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Abstract- We show that landmark based localisation
(LBL) and Lowe's model-based localisation (MBL) are com-
plementary in that LBL provides a pose initialisation to
MBL, which is a necessary input to the algorithm, and
MBL can then refine that pose to a give more accurate pose
estimate than LBL alone can provide. For LBL, we extend
Betke and Gurvit's method, such that it can be used with
standard perspective cameras (their original proposal was for
omnidirectional cameras) in order to get a useful initial value
as an input to Lowe's method. Intensive experiments have
been carried out to analyse how camera parameters (intrinsic
and extrinsic) affect the LBL position and orientation errors
in the initial pose estimate. In error propagation experiments,
we show that the position and orientation of a robot are
sensitive to focal length and errors in imaged feature positions
respectively. In the MBL pose refinement phase, we find that
MBL is able to refine the position estimate, but the error in
orientation estimate remains the same.

Index Terms- Mobile robots, localization, visual land-
marks, navigation.

I. INTRODUCTION

Localization has attracted much attention in the Robotics
and Computer Vision communities recently. Se and Lowe
et al. [1][2][3] have proposed a global robot localiza-
tion and map-building method using scale invariant visual
landmarks. They have later refined this method using
distinctive visual features [4]. The museum tour guide robot
RHINO [6][5] utilizes a metric version of the Markov
localization algorithm employing laser sensors with suc-
cess. However, it needs to be supplied with a manually
derived map, and cannot learn maps. Fox et al. [8][7]
proposed the Monte Carlo Localization method based on
CONDENSATION algorithm [9]. Their algorithm relies
on vision-based Bayesian filtering methods using sampling
density to represent multi-modal probability distributions.
Given a visual map of the ceiling obtained by mosaicing,
localization can be achieved using scalar brightness mea-
surement. Betke and Gurvits gave an efficient method for
localizing a mobile robot using landmarks [10] by making
efficient use of the geometry of the problem, especially the
representation of the landmarks using complex numbers.
Their method runs in time linear with respect to the number
of landmarks.

Pioneering work by Lowe [11] and Gennery [12] ad-
dresses the issue of camera pose computation, given a
known (modelled) 3-D object and its corresponding image.

*The authors acknowledge the support of the UK DTI Aeronautics
Research Programme.

It assumes that the imaging process is a projective trans-
formation. The translation and orientation (with respect to
the camera coordinate system) of a local coordinate system
affixed to an imaged rigid object is computed. The recovery
process is based on the application of Newton's method,
which assumes that the function relating image appearance
and object parameters is locally linear. In general the
imaging equations are nonlinear and are locally linearized.
Successful application of Newton's method requires start-
ing with an appropriate initial value for the unknown
parameters and, even in this case, there is still the risk
of convergence to a false local minimum.

Lowe's algorithm [11] is attractive because of its
elegant simplicity and powerful generality. Araujo et
al. [13] proposed a fully projective formulation for Lowe's
tracking algorithm resulting in dramatic improvement in
accuracy with minimal increase in computation cost per
iteration. Lowe's agorithm [11] and it's variants [13] are
often collectively known as model-based pose estimation
techniques, as they rely on 3D model of the viewed
environment. However, their results are dependent on
an accurate initial estimate of the pose, which leads
us to a fundamental question: "How do we find an
appropriate initialisation for pose?". Our method extends
the localization method [10] to a standard perspective
camera to get an initial value for Lowe's method,
and use the fully projective formulation method [13]
(http://www.cs.rochester.edu/u/carceron/publs/matlab
/index.html) to improve on the results. Note that we
do not address the often difficult problem of how the
correspondence between mapped scene points and their
image positions is achieved.
The novel elements of this paper are as follows: (1)

the two methods of landmark-based localisation (LBL) and
model-based localisation (MBL) used together, gives better
localisation system than either method alone. The methods
are complementary in the sense that MBL improves on the
accuracy of the LBL method by refining the pose estimate,
whilst the LBL method provides the necessary initial pose
estimate for MBL, which would otherwise have to provided
manually or from some other non-visual sensory mode,
such as an odometry system, inertial navigation system
or GPS system. (2) We have used a standard perspective
camera instead of the "omnidirectional" camera as used in
the Betke and Gurvit's work [10]. In order to use a standard
camera, we need to project 3D landmarks onto a plane
parallel with the ground plane. These features may be any
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reliably detected visual features such as a corner, line or
blob. (3) We determine how the various camera parameters
influence the accuracy of the pose estimate of the robot.
Based on our experimental results, we can track problems
and adjust parameters related to navigational systems easily
and efficiently since it is difficult to get highly accurate
parameters using a self-calibrated hand-held camera. (4)
Since sensitive parameters have been identified which are
vital to safety analysis of robot sensing systems, we can an-
ticipate and prevent serious consequences from happening
due to these parameters variations.

Briefly, the structure of this paper is as follows: in
the following section, we describe the LBL method of
how to determine camera/robot pose from a minimum of
three viewed landmarks, whose horizontal bearings are
known in a global coordinate frame. In III, we describe
how LBL is used to initialise MBL. This only requires a
simple coordinate transformation to match up the different
reference frames used in the two systems. In the section IV,
we present our experimental results in both simulated and
real environments. A final section presents our conclusions.

II. LBL: EXTENDING BETKE AND GURVIT'S METHOD
TO A STANDARD CAMERA

A. Input Data Organization

In this section we describe the problem of estimating a
robot's position and orientation given a global map of the
environment and the measured horizontal bearings between
landmarks at the robot's viewpoint. We do not solve the
problem of automatically identifying the landmarks and in
our work this is done manually. In a fully automatic system,
there are several possibilities to do this, including viewpoint
invariant feature extraction and graph matching techniques.
Note that Betke and Gurvit's original method [10] was
applied to omnidirectional cameras. Here we adapt the
system to work with a conventional camera structure, since
we then want to use conventional images in a model-based
pose refinement stage.
We designate the world coordinate system using a right

handed system denoted by Xw, Yw and Zw with the origin
at O0, and the plane XwO,Y, representing the floor. We
distinguish it from the camera coordinate system which is
a left handed coordinate system denoted as Xc, Y, and Z,
with the origin at Oc (optical center of the camera). The
robot's orientation angles are described by pitch (rotated
along Xw), roll(rotated along Y½) and yaw( rotated along
Zw) relative to the world coordinate system. To be able to
get an initial value for Lowe's method, we assume that the
retinal plane is parallel to the Zw axis and the horizontal
plane bounded by the u-axis and the camera center Oc
should be parallel to the ground plane XwO,Y, with Z,
piercing through the principal point of the image plane
from the optical center Oc (Fig. 1). In this condition, pitch
and roll angles are equal to zero. Likewise if we project Xc
and Z, axes and the optical center 0° along Zw axis to the
floor, we get X', Yc' and O' respectively since X'I/Xc and
Y"'//Z,. The orientation of the robot in 2D is subtended

by the X' and the Xw axes and is represented by the yaw
angle denoted by the symbol 0.
We represent P,o, ..., PWi, ..., as the 3D landmark

positions in the world coordinate system and PFWO,. Pwi
... their projected points in 2D on the floor. The robot's
position is described by vector p = (Px Py Pz) in the
world coordinate system. Vector p links the origins of both
coordinate systems. p = OwO:= ,w°' + 0'°, If the
position O' is found and since we know the height of the
camera, the position of the robot can then be obtained.

0w

zw yC

yc

Pwi

P'.wi

xw
Fig. 1. Relationship of world coordinate and camera coordinate.

ci, PIwi

°w

Fig. 2. Top view of Fig. 1.

A map of the robot's environment means that the vectors
Pwo, ..., Pwi, ..., in the world coordinate system are
given. We then project these landmarks on the ground
plane XwOww and represent their 2D projections as
PWo ., Pwi,..., pi is the angular separation between
landmarks on the floor. Angular separation is defined to
be the angle between each projected landmark PWi relative
to PW0, which is assumed to be the reference projected
landmark. The reference landmark may be chosen as the
most "reliable" landmark if such reliability information
exists. Note that in Fig. 1, angular separation yoi between
landmarks is computed along the plane w bounded by the
optical center and the u-axis of the image plane. This
horizontal plane w is assumed to be parallel to the ground
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plane. The angular separation yoi on the floor is the same
as the angular separation on the plane w. Thus a calibrated
camera can be used as a 2D protractor for obtaining the
separation angles yoi between landmarks. These angles are
computed by projecting the image points Po, ..., Pi, ..., of
the landmarks onto the plane w. Given the focal length f
of a calibrated camera and the u-coordinates uo, ..., ui, ,

of the projected image points of the landmarks, the angle
between the optical axis and the vector OPi subtended
from the optical centre to each ui can be computed by
the formula ai = arctan(ui/f). We then calculate the
angular separation as oi = ai - ao0. Obviously, ao = ae0
and a' = ai.

Fig.2 shows a top view of Fig. 1 under the world coordi-
nate system. Both Xc and Y,' refers to the projection of the
camera centered coordinate frame and Xw and Yw refers
to the world coordinate frame. vi is the difference vector
between the projected points of reference landmark 0 and
landmarks i. Now the problem of finding the robot's pose
(position and orientation) can be summarized as follows:
Given the external 2D position PO, ,- P,n of n+1
landmarks and their corresponding separation angles Yol,

p n, estimate the position O° and the orientation 0 of
the robot.

B. Algorithm Synopsis
The projected point of each landmark PWi on the floor

can be written as a complex number. For each landmark we
have an expression PWi = lie3ji for i = 1, ..., n. where
Ii is the unknown distance of the robot to the landmark
projection Pwi. The letter j is an imaginary unit where
j = -. We denote the reference projection as Pwo
and compute the angular separation of each projection with
respect to PWO as oi = ai - ao0 for i = 1, ..., n. Divid-
ing the complex number representation of each landmark
projection P1w.P,Pwn by the projection of the reference
landmark Pwo yields a set of equations that includes the
angular separation oi = ai - ao0 for i = 1, ..., n.

P/i = + =i-ej(Pi+0) =_- ji (1)
PIWO 'PIW0 10 - (1)

where vi = PWi-Pwo. After some algebraic operation,
we obtain a set of equations whose unknowns are vectors
PWO, vi and length ratios ii/lo,

1
= ji- 1

(2)
PIWv 0-lvi vi

To remove the dependence on Pwo, we substitute the left-
hand side of Eq.(2) with the expression on the right-hand
side for a different index k. The only unknowns in Eq.(3)
are vector vi and length ratios ii/lo.

Ik 1 ei _1 I*1i _1-CJP _ -i(3)
10 Vk Vk 10 Vi Vi

for i,k 1,...,n and k 7ii

Since the separation angles Yo, -, (On are independent
of the robot's orientation, we can rewrite Eq.(3) using a

different coordinate system. This new camera coordinate
system is parallel to the world coordinate system. Its axes
X, and Y} are parallel to axes Xw and Yw of the world
coordinate frame respectively. Therefore landmarks, P' ,S
are described as vector P'i under this new coordinate
system and Eq.(3) now becomes

Ik 1 jeik 1 _ ii 1 ejfi _lov k1 ci
10 ~k Vk 10 Vj ~

(4)

for i,1,...,n and k 7ii
If we let ri li/lo, bi = byi) = Cc-ipi, ci =

(cxi, cyi) = l/vi, where bxi and cxi are the real coordinate,
byi and cyi are the imaginary coordinate. Thus Eq.(4) can
be transformed into a matrix equation of the form

Ar = c (5)
Where A is a n(n - 1) x n matrix. The Least Squares
solution of Eq.(5) yields r = (A TA)1-X ATc where
(A TA) - AT = A+ is called the pseudo inverse of
matrix A. Since it is difficult to get a real useful value
for r, we will describe an effective method to obtain r and
as a result obtaining the position estimate p of the robot in
the next section.

C. Position Estimation
After initialising the values of vectors v, c and b as

described above, the procedure computes each component
vector s - A Tc as,

-i nbf ci - b E - n(bxicxc + b y

33.

- (bxi ztn1 cxj + byi In I Cyj) (6)
after obtaining the value of s and given the vector b, the
procedure calculates the vector r = 2(A TA)-1 s which
exploits the special form of matrix:

(7)

where D is a diagonal matrix whose ith entry is b7Tbi =
bxi + byi Matrices bbjbx and byby7 are outer products. Thus

r = (ATA)-'ATc = (ATA)-' .2s
= (nD - b,bT - bb[T)-'. s
= K-'s + (K -by)((K -by)TS)W-(K-yD)Tby

Where K = (nD - bxbT).
K-'s = (nD -b,bT)-lS

(nD) s+ I ((nD) - 1 bx) T bx

KX by = (nD)-'by + (nD) -1b((nD) )Tby

(10)
The ith diagonal entry of (nD)-X is 1/(n(bxi + byi)). A
solution to r = (rT, ..., Tn)T can then be used to solve
the projection of the robot's position pi by using Eq.(11)

1
Po,i =

rib -c 11biC
Pi =(Pwo - Po,i) (11)
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Ideally the set of estimates for pi should have the same
value for all Po,i. In reality noise will be present, so we
take the centroid of the set as an estimate of the projection
of the robot's position. p = pI Pi. Once we knew the
position of the robot, its orientation 0 can then be obtained
by 0 = / (Pwo,Xc) -/ (PwO, Xc). If the ith landmark is
very close to the robot's position, the method described
above may yield a negative value ri. But ri should be
always positive. Thus, if ri < 0, then let ri = 0.

III. MBL INITIALISATION USING LBL

Now we describe how LBL is used to initialise MBL.
Since our focus is to determine whether LBL and MBL can
work together (i.e. can LBL give an initialisation within
the convergence region of MBL pose estimation in typical
viewed scenes and can MBL refine this pose estimate - if
not, then we might as well use LBL alone), we assume here
that the correspondence problem between viewed features
and mapped features is solved, accepting that it is necessary
but non-trivial for any LBL system. We now only require a
simple coordinate transformation to match up the different
reference frames used in the two systems.

In order to use the results from landmark based method
as an initial value to Lowe's method, we need to transform
the right handed coordinate system output from this method
to a left handed system as required by the input to fully
projective formulation method. The procedure for obtaining
this transformation matrix is described in four steps (Fig.
3).

(1). Transform the origin of the world coordinate to
viewpoint E(El, E2, E3), denoted by T1.

1 0 0 -E1
O 1 0 -E2

T1=K0 0 1 -E3
0 0 1

(2). Rotate the new X' axis by 900 , denoted by T2.
1 0 0 0

T- 0 0 1 0
0 -1 0 0
O O 0 1

(3). Rotate the new Y' axis by w - 0 , denoted by T3.
cos(( -0) O sin(7-0) 0

T- ~~0 1 0 0T3 -sin(w-0) 0 cos(7- 0) 0
O O 0 1

(4). Finally, reverse the X' axis, denoted by T4.
-1 0 0 0

T4 0 0 1 0
O O O 1,

The transform matrix can be stated as follows:
T =T4T3T2T1 =

( -cosO' sinO' 0 ElcosO' - E2sinO'
0 0 1 -E3

-sinh' -cos0' O ElsinO' + E2cosO'
0 O 0 1

where 0' = - 0.

Z z X Z Z

Tl E2 TT

x ~

Fig. 3. Transformation from world coordinate system to camera

coordinate system.

IV. EXPERIMENTAL RESULTS

In this section, we first look at the results of a simulation
with various levels of noise injected into various parameters
in order to examine the performance and sensitivity of our

algorithms. Specifically, we inject noise into both the image
position of viewed features and in the camera parameters,
both intrinsic and extrinsic.
The first simulation examines the sensitivity of our LBL

method to all of these different noises. We then compare

the performance of LBL alone with that of LBL+MBL.

A. Simulated Experiment for the LBL method
In order to analyse the effects of intrinsic and extrinsic

parameters of the camera on position and orientation of
the robot as well as testing the robustness of our combined
LBL+MBL method, we carried out extensive experiments
using synthetic data.

N

60 \
y 40

20 60

20 x

Fig. 4. 3D Euclidean scene. Symbol "*" shows position of the camera
and symbol "o" shows the origin of the world coordinate system.

The simulated experiment was carried out on a 3D Eu-
clidean model (Fig.4). The scene consists of 122 points rep-
resenting the landmarks, in which case the global (X, Y)i
coordinates of the points represent their projections to the
ground plane. The height of the tallest 3D landmark is 15m.
The farthest distance between the camera and 3D landmark
is 75.3m. The intrinsic camera parameters were chosen as
follows: the synthetic camera had an aspect ratio of one
with no skew, a focal length value f = 6.00mm which
is invariant, dx = dy = 0.01mm, a principal point value
of (319, 239) pixels, and an image size is 640 x 480. The
position of the camera at 0° = (65, 65, 8) and the origin
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of the world coordinate system at Ow = (0, 0, 0) Let
Ptrue = (X, Y)true and yawtr,e signify the true value of
the camera pose in the world coordinate system. In a similar
manner, we denote Pestimate and yawestimate as their
estimated value. For all the tests that were performed, we
compute the estimated values as average values executed
10,000 times under different Gaussian noise condition. The
variation of relative error for each parameter ranges from
1% to 20%. The relative errors were created by adding
Gaussian noises with mean equal to zero, variance equal
to one and standard deviation equal to one. Figure 5 shows
the influence of intrinsic parameters have on the location
and orientation of the robot. Fig.5(a) shows the variation
of the Euclidean error in position d = IPtrue - Pestimate II
with different noises added, and the yaw error is equal to
yawtrue - yawestimate I- From the experimental results of
Fig.5(a) it can be observed that the position of the camera
is very sensitive to the principal point (uo, vo) errors. When
we added 20% noise to the principal point, the resulting
position error is 11.71 meters. However, the position of
the camera is not sensitive to feature point noise (noise on
the image location of a point/corner feature). In another
scenario, we added the same noise percentage to feature
points, the resulting position error is equal to 7.76 meters.
Fig.5(b) indicates that yaw angle is very sensitive to errors
in principal point and feature points, but not to errors in
focal length. From the experimental results we also know
that pitch angle is highly sensitive to noises in feature
points but not to noises in principal point and focal length
while yaw angle is very sensitive to errors in principal point
and feature points, but not to errors in focal length.

14 --- --- Errors in uO, vO
I..Errors in imaged feature position

12 -- Errors in f
2 10- +

2 8-

0

0 5 10 15
Relative errors (%)

20

(a)

-uErrors inu vO0.2-:--Errors in imaged feature position.
.o+Errors in f

X,, 0.00- ag

0 5 I10 15 2

Relative errors (%)

(b)
Fig. 5. The effect of intrinsic parameters on location and orientation of
the robot.

Figure 6 shows the effect that extrinsic parameters have
on location and orientation of the robot. Fig.6(a) shows that
the position of the camera is highly sensitive to pitch but
not to roll and yaw. Fig 6(b) illustrate that the variation of
the extrinsic parameter yaw does not affect the orientation
of the robot at all but is highly sensitive to pitch and roll
angles. So in practice, we should maintain the X, axis of
the camera parallel to the ground plane and the Y, axis
perpendicular to the ground plane. (Alternatively we may
use ground plane homography techniques to determine the
orientation of the ground plane with respect to the camera.)

6-

5-

2
E 2-

4-

2 -

0

l- 0-

-*-Errors of pitch
Errors of roll

-v-Errors of yaw

1 a
0 5 10 15 20

The variation of noises (degree)

(a)

0.006- -* Errors of pitch /
0.004 - Errors of roll0.04... ..Errors of yaw
0.002-

0.000-

-0002-

-0.004-

-0.006
0 5 10 15 20

The variation of yaw of the camera (degree)

(b)
Fig. 6. The effect of extrinsic parameters on location and orientation of
the robot.
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-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Errors in yaw (degree)

(b)
Fig. 7. Distributions of position and orientation errors with 5% Gaussian
noise added to the focal length f with mean equal to zero, variance equal
to one and standard deviation equal to one.
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(b)
Fig. 8. Comparison between landmarks and our method.

In order to test the robustness of our method, we set 0 = 00
and added 5% Gaussian noise to the focal length f with
mean equal to zero, variance equal to one and standard
deviation equal to one. We ran the program 100,000 times
under different noise conditions. Figure 7 shows how the
distance of the camera to the origin of the world coordinate
and lyawtrue - yawestimatej are distributed for different
noise variation. Fig.7(a) shows distance with mean equal
to 92.25m and standard deviation equal to 2.41m. The
ground truth distance is 92.27m. Fig.7(b) shows errors in
yaw with mean equal to 0.01503° and standard deviation
equal to 0.287870. The ground truth is 00. Note that the
distributions are almost normal, and the mean values are
very near to ground truth values. For different noise levels,
the computed results are similar which proves that our
method is very robust under different noise conditions.

B. Simulated Experiment for the LBL+MBL method

The 3D points (X, Y, Z)j in the model shown in fig. 4
form the known 3D model used in the MBL phase of our
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method. Figure 8 shows the results of the LBL alone and
our method which combines LBL and MBL. The estimated
values we got are all the average of 10, 000 runs by adding
different Gaussian noises to the image coordinates. The
mean is zero and the standard deviation from 1 to 20
pixels. Fig.8(a) Shows the variation of distance from Ttrtte
to Testimate with different noises. Ttrue and Testimate are
the ground truth and estimated values of the position of the
robot. Fig.8(b) shows the variation of the errors of yaw (the
robot's orientation in the direction of the axis x ) relative
to the real value. The results show that using our method,
we can get more accurate and stable camera position than
the landmarks method. This is because in Lowe's method,
the rotation parameters R and focal length f remain the
same as in the previous transform, but the position vector
t has been replaced by the new parameters Dx, Dy and
D,, and then Newton's method is carried out by calculating
the optimum correction rotations Aix, Ai\y and AO,i to
be made about the camera-centred axes. New parameters
Dx, Dy simply specify the location of the object on the
image plane and D, specifies the depth of the object from
the camera. So when Lowe's method was used after we
get initial value from landmarks method, we can get more
accurate position of the camera, but the value for rotation
is about the same, as shown in figure 8(b).

C. Real Image Experiment for LBL+MBL

Figure 9 shows the three images of a scene, viewed from
different robot/camera poses. The scene contains artificial
landmarks for which we have manually measured the 3D
map (X, Y, Z)i of features. The map of features is defined
by the centres of the chessboard targets, which can be
detected by a standard corner detector, such as Plessey-
Harris detector [14]. Landmarks are obtained by taking the
ground plane projections of these points, namely (X, Y)i.
(Note that our method also works with natural features, but
we have not focussed on the extraction and identification
of natural mapped features in this work.) The first image
was taken with the position of the camera located at (64.7,
136.7)cm and an orientation angle 0 = 0°. The second
image was taken with the position of the camera shifted to
(-10, 145)cm and orientation angle 0 =-200. The third
image was taken with the position of the camera located
at (126, 125)cm and orientation angle 0 = 10°. The height
of the camera is measured to be 110 cm. For the camera
coordinate system, the X,O,Z, plane is parallel to the
ground plane. The experimental results are shown in table
I. In this experiment, the maximum distances from robot to
the object are 332.3cm at the first position, 318.6cm at the
second position, and 327.7cm at the third position. From
the data obtained, we have computed the relative errors
of the distances between real and estimated position to be
0.84%, 1.29% and 0.73%, respectively. The experimental
results show that our proposed method in this paper is
viable for practical purposes.

V. CONCLUSIONS

Based on both LBL and MBL methods, we have pro-
posed an algorithm for visually localizing a mobile robot
using a single, standard monocular camera. Firstly, in order
to get accurate and robust initial pose estimates, we have
extended Betke and Gurvit's LBL method to standard
perspective cameras. We have analyzed the robustness
of this LBL method and tested its accuracy by carrying
out intensive experiments using synthetic data. Different
parameters have different effects on the LBL position and
orientation estimates of the robot. Some parameters are
more important than others. For example, the position of
the camera is highly sensitive to errors in principal point
u0, v0, but not to feature position errors. The orientation is
very sensitive to feature position errors, but not to errors
in focal length. This gives us insight into how to get
good initial pose estimates, which are then more likely to
be within the convergence region of any iterative MBL
refinement scheme. We find that MBL can improve the
position estimate of the robot but not the orientation error,
when the system is subject to various levels of feature
position noise. In an experiment with real images in the
combined LBL+MBL method, the average relative errors
for X, Y, Z are 0.95%. The average absolute errors for
pitch, roll and yaw are 1.70, 1.5° and 0.5°, respectively.
Our thorough sensitivity analysis through simulated exper-
iment and our initial experiments with real images indicate
that the proposed method is suitable for practical visual
localisation applications.

TABLE I
EXPERIMENTAL RESULTS USING REAL IMAGE.

Different Position(cm) Angle(')

values (X,Y,Z) (P, R, Y)

Ground (64.7,136.7,110) (0,0,0)

truth (-11,148.1,110) (0,-20,0)
value (126.2,125,110) (0,10,0)

Computed (67.1,135.3,110.1) (1.6,-3.1,-0.4)
results (-10,146.8,113.8) (2.1,-20.03,-0.2)

(127,125.5,107.8) (1.5,11.3,-1.0)
Absolute 2.8 (1.6,3.1,0.4)

errors 4.1 (2.1,0.03,0.2)
2.4 (1.5,1.3,1.0)

Fig. 9. Known artifical landmarks and scene model viewed from three
poses.
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