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Abstract 
A n  active range sensor is summarised. This sen- 

sor can direct its field of view in order to fixate on 
range features for mobile robot navigation. The image 
position sensor used has a Gaussian noise character- 
istic with measurable variance, which makes the sen- 
sor particularly amenable to stochastic range feature 
detection. A geometric analysis of the sensor allows 
a mathematical model of the sensor to be built, the 
parameters of which can be determined from data col- 
lected during the calibration of the real sensor. This 
model forms the basis of a sensor simulation, which 
allows allows feature extraction algorithms to be de- 
veloped. One such algorithm, based on the Extended 
Kalman Falter, extracts a piecewise-linear range rep- 
resentation of the local environment. This has a num- 
ber of advantages over previous methods in that it is 
computationally e"@cient, it deals with noise appropri- 
ately, and it is robust to sensor head movements as 
range measurements are being made. 

1 Introduction 
Many different means of range sensing have been 

investigated for Robotics applications. These include 
optical radar [4], sonar, projected stripe and projected 
pattern [a] schemes. The latter two are based on opti- 
cal triangulation which provides an esective solution 
for short to medium range ranging applications. An 
intelligent active range sensor, based on optical trian- 
gulation has been designed to guide obstacle avoid- 
ance and docking maiiceuvres of a mobile robot. The 
mechatronic design of the sensor, its calibration, its 
means of range variance estimation, and its focal pro- 
cessing structure have been presented in a previous 
paper [5]. This paper briefly reiterates the structure 
of the sensor and then goes on to describe how the sen- 
sor may be modelled geometrically. This model forms 
the basis of a sensor simulation which models many 
physical properties of the ranging process. The form 
of the noise contaminated range scan that it gener- 
ates is almost identical to that produced by the real 
sensor and so it provides an useful tool with which 
to develop range feature extraction algorithms. Sec- 
tion 4 describes a simple feature extraction algorithm, 
where the features are simply straight line segments 
extracted from the scan. A.ccurate range feature ex- 
traction is important for robust control of both the 
active sensing process itself and of vehicle manceuvres. 

Figure 1: Plan view of the sensor head 

The recursive line extraction algorithm presented here 
is suitable for any range sensor which provides noisy 
range measurements at deterministic orientations. In 
addition it permits (i.e. is robust to) rotations of that 
sensor's body (for active sensing) and does not require 
axes of body rotation and laser projection to be coin- 
cident. 

2 The sensor configuration 
This section provides a brief summary of the sensor 

configuration presented in i5]. The means of scanning 
the laser and lens in exact synchronism is shown in 
plan view in fig. 1, which is an adaptation of Liv- 
ingstone and Rioux's [8] configuration. The laser is 
scanned over twice the angle over which the scanning 
mirror deflects, and the centre of scanning is at the vir- 
tual image point 0,. The lens is effectively scanned, in 
exact synchronism with the laser, around virtual im- 
age point Oq in the sensor on an arc with radius equal 
to the separation between the scanning mirror and 
the lens. The synchronised scanning optics in fig 1 is 
termed the sensor head. This sensor head is mounted 
on a servo driven platform which can rotate the field of 
view of the sensor head between $90 and -90 degrees 
relative to the forward looking direction. 
2.1 Image position measurement 

The geometric means of range measurement de- 
scribed above requires the one-dimensional measure- 
ment of image position. An analogue means of mea- 
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Specificat ion 

surement is provided by the lateral-effect photodiode 
(LEP) which acts as a photocurrent divider so that 
the position of the light centroid, p, is 

li 

I1 - 12 P P 
P=--( ; ) ,  I1 + fz ( - + p < + a )  (1) 

and the detector current, 10, is the sum of the termi- 
nal currents, I1 and 1 2 .  If image position variance can 
be computed, it can be scaled by (the square of) the 
triangulation gain, which is the magnitude of the lo- 
cal gradient, l ~ l z , ~  in the  calibration table to give an 
estimate of range variance. This variance information 
is essential to allow robust algorithms to be applied 
to the raw range data: in particular, it is used in the 
EKF algorithm for line segment extraction. A pre- 
vious analysis [5] established a relationship between 
the standard deviation associated with an image pc- 
sition measurement and t>he detector current for that 
measurement as 

In order l o  estimate the constant noise current, I,, the 
above equation can be linearised by taking logarithms 
and tmhe results in table 2 can be used to estimate the 
constant noise currmt, I,, by standard least squares 
methods. This value is then used in the sensor simu- 
lation. 

2.2 Sensor performance 
Table 1 summarises the specifications of the sensor 

head and sensor head drive. Standard deviations of 
range measurements, and their values as a percentage 
of the target range, are shown in table 2. Tn addition, 
the standard deviation of image position and the av- 
erage detector current in nanoamps are shown. These 
results are almost, entireiy immune to the effects of 
ambient lighting as laser modulation and lock-in de- 
tection are used in the sensor design [7]. 

v 

depth of field 2.lm 
stand of distance (min. ranee) I 0.4m 

sensor head position resolution I 0 .36 degree 
head resDonse time (90 dea. steD) I 0.5s 

Table 2. Ranging IResults (1000 readings) 
z(m) / /  ~ , ( c m )  1 ‘% rep. j I ,  jnA) I Ap(pm) fl 

3 Development of a sensor simulation 
A geometric analysis of the sensor allows a model of 

the sensing process to be built, which can be used to 
form the basis of a simulation tool. This is necessary 
for developing and investigating feature extraction al- 
gorithms and provides a means of comparing predicted 
ranging performance w tth actual ranging performance. 
In the following section, the geometry of the ranging 
process is analysed. In section 3.2 it is shown how the 
parameters In this model can be derived from the cai- 
ibration data of the real sensor. Finally, in section 3.3 
the simulabion tool which uses this model is described. 
3.1 Analysis of t h e  ranging geometry 

Figure 2 is a schematic diagram of the ranging ge- 
ometry in which the range of the object is assumed 
to be large compared with the focal length of t,he col- 
lecting lem so that the focal plane i s  at a distance f 
from the principal point of the lens. Essentially, the 
schematic is an optical ray diagram of fig. 1 with the 
laser projertion axis and lens optical axis “unfolded” 
into their virtual image positions so that they rotate 
in synchronism about the origin 0 p  and the point q 
respectively. (These points correspond to the virtual 
positions Op and Oq on fig. 1). Note that the centre 
of the lens does not coincide with the point q but ro- 
tates about q on an ai-c with radius s ,  the scanning 
mirror-lens separation. 

In the geometric analysis of the ranging process, it 
is assumed that the optical centre of the lens is scanned 
about a point, q ,  which is at the same z coordinate as 
the origin of the laser scan, Op, as shown in fig. 2. The 
sensor was designed so that this would be the case to 
a good approximation. 

The small angle y in fig. 2 is required to ensure 
that the whole detector length is used in covering the 
sensor’s depth of field (‘This vergence angle of the 
optical axis should not be confused with that of the 
laser Seam, which is the projected vergence angle, yP .) 

Examination of fig. 2 reveals the following three 
relationships 

P t an4  = - s (5) 

Using these relationships we can derive the projection 
frame coordinates of a scene point as [6] 
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Figure 2: Prqjection frame geometry of ranging 

where 

l + ( t a n B P -  - ) t any , l , s ecy ]  P (8) 
f 
f 

q = I + " t a n y  
P 

(The superscript p refers to projection frame coordi- 
nates. A superscript s refers to sensor frame coordi- 
nates where the sensor frame has its origin on the axis 
of sensor head rotation). Note that the terms in r 
represent the efTect of the vergence an le, since if y 
were zero, then each of the terms in I? rand q )  would 
be unity. 
3.2 Estimation of Sensor Parameters 

For the sensor simulation to be a useful predictive 
tool, appropriate values for parameters in the geomet- 
ric model must be derived. This is achieved by pro- 
cessing the data collected in the calibration of the real 
sensor. Projected vergence angle -+', and the origin 
of t8he sensor scan [z:,, ~ $ 1 ~  are given to the simula- 
tion directly from the z calibration phase which uses 
a striped target [B]. This leaves parameters f :  d,  y, s 

to be determined from the z calibration table which 
contains values of image position for 256 angles by 
approximately 40 calibration target depths. 

Equation 6(a) can be rearranged to give 

f(zp tan? - dcos2 B p ( l +  tanaptany))  
= dcosBP(sin QP - cos BP tan y) - s cos OP sec y - z p  

(10) 
Substit,uting (2' - z i p )  for 2 in the above gives 

where 

p cos Qp sin 0: 
-p  cos2 B: 
-p cos 6: 

zip - z.5 
H T =  I cos2 0; 

sin 8; cos Qf 

d 
d t a n y  

X =  (13) 

Equation 11 illustrates that determining the sensor's 
four intrinsic parameters involves determining the 
state x, which has dimension 6. 'The data  forming the 
calibration look-up table typically will contain 10240 
data points, thus enabling an accurate LS solution to 
be formed for x in equation 11, 
3.3 The sensor simulation tool 

In the sensor the laser beam has a width of around 
3mm, and this is modelled as a number of parallel 
rays (typically 9) spanning this width. The intensity 
of these rays is such that they sum to the power of 
the laser beam, with the rays a t  the edge being less 
intense than at the centre. (The rays effectively sam- 
ple the Gaussian distribution of intensity across the 
beam width.) The world is modelled as a series of line 
segments, each with an associated reflectivity and the 
sensor simulation takes the following form: 

0 The results of both stages of the calibration are 
passed to the simulation. Using these results, the 
approach described in sFction 3.2 allows the sen- 
sor intrinsic parameters to be estimated. When 
these values are placed into the equation 6 they 
form a geometric model. 

The following steps take place for each of the 256 pro- 
jection angles. 

e The nearest intersection of each ray with the en- 
vironment is computed. Rays, environment seg- 
ments, and points of intersection are represented 
in homogenous coordinates to simplify computa- 
tions to cross products. 
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For each my, an image position is computed us- 
ing the geometric model. Some points of intersec- 
tion may be occiuded from the image sensor by 
another part of the environment (missing parts) 
and, in this case, the computation is not per- 
formed. 

For each ray, its contribution to the total detector 
current is determined. (Occluded rays have zero 
contribution.) This is dependent on the ray's pro- 
jection intensity, the range from the lens at which 
it intersects the environment, and the reflectivity 
of the environment at  that intersection point. 

The image position formed by the  hole laser pro- 
jection is the weighted sum of the image positions 
due to each ray. The weights are the proportion 
of the ray's contribution to  the total detector cur- 
rent (This models the integration of image inten- 
sity over the surface of the detector). 

The detector current is the sum of all the detector 
currents generated by each ray. 

Total detector current is used to compute the im- 
age position variance from equation 2. (The cur- 
rent noise figure, I ,  must computed from an off 
line experiment with the real sensor using stan- 
dard LS on logarithmic plots). Image position 
noise is added by pseudo-randomly sampling €rom 
a zero mean Gaussian distribution with this vari- 
ance. 

[ E ' ,  zSIT can then be determined in the same way 
ns the actual sensor by interpolating using the 
real calibration table for t,, and using the scan 
origin and prqjection vergence parameters iden- 
tified from the sensor IC calibration to  generate 
2 , .  

The position measurements and their variances 
can be passed to a line extraction EKF algorithm 
which can subsequently be used on the real sen- 
sor. 

Line extraction using the EKF 
It is assumed that the range data set for a given 

scan can be associated with a piecewise linear model 
of the world. For many real environments in which 
autonomous vehicles operate (containing, for exam- 
ple, walls, pillars and boxes) this assumption is not 
unrealistic. Parts of the environment where the as- 
sumption does not hold can be identified because the 
discontinuities extracted will not, exhibit predictable 
behaviour when the vehicle and sensor head move. 

The feature extraction algorithm must estimate the 
parameters of the line segments, the position of range 
discontinuities, and their associated uncertainties. In 
addition, to  avoid latency, a recursive formulation 
is required. In a recursive formulation, the choice 
of line segment representation is important. Some 
lines generated by a laser scanner [3] have employed a 
{midpoint, length. orientation) representation. This 

is not appropriate in a recursive extraction scheme be- 
cause both length and midpoint are changing with 
each new point. A polar representation of line seg- 
ments (length and orientation of line normal) does not 
suffer from this problem. Recent work [9] uses this 
representati'on in a metlhod of batch orthogonal least 
squares on a subset (window) of measurements. A po- 
lar representation of thl? line segment was extracted 
from each window of measurements, and this process 
was repeateld by sliding the window across the whole 
set of n measurements. Points were then clustered 
in the pola,r coordinates of the extracted window seg- 
ments to extract line segments associated with phys- 
ical feat,urea. In high scanning rate applications this 
approach may be a connputa.tiona1 burden as a new 
batch solution has to be computed for each point. An 
approach w:hich is relatively fast would be the stan- 
dard formu1,ation of a rlecursive LS estimator. How- 
ever, this is inappropriat?e, since the world coordinates 
z and z are not independent, but are related through 
the laser scan angle (in fact 2 needs to  be determinis- 
tic). Also this formulation does not provide a frame- 
work with which to  deal with rotations of the sensor 
body. This is important because such rotations can be 
significant in the time it takes for a single scan (0.1s). 
In addition to being a stable representation in a recur- 
sive feature extraction scheme, a polar representation 
(bounded b y  scan angles) is appropriate €or dealing 
with sensor head rotations in the Extended Kalman 
Filter (EKF). This provides the computational frame- 
work in which sensor head movements are catered for 
by the evolution of such a state representation. 
4.1 State prediction 
In the (Extended) Kalman Filter, a process (or plant) 
model describes how the state, x, evolves with an in- 
put vector, U ,  subject to an additive noise vector, V. 
This model has the general form Eli: 

~ ( k  + 1) = f ( x ( k ) , u ( k ) )  + ~ ( k ) ,  

where f is the state transition function, and the nota- 
++ N ( 0 ,  Q(k)) denotes that t,he noise source 

is tion mode v(ki led as zero-mean Gaussian with covariance 

The process in the line extraction EKF is the ro- 
tation of the sensor head and, in the process model, 
the state representation of the current line segment 
must evolve appropriately. The geometry of fig. 3 
representing time sample k gives 

v ( k )  N N ( 0 ,  Q k) j i 4 i  

Q ( k ! .  

d ) ( k )  = p " k )  +rocosP(k) (15) 

(16) 

where 

P(k )  = V l k )  - 4 0  

and [rO,+0lT are the projection frame polar coordi- 
nates of the sensor frame origin, derived from the cal- 
ibration procedure as: 
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'igure 3 :  Polar measurement of a polar line 

where Vf is the Jacobian of the state transition func- 
tion 14 

The superscript p in equation 21 indicates that any 
process noise must be represented in the projection 
frame. Process noise arises due to error in the mea- 
surement of the change in sensor head angle over a 
rangc sample interval, and may arise, for cxample, 
from the quantisation error in rotary encoders. In the 
implementation presented here, the velocity of the sen- 
sor head is known accurately (because of the geared 
stepper drive system) and thus errors in the compu- 
tation of AB, are negligible compared to range mea- 
surement errors; however we include a discussion of 
process noise for completeness: Any process noise due 
to the measurement of ABs will appear as noise asso- 
ciated with q3s whereas p ,  will be unaffected, thus 

Q s =  [: ,$] 
and this can be transformed t80 the projection frame 
as 

Now if we allow a small rotation of the sensor head, 
MI,, during a range sample interval, then at time in- 
terval (k+l) we have Qp = VtQ"VtT (24) 

where Vt is the Jacobian of the transform between 
the sensor frame state and the projection frame state P ( k  + 1) = P ( k )  - ABS (18) 

but 

Thus, we can combine equation 15 for time interval k 
and time interval k + 1 to give the state prediction in 
the projection frame as: 

4.3 Observation prediction 
The measurement model has the form 

~ ( k )  = h ( x ( k ) ,  B p j  + ~ ( k ) ,  ~ ( k )  - ~ ( 0 ,  ~ ( k ) )  (26) 

1 where the meas~irement~ function, h relates the state, 
the input (laser projection angle) and the observation 
(range), and w is additive, zero mean, Gaussian ob- 
servation noise, 

In addition to a polar state, we consider a polar for- 
mulation, ( r9  p) ,  of the measurement equation. The 
advantage of this approach is that the SCiLn QP 
can be considered to be deterministic, whereas and 

are randon1 and correlated. Thus the feature extrac- 
tion E;KP is based on the polar measurement of a line 
segment represented in polar coordinates, as depicted 
in fig. 3. Thus, using the geometry of this figure, the 
predicted state is used to generate a predicted obser- 

fao) 
It is evident that the process is more natural if the 
state is represented in thc sensor frame, since the ori- 
gin of t,his frame i s  a.t the a.xis of sensor head rota- 
tion ( T O  = 0 in equation 20). In this case, the state 
prediction is linear and trivial to compute. However, 
since this representation yields a complex measure- 
mcnt equation, thc state is chosen to be the polar rep- 
resentation of a line segment in the projection frame, 
[P", The Penalty is a more comPlexst,ate Predic- 
tion, but this is justified since the head will not always 
be moving when observations are being made. 
4.2 Covariance of the state prediction vation as 

as - 
The covariance of the prediction is then computed 

(27) cos(q9 - OP) 
F(k + 1) = h(XP(k + I l k ) ,  O F )  = /i' 

P ( k  + I l k )  = OfF'(klk)OfT + Q P ( k )  (21) 
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4.4 Observation validation 
A matching or data association procedure is re- 

quired to establish whether the current observation 
lies on t,lie current line segment. Such observation val- 
idation is implemented using a mlidation gate, which 
normalises the square of the difference between the 
a.ctua.1 and the predicted observation (the innovation) 
with the covariafice of this quant,ity, and then tests 
whether it is below a threshold, g2. Such a test indi- 
cates that the actual observation lies wit.hin g standard 
deviations of the predict,ed observation and if success- 
ful, the observation can be used to  update the state 
estimate, otherwise the bootstrap batch processing is 
initialised to  generare the initial state estimation of a 
new line segment. 

The innovation is defined as the differeme between 
the actual and the predicted observation: 

v ( k  + 1) = T ( k  + I )  - r'(k + Ilk) (28) 
The innovation covariance is obtained by linearising 
equation 26 about the prediction. We then square 
and take expectations to give, S = E' [U ' ]  as 

where Mi is the Kalmani gain, which is computed as 

S ( k +  I )  = o l l ( x . + I ) P ( ~ + 3 ~ k ) O h ? ' ( k + 1 ) + R ( k + l )  
(29) 

where 

To generate R(k + 1) = q?(k  + l), the zero mean 
Gaussian noise computed for z must be transformed 
to a noise on the measured range, whilst scan angle 
is considered to be deterministic. Variance in the z 
dimension is given by 

hence 

a: = .l(l + cot2 P )  = crZcosec2QP (32) 
Having computed t8he covariance of the innovat,ion, as- 
sociation of the observation with the current state is 
achieved through a validation gate test, which is de- 
fined by 

(33) 

4.5 State and covariance update 
The well known information form of the Kalman 

filter [I] is used giving the state update for validated 
observations as 

X ( k + l j k + l )  = X ( k + l / k ) + W ( k + l ) v ( k + l )  (34) 

and covariance update as 

P ( k + l l k + l )  = P(k+l~k)-W(k+1)S(k+I)W ( k+ll  (35 

W(k 4- 1) = P ( k  -t 1jk)VhTS-l(k + 1) (36) 
4.8 The batch initialisation process 

At the start of a range scan, and when an observa- 
tion is not validated, a k point ( k  2 2)  batch initial- 
isation process IS required to provide the initial state 
estimate, ?(kjk),  and alssociated covariance, P(klk) .  
on which the recursive prcicess can operate. The prob- 
lem may be formulated as a non-linear least squares 
minimisation with [p, chosen to minimise: 

However, it, is not desirable to implement an iter- 
ative solution to this equation in an algorithm which 
must run in real-time. A preferable approach is trans- 
form the problem into a more tractable linear form. 
As with the recursive process, it is inappropriate to 
use a hatch LS estimator directly to estimate the ini- 
tial state, since the world coordinates z and z a.re not 
independent, but are related by the scan angle. To 
minimise the projection of errors into the E coordi- 
nate, which allows a standard batch LS to be applied, 
the €oliowing algorithm is implemented. 

1nit)ialisatio'n - algorithm 

(i) Transform measurements [x,z]~,Z' = I . .n - 1 to 
projection frame n. (This compensates for any sensor 
head movements during the initialisation process.) 
(ii) Compute the centroid of the data set in projection 
frame n and determine the angle, O,, of the centroid 
with respect to the zP axis of t,his frame. 
(iii) Apply a rotation matrix to the n initialisation 
points so that the centroid is coincident with the ZP 
axis. 
(iv) Compu.te a standard weighted least squares on the 
transformed points to give a gradient-intercept (y = 
uz + 6 )  representation of the line segment. 
(iv) Transform above representation to a polar repre- 
sentation [/PI @ ' I T ,  such that 

7r 

2 
f#l = tan--' U - 0, + --, p = z ,  cos(tan-'a) (38) 

(vi) Compute the covariance associated with this esti- 
mate as: 

P ( k j k )  = [Vh'R-'Vh]-' (39) 
In the above, Oh is t,he istacked Jacobian measurement 
matrix 
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cat paints and edges in global frame 5 Conclusions 
A simulation based on a geometric model of the 

sensor has been developed and the range scans that 
it generates correlate closely with those obtained from 
the real sensor. This means that it is a valid and use- 
ful tool with which to develop range feature extraction 
algorithms. A line segment extraction algorithm has 
been developed which allows sensor head movements 
to be naturally modelled as the process in an EKF 
framework. In addition, this formulation avoids the 
problem of ill-conditioned vertical lines in a Carte- 
sian gradient-intercept formulation. A polar measure- 
ment equation has proved to be appropriate since the 
dominant noise source is in range measurement rather 
than scan angle measurement. Also, the EKF provides 
variances around both the model parameters and the 
edge positions, making the abstracted data amenable 
to both tracking and probabilistic reasoning. 

Ongoing work is extending these ideas by broaden- 
ing the range feature types to include curved segments. 
This requires the correct model type to  be hypothe- 
sised in the batch initialisation process. 
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