraints of Eq. (3). The margigiven by:

Soub) = m (min, , (w.x) +t +min, ,_(wx) +d)=@ )

are dependent upon prior knowledge of the problewch an
estimate of the noise on the data. In the case ewiters
expected (or possible even known) that a hyperpleae
correctly separated the data, a methods of intioguan
additional cost function associated with misclasaifon is
appropriate. More generally, slack variable
&=(&,&,,---,&,), with & >0 was introduced in [8], such

that

ylwx)+b]21-&,i=12,--,N (10)

to allow the possibility of examples that viola8).(The & are

I
a measure of the misclassification errors. The gdised
optimal separating hyperplane is determined byvéagtor W

SinceHv\ﬂ2 is convex, minimizing it under linear constraints that minimise the function

(3) can be achieved with Lagrange multipliers. & @enote by
a= (al,az,--.,aN) the N non negative Lagrange multipliers

associates with constraints (3), the solution s dptimisation
problem of Eq.(4) under the constraint Eq.(3) iegi by the
saddle point of the Lagrange function (lagrangian)

dwib,@) =2 f” = 3" (yfw ) +b]-1)

Eq. (5) to be transform to its dual problem, whisheasier to
solve. The dual problem is given,
(%% >j ©

max, w(a) = maxa[ iN=10'i —%Z:ilzj“‘:laiaj Yy,

(%)

Subject to,
@, 20,i=12-,N,

Zi'\il ay, =0

1 N
ow.£)= " +CY" & an
purpose of the first term is minimized to controé tlearning
capacity as in the separable case; the secondigemncontrol
the number of misclassified points. The paramétés chosen
by the user, a large€ corresponding to assigning a higher
penalty to errors.

The only difference is tha®; have upper boun@ here.

SVM training requires to fixC, the penalty term for
misclassifications. SoC must be chosen to reflect the
knowledge of the noise on the data.

For the applications where linear SVM does not poed
satisfactory performance, nonlinear SVM is suggkstehe
basic idea is to map x by nonlinearly mappigp) to a much
higher dimensional feature space, and by workinit Vinear
classification in that space in which the optimgpérplane is
found. The nonlinear mapping can be implicitly defi by

This can be achieved by the use of standard quadratintroducing the so called kernel functior(x,,x;) which

programming method [15]. Once the
a = (a;,a;,--.,aL) solution of the maximization problem
(6) has been found, the optimal separating hypeepia given
by,

W= alyx @)

b = —%<W’°,xr + xs> )

vector

computes the inner product of vectap(sg) and ¢(X,-)- If we
have K(x,x)=¢(x)l¢x,), then only K is needed in the
training algorithm and the mapping is never explicitly used.

From Mercer’s theory [16] [17], we know that given
symmetric positive kerneIK(x, y), exists a mapping such
that K(x,y)=¢(x)g{y) . as long as satisfies Mercer's
condition.

Under the feature mapping, the solution of a SVM tee
form:



f (x) = sign{(w, ¢{x)) + b) (12)
where
W= ayelx) =2 (malx)relx) @3
More convenient formula to determine the sign is
£() = sign() 3" vk ) o) +5) 1)

= sign(zi'ilafyi K (x,x)+ 6)

whereB = —%Z:\;U:Yi [K(Xilxr)+ K()Q'Xs)]'

lll.  THE MULTI-CLASSSVM CLASSIFIER

The solution of binary classification problems gsBVMs
is well developed. Multi-class problems (such agectb
recognition and image classification [18]) haveitglly been
solved by combining
classifiers. In the one-vs-all (OVA, or one-vstyesethod,
one constructs k classifiers, one for each cladse ffith
classifier constructs a hyperplane between dalassd the k-1
other classes. If say the classes of interest iimaige include
car, HGV and van, classification would be effectby
classifying car against non-car (i.e. HGV and van)HGV
against non-HGYV (i.e. car and van). This methodbdeen used
widely in the support vector literature to solve ltindass
pattern recognition problems [19][20][21]. Alterivatly, one-
vs-one (OVO, or all-vs-all) approach involves consting a
machine for each pair of classes resulting kifk -1)/2

machines. For each distinct paitg and m, , we run the
learning algorithm on a binary problem in which exdes

labelled y=m are considered positive, and those Iabelled1i

independently produced binary

IV. COLOUR CLASSIFICATION

Four different colour (green, red, blue, yellow)jemits
images were selected from COIL (Columbia Object dena
Library) database [14] to test our colour clasatiien
algorithm. The COIL images are colour images (24 bor
each of the RGB channels) of 128x128 pixels. Thages
consist of 7200images of 100 objects (72 viewsetwh of the
objects). The images were downloaded via anonyrfipdgom
the sitewww.cs.columbia.eduAs explained in detail in [27],
the objects are positioned in the center of a alet and
observed from a fixed viewpoint. Figure 1 showgledion of
the object samples in the database.

Figure 1. Sample images in the COIL database.

Colour histogram technique is a vey simple and level
method. Since we are dealing with discretely sathmlata
from colour images, we use discrete densities gtagem-bin
histograms. In a discrete space, x=1, 2, - - -, n are the
pixel locations of the model. A functiam: R? - {12,---,m}

associates to the pixel at location xi the indgx ) of the

stogram bin corresponding to the value of thaepiHence
a normalized histogram of the region of interest loa formed

y=m, are negative. All other examples are simply igdore (using g as an example)

When applied to a test point, each classificatimegjone vote
to the winning class and the point is labelled wviltle class
having most votes. This approach can be furtherifieddto

give weighting to the voting process. Rifkin andayiau [22]
gave an extensive theoretical-based analysis, aisppaabout
multiple classifications,
(regularized least squares classification), COMn(glete code)
and ECOC (error correcting output coding). Theydatkd that
OVA scheme is extremely powerful, producing residte
often at least as accurate as other approacheboyntet al.
[23] gave the similar conclusion that is the rdaaglt
classification accuracy of OVA is not significanttfferent

such as OVA, O0OVO, RLSC

q(u)z%ia[bm)—u], u=12..m (15

where J is the Kronecker delta function.

The input video in our system is in YCbCr colouasg. Y
is the luminance component and Cb and Cr are the-bl
difference and red-difference chroma components. Y&bCr
colour space was developed as part of ITU-R BT.é0ting
the development of a word-wide digital componentdea
standard. If all possible colours in YCbCr spaceai24-bit

from OVO approach. However, some researchers haJg'age are quantised, there are 2B6ns. Such a histogram

different opinion. They reported that OVO schems &aimple
conceptual justification, and can be implementetidim faster
and better performance than the OVA scheme alth@ig®

are trainingo(kz) classifiers rather thao(k) for OVA scheme

(the reason is the individual classifiers are maotaller, and
given the time required to train on the point isngally
superlinear), and the OVO scheme offers betteropadnce
that the OVA scheme [24][25][26].

would be sparsely populated. Very fine quantizatainthe
colour space is probably unjustified for imageswihich the
illumination may be variable, and there is addiéibnoise on
the colour video. 16 bins histogram for each colafuly CbCr
is reasonable, but it still needs huge memory fardvare
implementation. Therefore, we use a much
quantization of the colour space, 8-bin colourdgsam. Each
COIL image is transformed into YCbCr
normalized vector (the sum of the vector
components is obtained. Figure 2 shows

=1) OE®R2

coarser
space and a

an example o



normalized 8-bin colour histogram SVM vector of thed
object. If we increase the number of bins, the aatiatjion time
will dramatically increase.
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Figure 2. The 8-bin 3D colour histogram SVM veabthe red object.

We choose) =1, there are only paramet€rneed to be

determined while use the radial basis function (RB&rnel,
and two parameter€ andd for polynomial kernel. It is not

know beforehand whiclC is the best for our problem. In
order to obtain a goo@ so that the classifier can accurately

predict unknown data, a “grid-search” on C add(for
examplec=27%273... 2°, d=1,2,3) on a half-training/half-
testing methodology was used. The way is to separaining
data into two parts, one is considered unknowmaiming the
classifier, the other was used to predict accuthey reflect
the performance on classifying unknown data. Thesaoa
why we prefer the grid-search is that the method &eoid
doing an exhaustive parameters search by appraginsaor
heuristics, and it can be easily parallelized bseaeach
parameter is independent.

Figure 3. Images with Gaussian white noises meamdOvariances are 0.05,
0.1, 0.2, 0.5, respectively (order from left tahtly

For colour classification experiments, there aré Plue
object images, 288 red, green and yellow objecgesaEach
of them randomly segregated into two sets. Eachinsfide
half samples was used separately as a trainingrgktesting
set. In order to test the robustness of the alywritwe add
Gaussian white noises with mean 0 and variance8.88¢ 0.1,
0.2, 0.5, respectively. The intensity of the imégeormalized
ranging from O to 1. Figure 3 shows some samplesoifed
image. Even images with noises variance=0.2, seitgiand
specificity of each colour are still 1.0. That meahe method
can get 100% correct results. For the image witiamae=0.5,
the mean of sensitivity=0.999, the mean of spatyfi©.998.

Figure 4 shows our own real data, where three reiffie
vehicle types and colors are illustrated (bladk white HGV
and red van). The data was collected from real tuideo.
The colour is not as good as in the COIL databbseause
they are from an outside scene. Some parts of éhécle
which specularly reflect the ambient light appelanged in
color. Table 1 gives experiment results with theoagted
confusion matrix given in Table 2. The results webtained
using OVA with a polynomial kernel, and parametettings
C=1000 andd=2. From the confusion matrix, we know that,
from 51 black vehicles, the system predicts 50 laskband
only 1 as white. For 110 white vehicle, the systaedict 103
as white and 7 as black. The classifier has 1008gr&tion
rate for the red vehicle.

Figure 4. Three different vehicle types and coblack car, white
HGV and red van)

TABLE I. COLOUR CLASSIFICATION RESULTS USINGREAL DATA
Number of L .
Colour vehicle Sensitivity Specificity
Black 101 0.882 0.891
White 220 0.916 0.832
Red 64 0.987 0.987
TABLE II. CONFUSION MATRIX
Black White Red
Black 50 1 0
White 7 103 0
Red 0 0 32

V.  SHAPE CLASSIFICATION

Our system not only classifies different vehicléocs, but
also different vehicle types, such as car, van ld@&y/. The
foreground blob containing the vehicle is obtaineging a
background subtraction method based on a Gaussigoren
model [28]. We extract a simple silhouette shapetore so
that we can implement our system easily on embedded
hardware. The feature vector components include, sigpect
ratio, width and solidity of the vehicle foregroubtbb. The
size and width is the value after normalizatiomgghe size of
the license plate. We assume that the size ofd¢bede plate is
1 unit. The accuracy of both OVA and OVO is givenTiable
3 and associated confusion matrices are given Téabkrom
these tables, we know that OVO and OVA do not have
significant differences in performance, but OVOfpenance
is slight better than that of OVA on our data, esgéy for van
classification. For our real time hardware system
implementation, we chose OVA, to save computation
complexity and running time.



TABLE lII. THE ACCURACY OFOVA AND OVO [7] V. Vapnik, “The Nature of Statistical Learning Thg® Springer, New

York. 1995.
Method [e}¥e) OVA Lo ) ,
Sensitivity | Specificity | Sensitivity | Specificity [8] C. Cortes and V. Vapnik, “Support vector networkachine Learning,
Car 0.852 0.938 vol. 20, pp. 1-25, 1995.
Van 0.655 0.841 [9] V. Vapnik, “An overview of statistical learning tbe,” |IEEE
HGV 0.735 0.882 Transaction on neural networks, vol. 10, No. 5,9§8-999, 1999.
[10] N. Baek, S.-M. Park, K.-J. Kim, S.-B. Park, “VelgiclColor
Classification Based on the Support Vector Machihethod”, ICIC
TABLE IV. THE CONFUSION MATRICES OFOVA AND OVO 2007, CCIS 2, pp. 1133-1139, 2007.
Car Van HGV [11] A. Ambardekar, M. Nicolescu, G. Bebis, “Efficientekficle Tracking
OVA ovo OVA ovo VA ovo and Classification for an Automated Traffic Surlegite System,”
Car o1 5 10 9 0 0 Signal and Image Processing, August 2008.
Van 9 12 56 67 27 13 [12] Ma, W. E. L. Grimson, “Edge-based rich represeatatior vehicle
AGv 3 2 2 21 34 36 classification”, International Conference on Conegpufision, 2006, pp.
1185-1192.
[13] C. Zhang, X. Chen, W.-B. Chen, “A PCA-based VehiClassification
Vi C Framework”, International Conference on Data Engiimg Workshops
. ONCLUSIONS AND DISCUSSION (ICDEW'06), 2006.
We have presented a method to perform automaticleeh [14] M. Pontil and A. Verri, “Support vector machinesr f8D object
recognition and classification. The moving vehibleb was recognition,” IEEE Transaction on Pattern Analysiad Machine

Intelligence, Vol. 20, No. 6, pp. 637-646, 1998.

[15] R.J. Vanderbei, “LOQO: An interior point code foruagiratic
programming,” Optimization Method and Software,.48| pp. 451-484,

segmented from static background using a Gaussiatune
model background subtraction algorithm. It is a step

algorithm. The first step is colour recognition.drder to save 1999.
memory space and computation complexity for realeti [16] E. Osuna, R. Freund and F. Girosi, “Support VeMachine: Training
hardware system implementation, the system usesbia 8 and Applications. Technical Report: AIM-1602, Madsasetts Institute

colour (YCbCr space) histogram as SVM vector. Tystesn of Technology, Cambridge, USA, 1997.

- 0 . [17] F. Girosi, “An equivalence between sparse approtamaand support
obtained 100% correct recognition for common colgreen, vector machines,” Technical Report: AIM-1606. Matsssetts Institute

red, blue, yg!low) in the COIL database. The secsmb is of Technology, Cambridge, USA, 1997.

type recognition. The type vector components are, Spect [1g] 0. Chapelle P. Haffner and V. Vapnik, “Support weanachines for
ratio and solidity of the foreground (vehicle) blobhe data histogram-based image classification,” IEEE Tratieacon Neural
are from real road-side cameras, but the imagstyisihot as newworks, Vol. 10, No. 5, pp. 1055-1064, 1999.

good as COIL,S, as they are all outside Scenesegamges [19] V. Blanz, B. Scholkopf, H. Bulthoff, C. Burges, Wapnik and T.

. . . Vetter, “Comparison of view-based object recognitalgorithms using
are blurred, because of the camera vibration (gtremd). realistic 3D models,” In Artificial Neural Networks ICANN'96, pp.

Moreover, the color of some vehicles appears talmnged 251-256, Berlin, Springer Lecture notes in CompuBeience, Vol.
due to very strong sunlight and specular surfadkeatéoon. 1112, 1996.
Despite these challenging conditions, the averagee t [20] B. Scholkopf, C. Burges and V. Vapnik, “Extractisgpport data for a
sensitivity of OVO and OVA are 0.759, 0.687, regjvety. given task” In U. M. Fayyad and R. Uthurusamy,t@i In the
o Proceedings of the First International Conference Knowledge
The average type specificity of OVO and OVA are80.8 Discovering & data Mining, AAAI Press, Menlo PafkA, pp. 252-257,
0.858, respectively. The average colour sensitivityd 1995.
specificity of OVA are 0.956 and 0.971, respecivel [21] F. Melgani, L. Bruzzone, “Classification of hypeesgral remote sensing
images with support vector machines,” IEEE Trarisaain Geoscience
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