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Abstract— The Support Vector Machine (SVM) provides a 
robust, accurate and effective technique for pattern recognition 
and classification. Although the SVM is essentially a binary 
classifier, it can be adopted to handle multi-class classification 
tasks. The conventional way to extent the SVM to multi-class 
scenarios is to decompose an m-class problem into a series of two-
class problems, for which either the one-vs-one (OVO) or one-vs-
all (OVA) approaches are used. In this paper, a practical and 
systematic approach using a kernelised SVM is proposed and  
developed such that it can be implemented in embedded 
hardware within a road-side camera. The foreground 
segmentation of the vehicle is obtained using a Gaussian mixture 
model background subtraction algorithm. The feature vector 
describing the foreground (vehicle) silhouette encodes size, aspect 
ratio, width, solidity in order to classify vehicle type (car, van, 
HGV), In addition 3D colour histograms are used to generate a 
feature vector encoding vehicle color. The good recognition rates 
achieved in the our experiments indicate that our approach is 
well suited for pragmatic embedded vehicle classification 
applications. 
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I.  INTRODUCTION 

In this paper, we present a pragmatic road vehicle 
classification system, which automatically determines both 
vehicle type (car, van , HGV) and the vehicle color from the 
video stream provided by a road-side camera. An important 
aspect of our work has been to develop a system that is simple 
enough, in terms of feature vectors and classifiers, to be 
implemented on limited hardware resources embedded within 
the camera itself. This provides the opportunity to develop 
intelligent stand-alone surveillance systems for crime detection, 
security and road charging schemes. Central to our system are a 
set of kernelised support vector machine classifiers operating 
on feature vectors encoding the size, shape and color properties 
of the foreground blob corresponding to the segmented vehicle. 

The support vector algorithm is a nonlinear generalization 
of the generalized portrait algorithm developed in Russia in the 
sixties [1][2]. However, a similar approach using linear instead 
of quadratic programming was taken at the same time in the 
US, mainly by Mangasarian [3][4][5]. As such, it is firmly 
grounded in the framework of statistical learning theory, which 
has been developed over the last three decades by Vapnik 
himself [6][7][8]. In its present form, the support vector 
machine (SVM) was largely developed at AT&T Bell 

Laboratories by Vapnik and co-workers. SVM have been 
recently proposed as a very effective method for general 
purpose classification and pattern recognition [8]. Intuitively, 
given a set of points which belong to either of two classes, a 
SVM finds the hyperplane leaving the largest possible fraction 
of points of the same class on the same side, while maximizing 
the distance of either class from the hyperplane. According to 
[7] [9], this hyperplane minimizes the risk of misclassifying 
examples of the test set. 

Prior related work includes that of Baek et al. [10], who 
presented a vehicle color classification based on the SVM. The 
implementation results showed 94.92 of success rate for 500 
outdoor vehicle with 5 colors. Ambardekar et al. [11] used 
optical flow and knowledge of camera parameters to detect the 
pose of a vehicle in the 3D world. This information is used in a 
model-based vehicle detection and classification technique 
employed by their traffic surveillance application. Ma et al. 
[12] proposed an approach to vehicle classification under a 
mid-field surveillance framework. They discriminate feature 
based on edge points and modified SIFT descriptors. 
Eigenvehicle and PCA-SVM were proposed and implemented 
to classify vehicle into trucks, passenger cars, van and pick-ups 
in paper [13] 

The paper is organised as follows:  In Section 2, we 
overview the basic theory of the two class SVM. Multi-class 
SVM classifiers are introduced in Section 3. Colour and shape 
classification algorithms are described in Sections 4 and 5 
respectively Section 6 gives conclusions and further discussion. 

II. TWO CLASS SVM: THEORETICAL OVERVIEW 

In this section, we give a very brief review of the SVM and 
refer the reader to [8] [9] for further details. We assume that we 
are given a set S which has N training samples of points 

m
ix R∈ with i=1,2,…, N. Each point ix  belong to either of two 

classes and thus is given a label { }1,1−∈iy . The goal is to 

establish the equation of a hyperplane that divides S leaving all 
the points of the same class on the same side while maximizing 
the distance between the two classes and the hyperplane [12]. 

A hyperplane in the feature space can be described as the 
equation 

0, =+ bxw                                          (1) 



where mw R∈ and b is a scalar. When the training samples are 
linearly separable, SVM yields the optimal hyperplane that 
separates two classes with no training errors, and maximises 
the minimum distance from the training samples to the 
hyperplane. There is some redundancy in Eq. (1), and without 
loss of generality it is appropriate to consider a canonical 
hyperplane [7], where the parameters w, b are constrained by 

1,min =+ bxw ii
                                (2) 

This incisive constraint on the parameterisation is 
preferable to alternatives in simplifying the formulation of the 
problem. It states that the norm of the weight vector should be 
equal to the inverse of the distance of nearest point in the data 
set to the hyperplane. 

A separating hyperplane in the canonical form must satisfy 
the following constraints: 

[ ] 1, ≥+ bxwy ii
, Ni ,,2,1 L=                  (3)  

The optimal hyperplane is given by maximizing the margin ρ , 
subject to the constraints of Eq. (3). The margin is given by: 
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Since 2
w  is convex, minimizing it under linear constraints 

(3) can be achieved with Lagrange multipliers. If we denote by 
( )Nαααα ,,, 21 L=  the N non negative Lagrange multipliers 

associates with constraints (3), the solution to the optimisation 
problem of Eq.(4) under the constraint Eq.(3) is given by the 
saddle point of the Lagrange function (lagrangian) 
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Eq. (5) to be transform to its dual problem, which is easier to 
solve. The dual problem is given, 
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Subject to, 
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This can be achieved by the use of standard quadratic 
programming method [15]. Once the vector 

( )**
2

*
1

* ,,, Nαααα L=  solution of the maximization problem 

(6) has been found, the optimal separating hyperplane is given 
by, 
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where rx  and sx  are any support vector from each class 

satisfying, 0, >sr αα  and 1−=ry , 1=sy .  

The hard classifier is then 

( ) ( )** , bxwsignxf +=                            (9) 

So far the discussion has been restricted to the case where 
the training data is linearly separable. However, in general this 
will not be the case. When the data is not linearly separable, 
there are two approaches to generalising the problem, which 
are dependent upon prior knowledge of the problem and an 
estimate of the noise on the data. In the case where it is 
expected (or possible even known) that a hyperplane can 
correctly separated the data, a methods of introducing an 
additional cost function associated with misclassification is 
appropriate.  More generally, slack variable 

( )Nξξξξ ,,, 21 L= , with 0≥iξ  was introduced in [8], such 

that 

[ ] iii bxwy ξ−≥+ 1, , Ni ,,2,1 L=                  (10) 

to allow the possibility of examples that violate (3). The 
iξ  are 

a measure of the misclassification errors. The generalised 
optimal separating hyperplane is determined by the vector w  
that minimise the function 
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purpose of the first term is minimized to control the learning 
capacity as in the separable case; the second term is to control 
the number of misclassified points. The parameter C is chosen 
by the user, a larger C corresponding to assigning a higher 
penalty to errors. 

The only difference is that iα  have upper bound C here. 

SVM training requires to fix C, the penalty term for 
misclassifications. So C must be chosen to reflect the 
knowledge of the noise on the data. 

For the applications where linear SVM does not produce 
satisfactory performance, nonlinear SVM is suggested. The 
basic idea is to map x by nonlinearly mapping )(xφ  to a much 
higher dimensional feature space, and by working with linear 
classification in that space in which the optimal hyperplane is 
found. The nonlinear mapping can be implicitly defined by 
introducing the so called kernel function ( )ji xxK ,  which 

computes the inner product of vectors ( )ixφ  and ( )jxφ . If we 

have ( ) ( ) ( )jiji xxxxK φφ ⋅=, , then only K is needed in the 

training algorithm and the mapping φ  is never explicitly used. 

From Mercer’s theory [16] [17], we know that given a 
symmetric positive kernel ( )yxK , , exists a mapping φ  such 

that ( ) ( ) ( )yxyxK φφ=, , as long as satisfies Mercer’s 
condition. 

Under the feature mapping, the solution of a SVM has the 
form: 
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More convenient formula to determine the sign is 
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III.  THE MULTI-CLASS SVM CLASSIFIER 

The solution of binary classification problems using SVMs 
is well developed. Multi-class problems (such as object 
recognition and image classification [18]) have typically been 
solved by combining independently produced binary 
classifiers.  In the one-vs-all (OVA, or one-vs-rest) method, 
one constructs k classifiers, one for each class. The mth 
classifier constructs a hyperplane between class m and the k-1 
other classes. If say the classes of interest in an image include 
car, HGV and van, classification would be effected by 
classifying car against non-car (i.e. HGV and van) or HGV 
against non-HGV (i.e. car and van). This method has been used 
widely in the support vector literature to solve multi-class 
pattern recognition problems [19][20][21]. Alternatively, one-
vs-one (OVO, or all-vs-all) approach involves constructing a 
machine for each pair of classes resulting in ( ) 21−kk  

machines. For each distinct pairs 
1m  and 

2m  , we run the 
learning algorithm on a binary problem in which examples 
labelled y=

1m  are considered positive, and those labelled 

y= 2m  are negative. All other examples are simply ignored. 
When applied to a test point, each classification gives one vote 
to the winning class and the point is labelled with the class 
having most votes. This approach can be further modified to 
give weighting to the voting process. Rifkin and Klautau [22] 
gave an extensive theoretical-based analysis, comparison about 
multiple classifications, such as OVA, OVO, RLSC 
(regularized least squares classification), COM (complete code) 
and ECOC (error correcting output coding). They indicated that 
OVA scheme is extremely powerful, producing results are 
often at least as accurate as other approaches. Anthony et al. 
[23] gave the similar conclusion that is the resulting 
classification accuracy of OVA is not significantly different 
from OVO approach. However, some researchers have 
different opinion. They reported that OVO scheme has a simple 
conceptual justification, and can be implemented to train faster 
and better performance than the OVA scheme although OVO 
are training ( )2kO  classifiers rather than ( )kO  for OVA scheme 
(the reason is the individual classifiers are much smaller, and 
given the time required to train on the point is generally 
superlinear), and the OVO scheme offers better performance 
that the OVA scheme [24][25][26]. 

IV.  COLOUR CLASSIFICATION 

Four different colour (green, red, blue, yellow) objects 
images were selected from COIL (Columbia Object Image 
Library) database [14] to test our colour classification 
algorithm. The COIL images are colour images (24 bits for 
each of the RGB channels) of 128x128 pixels. The images 
consist of 7200images of 100 objects (72 views for each of the 
objects). The images were downloaded via anonymous ftp from 
the site www.cs.columbia.edu. As explained in detail in [27], 
the objects are positioned in the center of a turntable and 
observed from a fixed viewpoint. Figure 1 shows a selection of 
the object samples in the database. 

  

  
Figure 1. Sample images in the COIL database. 

Colour histogram technique is a vey simple and low-level 
method. Since we are dealing with discretely sampled data 
from colour images, we use discrete densities stored as m-bin 
histograms. In a discrete space, xi , i = 1, 2, · · · , n are the 
pixel locations of the model. A function { }mRb ,,2,1: 2

L→  

associates to the pixel at location xi the index ( )ixb  of the 

histogram bin corresponding to the value of that pixel. Hence 
a normalized histogram of the region of interest can be formed 
(using q as an example) 
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where δ  is the Kronecker delta function. 

The input video in our system is in YCbCr colour space. Y 
is the luminance component and Cb and Cr are the blue-
difference and red-difference chroma components. The YCbCr 
colour space was developed as part of ITU-R BT.601 during 
the development of a word-wide digital component video 
standard. If all possible colours in YCbCr space in a 24-bit 
image are quantised, there are 2563 bins. Such a histogram 
would be sparsely populated. Very fine quantization of the 
colour space is probably unjustified for images in which the 
illumination may be variable, and there is additional noise on 
the colour video. 16 bins histogram for each colour of YCbCr 
is reasonable, but it still needs huge memory for hardware 
implementation. Therefore, we use a much coarser 
quantization of the colour space, 8-bin colour histogram. Each 
COIL image is transformed into YCbCr space and a 
normalized vector (the sum of the vector =1) of 83=512 
components is obtained. Figure 2 shows an example of 



normalized 8-bin colour histogram SVM vector of the red 
object. If we increase the number of bins, the computation time 
will dramatically increase. 

 
Figure 2. The 8-bin 3D colour histogram SVM vector of the red object. 

We choose γ =1, there are only parameter C need to be 

determined while use the radial basis function (RBF) kernel, 
and two parameters C and d for polynomial kernel. It is not 
know beforehand which C is the best for our problem. In 
order to obtain a good C so that the classifier can accurately 
predict unknown data, a “grid-search” on C and d (for 
example   C = 2−5,2−3,L,215 , d=1,2,3) on a half-training/half-
testing methodology was used. The way is to separate training 
data into two parts, one is considered unknown in training the 
classifier, the other was used to predict accuracy that reflect 
the performance on classifying unknown data. The reason 
why we prefer the grid-search is that the method can avoid 
doing an exhaustive parameters search by approximations or 
heuristics, and it can be easily parallelized because each 
parameter is independent. 

  

  
Figure 3. Images with Gaussian white noises mean 0 and variances are 0.05, 

0.1, 0.2, 0.5, respectively (order from left to right). 

For colour classification experiments, there are 216 blue 
object images, 288 red, green and yellow object images. Each 
of them randomly segregated into two sets. Each set include 
half samples was used separately as a training set and testing 
set. In order to test the robustness of the algorithm, we add 
Gaussian white noises with mean 0 and variances are 0.05, 0.1, 
0.2, 0.5, respectively. The intensity of the image is normalized 
ranging from 0 to 1. Figure 3 shows some samples of noised 
image. Even images with noises variance=0.2, sensitivity and 
specificity of each colour are still 1.0. That means the method 
can get 100% correct results. For the image with variance=0.5, 
the mean of sensitivity=0.999, the mean of specificity=0.998. 

Figure 4 shows our own real data, where three different 
vehicle types and colors are illustrated  (black car, white HGV 
and red van). The data was collected from real time video. 
The colour is not as good as in the COIL database, because 
they are from an outside scene. Some parts of the vehicle 
which specularly reflect the ambient light  appear changed in 
color. Table 1 gives experiment results with the associated 
confusion matrix given in Table 2. The results were obtained 
using OVA with  a polynomial kernel, and parameter settings 
C=1000 and d=2. From the confusion matrix, we know that, 
from 51 black vehicles, the system predicts 50 as black and 
only 1 as white. For 110 white vehicle, the system predict 103 
as white and 7 as black. The classifier has 100% recognition 
rate for the red vehicle. 

   
Figure 4. Three different vehicle types and colors (black car, white 

HGV and red van) 

TABLE I.  COLOUR CLASSIFICATION RESULTS USING REAL DATA 

Colour Number of 
vehicle Sensitivity Specificity 

Black 101 0.882 0.891 
White 220 0.916 0.832 
Red 64 0.987 0.987 

TABLE II.  CONFUSION MATRIX 

 Black White Red 
Black 50 1 0 
White 7 103 0 
Red 0 0 32 

 

V. SHAPE CLASSIFICATION 

Our system not only classifies different vehicle colors, but 
also different vehicle types, such as car, van and HGV. The 
foreground blob containing the vehicle is obtained using a 
background subtraction method based on a Gaussian mixture 
model [28]. We extract a simple silhouette shape vector, so 
that we can implement our system easily on embedded 
hardware. The feature vector components include size, aspect 
ratio, width and solidity of the vehicle foreground blob. The 
size and width is the value after normalization using the size of 
the license plate. We assume that the size of the license plate is 
1 unit. The accuracy of both OVA and OVO is given in Table 
3 and associated confusion matrices are given Table 4. From 
these tables, we know that OVO and OVA do not have 
significant differences in performance, but OVO performance 
is slight better than that of OVA on our data, especially for van 
classification. For our real time hardware system 
implementation, we chose OVA, to save computation 
complexity and running time. 

 



TABLE III.  THE ACCURACY OF OVA AND OVO 

OVO OVA Method 
Sensitivity Specificity Sensitivity Specificity 

Car 0.852 0.938 
Van 0.655 0.841 
HGV 0.735 0.882 

TABLE IV.  THE CONFUSION MATRICES OF OVA AND OVO 

Car Van HGV  
OVA OVO OVA OVO OVA OVO 

Car 91 92 10 9 0 0 
Van 9 12 56 67 27 13 
HGV 3 4 24 21 34 36 

 

VI. CONCLUSIONS AND DISCUSSION 

We have presented a method to perform automatic vehicle 
recognition and classification. The moving vehicle blob was 
segmented from static background using a Gaussian mixture 
model background subtraction algorithm. It is a two-step 
algorithm. The first step is colour recognition. In order to save 
memory space and computation complexity for real time 
hardware system implementation, the system uses a 8-bin 
colour (YCbCr space) histogram as SVM vector. The system 
obtained 100% correct recognition for common colors (green, 
red, blue, yellow) in the COIL database. The second step is 
type recognition. The type vector components are size, aspect 
ratio and solidity of the foreground (vehicle) blob. The data 
are from real road-side cameras, but the image quality is not as 
good as COIL’s, as they are all outside scenes. Some images 
are blurred, because of the camera vibration (strong wind). 
Moreover, the color of some vehicles appears to be changed 
due to very strong sunlight and specular surface reflection.  
Despite these challenging conditions, the average type 
sensitivity of OVO and OVA are 0.759, 0.687, respectively. 
The average type specificity of OVO and OVA are 0.887, 
0.858, respectively. The average colour sensitivity and 
specificity of OVA are 0.956 and 0.971, respectively. 

ACKNOWLEDGMENT 

This paper was supported by the UK Technology Strategy 
Board project, CLASSAC, and Cybula Ltd. The authors also 
thank Columbia Object Image Library for their COIL data.  

REFERENCES 
[1] V. Vapnik and A. Lerner, “Pattern recognition using generalized portrait 

method,” Automation and Remote Control, 24, pp. 774-780, 1963. 

[2] V. Vapnik and A. Chervonenkis, “A note on one class of perceptrons,” 
Automation and Remote Control, 25, 1964. 

[3] O.L. Mangasarian, “Linear and nonlinear separation of patterns by linear 
programming,” Operations Research, 13:pp.  444-452, 1965. 

[4] O.L. Mangasarian, “Muti-surface method of pattern separation,” IEEE 
Transactions on Information Theory IT-14, pp. 801-807, 1968. 

[5] O.L. Mangasarian, “Nonlinear Programming,” McGraw-Hill, New York, 
1969. 

[6] V.Vapnik, “Estimation of Dependences Based on Empirical Data,” 
Springer, Berlin. 1982. 

[7] V. Vapnik, “The Nature of Statistical Learning Theory,” Springer, New 
York. 1995. 

[8] C. Cortes and V. Vapnik, “Support vector network,” Machine Learning, 
vol. 20, pp. 1-25, 1995. 

[9] V. Vapnik, “An overview of statistical learning theory,” IEEE 
Transaction on neural networks, vol. 10, No. 5, pp. 988-999, 1999. 

[10] N. Baek, S.-M. Park, K.-J. Kim, S.-B. Park, “Vehicle Color 
Classification Based on the Support Vector Machine Method”, ICIC 
2007, CCIS 2, pp. 1133–1139, 2007. 

[11] A. Ambardekar, M. Nicolescu, G. Bebis, “Efficient Vehicle Tracking 
and Classification for an Automated Traffic Surveillance System,” 
Signal and Image Processing, August 2008. 

[12] Ma, W. E. L. Grimson, “Edge-based rich representation for vehicle 
classification”, International Conference on Computer Vision, 2006, pp. 
1185-1192. 

[13] C. Zhang, X. Chen, W.-B. Chen, “A PCA-based Vehicle Classification 
Framework”, International Conference on Data Engineering Workshops 
(ICDEW'06), 2006. 

[14] M. Pontil and A. Verri, “Support vector machines for 3D object 
recognition,” IEEE Transaction on Pattern Analysis and Machine 
Intelligence, Vol. 20, No. 6, pp. 637-646, 1998. 

[15] R.J. Vanderbei, “LOQO: An interior point code for quadratic 
programming,” Optimization Method and Software, vol.12, pp. 451-484, 
1999. 

[16] E. Osuna, R. Freund and F. Girosi, “Support Vector Machine: Training 
and Applications. Technical Report: AIM-1602, Massachusetts Institute 
of Technology, Cambridge, USA, 1997. 

[17] F. Girosi, “An equivalence between sparse approximation and support 
vector machines,” Technical Report: AIM-1606. Massachusetts Institute 
of Technology, Cambridge, USA, 1997. 

[18] O. Chapelle P. Haffner and V. Vapnik, “Support vector machines for 
histogram-based image classification,” IEEE Transaction on Neural 
newworks, Vol. 10, No. 5, pp. 1055-1064, 1999. 

[19] V. Blanz, B. Scholkopf, H. Bulthoff, C. Burges, V. Vapnik and T. 
Vetter, “Comparison of view-based object recognition algorithms using 
realistic 3D models,” In Artificial Neural Networks – ICANN’96, pp. 
251-256, Berlin, Springer Lecture notes in Computer Science, Vol. 
1112, 1996. 

[20] B. Scholkopf, C. Burges and V. Vapnik, “Extracting support data for a 
given task,” In U. M. Fayyad and R. Uthurusamy, editors, In the 
Proceedings of the First International Conference on Knowledge 
Discovering & data Mining, AAAI Press, Menlo Park, CA, pp. 252-257, 
1995. 

[21] F. Melgani, L. Bruzzone, “Classification of hyperspectral remote sensing 
images with support vector machines,” IEEE Transaction on Geoscience 
and Remote Sensing, 42, pp. 1778-1790, 2004. 

[22] R. Rifkin and A. Klautau, “In defense of one-vs-all classification,” 
Journal of Machine Learning Research, 5, pp. 101-141, 2004. 

[23] G. Anthony, H. Gregg and M. Tshilidzi, “Image classification using 
SVMs: one-against-one vs one-against-all,” In Proceedings of the 28th 
Asian Conference on Remote Sensing. 2007. 

[24] Allwein E.L., Schapire R.E. and Singer Y. Reducing multiclass to 
binary: A unifying approach for margin classifiers. Journal of Machine 
Learning Research, vol.1, pp. 113-141, 2000. 

[25] J. Furnkranz, “Round robin classification,” Journal of Machine Learning 
Research, vol. 2 pp. 721-747, 2002. 

[26] C. Hsu and C. Lin, “A comparison of methods for multi-class support 
vector machines,” IEEE Transaction on Neural Networks, 13: 415-425, 
2002. 

[27] H. Murase and S.K. Nayar, “Visual learning and recognition of 3-D 
object from appearance,” International Jornal of Computer Vision, Vol. 
14, pp. 5-24, 1995. 

[28] Z. Zivkovic, F. Heijden, “Efficient adaptive density estimation per 
image pixel for the task of background subtraction,” Pattern Recognition 
Letters. 27(7), pp. 773-780, 2006. 

 

 


