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Abstract

A method of visual metrology from uncalibrated cameras
is proposed in this paper, whereby a camera, which cap-
tures two images separated by a (near) pure translation,
becomes a height measurement device. A novel projective
construction allows accurate affine height measurements to
be made relative to a reference plane, given that the refer-
ence plane planar homography between the two views can
be accurately recovered. To this end a planar homography
estimation method is presented, which is highly accurate
and robust and based on a novel reciprocal-polar (RP) im-
age rectification. The absolute height of any pixel or feature
above the reference plane can be obtained from this affine
height once the camera’s distance to the reference plane, or
the height of a second measurement in the image is speci-
fied. Results from our data show a mean absolute error of
6.9mm and with two outliers removed this falls to 1.5mm.

1. Introduction

There are several different methods to implement Eu-
clidean metrology in the literature. For example, 3D world
structure can be computed from uncalibrated views of a
scene given sufficient correspondences in general position
and this has already been used to answer specific, metric
questions about the scene. The approach by Tomasi and
Kanade [5] is known as the factorization method; Triggs
[6] extends the factorization method to the projective cam-
era model by using epipolar constraints to calculate depth
scale factors; Heyden et al. [3] upgrades the affine approx-
imations to projective results by iterative optimization.Cri-
minisi et al. [1] proposed methods to make measurements
of world planes from their (single) perspective images. Reid
and Zisserman [4] give a method for locating 3D position of
a soccer ball from monocular image sequences.

Our goal is to be able to measure height from two uncal-
ibrated images separated by a (near) pure translation. The
basic idea is to use the plane-and-parallax cue computed

via a projective cross-ratio construct in conjunction witha
planar homography relation which encodes the motion of a
reference plane. Seven salient aspects of this method are as
follows: (i) A new projective construction to compute affine
height via the plane-and-parallax cue. (ii) A new reciprocal-
polar (RP) image rectification renders all coplanar, co-radial
image motion to a pure shift, which allows correlation based
image motion recovery even over large perspective image
distortions induced by large camera motions. (iii) Since the
image motion recovery is correlation based, no corner fea-
ture correspondences are required on the reference plane,
just local intensity variation. (iv) Again, since the method
is correlation based, all coplanar pixels with local intensity
variation contribute to the homography estimation, not just
a potentially low density of corner feature matches. (v) We
show that the magnitude of image motion in the1

r
dimen-

sion of the rectified image pair follows a sinusoidal form
along theθ dimension over a maximum ofπ radians, for the
four DOF class of planar homographies called elations. (vi)
RANSAC/LS estimation of the phase of the sinusoid yields
a highly accurate vanishing line orientation of the reference
plane (and simultaneously a segmentation of the reference
plane) and this, along with the focus of expansion (FOE),
allows an accurate reference plane homography relation to
be obtained. (vii) The limiting aspect of the method is that
it is only applicable to (near) pure translation. However, in
many application, such a mobile robot navigation, delibera-
tive (near) translation motions can be executed to probe the
environment in terms of heights, and measured heights of
near zero are obstacle free navigable zones. Other applica-
tions include measurement of interior scenes for interior de-
sign purposes, and outdoor architectural measurements.

2. Planar Homography Recovery

Given two views of a plane separated by a pure trans-
lation, there are two relations between the two views:
first, through epipolar geometry defined by F and second,
through the homography induced by the plane. We note
that the FOE, v, is the epipolee and alsoe′ so that the fun-



damental matrix is given by,F = [e′]× = [e]× = [v]×,
where [•]× is a skew-symmetric matrix correspond-
ing to the vector. The relationship between the planar ho-
mography (H) and the epipolar geometry (expressed by the
dual epipole or FOE,v = (xv, yv, 1)T ) is

H = I− kvl
T . (1)

Wherel is the vanishing line(av, bv, 1)T corresponding
to the plane andk is a constant scalar. In order to recover the
homography based on the form in equation 1, we check for
(near) pure translation between two views, by intersecting
all lines defined by all corner correspondences from the im-
age pair (not necessarily reference plane corners). If most
lie in a small area (for example, 90% of intersection should
lie within a 50 pixels radius), then pure translation is as-
sumed and the FOE is computed as follows:

(1). Extract interest point correspondences:Compute
interest points in each images by using Harris detec-
tor, KLT algorithm or SUSAN method and compute
a set of interest point matches based on proxim-
ity and similarity of their intensity neighbourhood.

(2). RANSAC robust estimation: Repeat the follow-
ing process for m samples, where m is determined
adaptively by using binning technique[8]:

(a). Select a random sample of at least 2 corre-
spondences and compute the FOE by using the simul-
taneous equations(xi × x

′

i) • v = 0, wherexi ←→
x
′

i (i = 1, 2, · · · ,n) is any pair of matching points in
two images.

(b). Calculate the epipolar distancefm(v) for
each putative correspondence.fm(v) = λi
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(c). Compute the number of inliers consistent
with v by the number of correspondences for which
fm(v) <threshold. Choose the FOE with the largest
number of inliers.

(3).Optimal estimation: re-estimate the FOE from all cor-
respondences classified as inliers, by minimizing the
objective functionfm(v). Repeat steps (2)-(3) until the
number of correspondences are stable.

Once the FOE has been computed, we shift image coor-
dinates using transformationTc, so that each image is cen-
tred on the FOE and the homography expressing the FOE
centered image motion is:

H
′ = I− kv′

l
′T =





1 0 0
0 1 0
s µ q



 . (2)

whereq = 1 − kvT
l , s = −kav andµ = −kbv. If the

translation direction is parallel to the ground, such as would

be obtained for mobile robot motion,q = 1, since the FOE
lies on the vanishing line for this special motion. Otherwise,

the FOE is at a distanced =
∣
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the vanishing line. If we now definer, θ as the polar co-
ordinates of a pixel in the FOE centered frame and we let
ρ = 1

r
, some algebraic manipulation of the homogenous co-

ordinate relationλx
′

2 = H
′
x
′

1 yields the key equation:

f(θ) = ρ2 − qρ1 = s
x′

1

r1
+ µ

y′

1

r1
= ksµ sin(θ + α). (3)

where ksµ =
√

s2 + µ2, sin α = s
ksµ

, cosα =
µ

ksµ
, tan α = av

bv
.. Eq.(3) indicates that the magni-

tude of radial image motion in(ρ, θ) or RP image space
is sinusoidal with respect to that motion’s orientation, un-
der the FOE centered homography. The relation indi-
cates that we need to find three constants(q, ksµ, α) in
order to recover the homography and that the computa-
tion should be implemented in RP image space, in order
to use correlation irrespective of the perspective dis-
tortion which occurs over large translations. Here, we
will assume thatq = 1, i.e the camera motion is par-
allel to the reference plane and the homography is the
special case of a 4 DOF elation (it is, however, straight-
forward to estimateq in the case of more general 5 DOF
homologies). For each of the original image pair, an RP im-
age is generated, an example of a single image is shown
in fig 1. Then, for each pixel in regular (Cartesian) im-
age space, we find its motion by correlation between the
two RP image along theρ direction (i.e. fixedθ). The po-
sition of the maximum value of the correlation is re-
lated as a value offi(θ). For different values ofθ, we
know that a point’s motion traces out a sinusoid, irrespec-
tive of that point’s distance from the FOE (r or ρ value).
Thus we need to find the phase and amplitude of that sinu-
soid and this is done by RANSAC [2] followed by cycles
of least squares on the inliers until the inliers are sta-
ble.

Suppose that we have two value offi,j measured at two
angles,θi,j , then

tan α =
fj sin θi − fi sin θj

fi cos θj − fj cos θi

. (4)

When we have the phase angle,α, which corresponds to the
orientation of the vanishing line, we can computeksµ from
Eq.(3). Thus a pair of(θ, f(θ)) measurements gives us a pu-
tative sinusoid in the RANSAC process in which the num-
ber of inliers is counted. Once the RANSAC process has
terminated, we examine the dominant (high consensus) si-
nusoids to find a phase (vanishing line orientation), which
is close to zero. Thus, with some weak assumptions regard-
ing camera orientation with respect to the reference plane,
we can reliably detect and segment pixels which belong to



the reference plane. Finally, we refine the sinusoid param-
eters from the RANSAC process and hence the homogra-
phyH

′, using standard LS on the inliers. Using the model
AZ = b, where

A =







cos θ1 sin θ1

...
...

cos θn sin θn






, Z =

[

s
µ

]

, b =
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allows us to compute the sinusoid related parame-
ters (s, µ) and hence homographyH′ directly using a
standard pseudo-inverse:Z = (AT

A)−1
A

T
b. The ho-

mography expressed in the original (non FOE centered)
frame can be explicitly expressed asH = T

−1
c H

′
Tc.

3. Affine Height Measurements

The approach described above allows pixels to be classi-
fied as either belonging to the reference plane or not. Those
that do are within a threshold of a recovered sinusoidal
model. For those non ground plane regions, we would like
to know their height above the reference plane. Our aim is
to compute the relative height,hr, of corner pointA in fig.
3, as a fraction of the height,hc, of the camera optical cen-
treO above the reference (ground) plane, when the camera
undergoes pure translationt and the motion direction is par-
allel to the reference plane. PointA is the actual position of
the corner point relative to the camera before the transla-
tion and theC is the position of the corner after the trans-
lation. PointsA′ andC

′ are the projections of these actual
corner positions onto the ground plane. Pointsa andc are
the image positions of the corner at positionsA andC re-
spectively, andb is the predicted image position of the cor-
ner point by using H matrix of ground plane, if the corner
point were to lie in the ground plane. Image pointb is com-
puted asb = Ha, using the recovered homography.

Figure 3 shows that pointa lies below the vanishing line.
BecauseAC//A′

C
′, using similar triangles, and denoting

the distance between pointx andy asd(x, y), we can get

hr =
h

hc

= 1− d(O,C)

d(O,C′)
= 1− d(A,C)

d(A′,C′)
. (5)

For pure translation,d(A,C) = d(A′,B′), so that

hr = 1− d(A′,B′)

d(A′,C′)
. (6)

Now, the four image points(a,b, c,v), where v is the
FOE, and their corresponding four ground plane points
(A′,B′,C′,∞) are collinear. The cross ratio for this set of
points remains invariant under perspective projection trans-
form and so we can get the height of the corner point rela-
tive to the height of the optical centre is

hr = 1− d(a,b)d(c,v)

d(a, c)d(b,v)
. (7)

(a) (b)

Figure 1. (a) Original image, I(x, y) (b) corre-
sponding RP image, I(ρ, θ)

If the point a lies above the vanishing line we have

hr = 1 +
d(a,b)d(c,v)

d(a, c)d(b,v)
. (8)

If pointsa coincide lie on the vanishing line, thenhr = 1.
Note thathr can be interpreted as the height of pointA

in units of heighthc. The absolute distance can be obtained
from this distance ratio once the camera’s heighthc is spec-
ified. However, it is usually more practice to determine the
distance via a second measurement in the image, that of a
known reference length. Note that this approach only needs
the H-matrix of ground plane, and the tracked image corre-
spondencesa andc of the feature to determine the height
above the ground plane. The main advantageous compare
with other method (such as the method of Criminisi 2000[1]
and Wilczkowiak 2001[7] is that this method without need
camera calibration and any geometry constraints of a scene,
and it can be used to compute the height from any isolated
point to the reference plane.

4. Experimental results

A large amount of synthetic data and real images were
selected and intensive experimental work was carried out in
order to test the robustness and the accuracy of the method.
Here we present results that validate the method as a viable
approach. Fig. 1 (a) shows a sample image and its RP rec-
tification is shown in fig. 1 (b). Fig. 2 (a) shows the RP im-
age motion of all image points, and clearly shows the sinu-
soidal form of the reference plane pixels as well as partial
sinusoids of other planes in the scene. Fig. 2 (b) shows the
reference plane image motion extracted by RANSAC. The
third dimension in the plot clearly illustrates that the sinu-
soidal form is close to being constant irrespective of the ra-
dial distance of an image point from the FOE.

In the two visual metrology experiments (one indoor,
one outdoor) presented here,q = 1 was assumed, since
two VGA frames (640x480 resolution) were captured with
the translation direction parallel to the ground plane, andin
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Figure 2. (a) all image motion in RP space
and (b) extracted reference plane motion in
RP space

both cases the height A-B was used as the reference height.
For the indoor experiment, we computedµ = −5.6e − 4,
tanα = 0, and for the outdoor experiment we computed
µ = −2.94e − 4, tanα = 0.027. Results are shown in
table 1, where ‘TM’ are the manual (tape measure) mea-
surements and ‘VM’ are the visual metrology results. We
find a mean absolute error of 6.9mm and mean relative er-
ror of 0.35%. If we remove the two rather inaccurate mea-
surements (a)EF and (a)PQ, the remaining measurements
have a mean absolute error of 1.5mm and a 0.1% mean rel-
ative error.

Table 1. Visual Metrology results in centimetres
Seg. TM VM Seg. TM VM
(a)CD 30.0 29.88 (b)CD 233.1 233.08
(a)EF 227.7 229.36 (b)EF 149.8 149.51
(a)LM 208.4 208.23 (b)GH 258.7 258.55
(a)GH 252.5 252.73 (b)MN 233.1 232.67
(a)NO 121.1 120.94 (b)OP 149.8 149.82
(a)PQ 210.3 214.91 (b)QR none 651.51

5. Conclusions

The main contributions in this work are (in the order
of algorithm execution) (1) Robust FOE estimation, (2) RP
rectification, (3) planar image motion estimation, planar ho-
mography estimation and plane segmentation by robust es-
timation of a sinusoid in RP image motion space, and (4) a
projective construction allowing affine height above a plane
to be measured from an uncalibrated image pair. Intensive
experimental work was carried out in order to test the accu-
racy of the method proposed in this paper. The results show
that our algorithm performs very well to outliers and noise
and provides a practical method of visual metrology.
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Figure 3. Measuring the height of point A.
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Figure 4. (a) Indoor metrology, (b) Outdoor
metrology
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